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Reflex is a process-oriented language that provides design of easy-to-maintain control

software. The language has been successfully used in several safety-critical cyber-physical

systems, e. g. control software for a silicon single crystal growth furnace. Now, the main

goal of the Reflex language project is development a support for computer aided software

engineering targeted to safety-critical application. This paper presents formal operational

semantics of the Reflex language as a base for applying formal methods to verification of

Reflex programs.
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1. Introduction

The increasing complexity and use of embedded and cyber-physical systems in our lives

requires a reassessment of the design and development tools. Most challenging are safety-

critical systems, where incorrect behavior and/or lack of robustness lead to unacceptable loss

in funds or even human life. Such systems are widely spread in industry, especially, in chemistry

and metallurgy plants. Since behavior of cyber-physical system is determined by the control

system, and behaviour of control system is specified by software, the study of control software

is of the great interest.

Many control systems are based on industrial programmable logic controllers (PLCs) pos-

sessing the following features: they are inherently open (i. e. communicate with an external

environment), reactive (have event-driven behaviour) and concurrent (have to process a multi-

ple asynchronous events). These features lead to special languages being used in development

of control software, e.g. the IEC 61131-3 languages [1] which are the most popular in the

PLC domain. However, as the complexity of control software increases and quality is of higher

priority, the 35 years old technology based on the IEC 61131-3 approach is not able to address

the present-day requirements [2].
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Reflex is a domain-specific extension of the C language developed as an alternative to IEC

61131-3 languages. A Reflex program is specified as a set of communicating concurrent pro-

cesses. Specialized constructs are introduced for controlling processes and handling time inter-

vals. Reflex also provides constructs for linking its variables to physical I/O signals. Reflex

assumes scan-based execution, i.e. a time-triggered control loop, and strict encapsulation of

platform-dependent I/O subroutines into a library, which is a widely applied technique in IEC

6113-3 based systems. To provide both ease of support and cross-platform portability, the

generation of executable code is implemented in two stages: the Reflex translator generates

C-code and then a C-compiler produces executable code for the target platform.

Currently, the Reflex project is focused on design and development tools for safety-critical

systems. Because of its system independence Reflex easily integrates with LabVIEW [3]. This

allows to develop software combining event-driven behavior with advanced graphic user inter-

face, remote sensors and actuators, LabVIEW-supported devices, etc. Using the flexibility of

LabVIEW, a set of plant simulators was designed for learning purposes [4]. The LabVIEW-

based simulators include 2D animation, tools for debugging, and language support for learning

of control software design. One of the results obtained in this direction is a LabVIEW-based

dynamic verification toolset for Reflex programs. Dynamic verification treats the software as

a black-box, and checks its compliance with the requirements by observing run-time behavior

of the software on a set of test-cases. While such a procedure can help detect the presence of

bugs in the software, it cannot guarantee their absence [5].

Unlike dynamic verification, static methods are based on source code analysis and are com-

monly recognized as the only way to ensure required properties of the software. It is therefore

very important to adopt static verification methods for Reflex programs. Since these meth-

ods require programs to have formal semantics, in this paper we present formal operational

semantics of Reflex programs.

2. Introduction to Reflex

Reflex syntax is demonstrated here using a simple example of a program controlling a hand

dryer like those often found in public restrooms (Listing 1). The program uses input from an

IR sensor, indicating presence of hands under the dryer and controls the fan and heater with a

joint output signal. A formal Reflex syntax definition in EBNF has been specified in [6].

PROGR HandDryerController {
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TACT 100;
CONST ON 1;
CONST OFF 0;

/* ============================= */
/* I/O ports specification */
/* direction , name , address , */
/* offset , size of the port */
/* ============================= */

INPUT SENSOR_PORT 0 0 8;
OUTPUT ACTUATOR_PORT 1 0 8;

/* ============================= */
/* processes definition */
/* ============================= */

PROC Init {
/*===== VARIABLES ============= */

BOOL I_HANDS =
{SENSOR_PORT [1]} FOR ALL;

BOOL O_DRYER =
{ACTUATOR_PORT [1]} FOR ALL;

/*===== STATES ================ */
STATE Waiting {

IF (I_HANDS == ON) {
O_DRYER = ON;
SET NEXT;

} ELSE O_DRYER = OFF;
}
STATE Drying {

IF (I_HANDS == ON)
RESET TIMEOUT;
TIMEOUT 10

SET STATE Waiting;
}

} /* \PROC */
} /* \PROGRAM */

Listing 1: Hand dryer example in Reflex

In Reflex, a program is presented as a set of concurrently running communicating processes,

each defined in textual form starting with a PROC keyword:

PROC <process name > {<process body >}

The first process defined in the text is initially active when the program is started.

Program execution is split into clocks with a fixed period in milliseconds specified with the

TACT directive at the top of the code.

The body of a process consists of variable declarations and list of state function definitions

in the following form:
STATE <state name > {<state body >}

The state that is defined first in the process body is one into which that process is transitioned

by START PROC statements. Two extra states STOP and ERROR are defined implicitly for each process.

The body of a state is defined as a sequential block of code, consisting of the assignment

statements, if statements, switch statements, process control statements and one optional time-

out statement that define events and their corresponding reactions. To prevent the code from

blocking the program execution, Reflex does not provide any loop statements.
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The syntax for expression and selection statements in Reflex is identical to that in C (except

for Reflex-specific boolean operations on states called activity predicates) and is discussed in

detail in [6]. For introduction purposes here we focus on those constructs that are specific to

Reflex.

Process control and communication in Reflex is managed using state transitions, control

statements and activity predicates that can be used in expressions. State can be only be used

by the process on itself and set the process state for the next activation cycle:
SET STATE <state name >;

A reserved keyword NEXT can be used here in lieu of explicit state name to denote a transition

to the state that is defined next to the current along the program text.

The START/STOP/ERROR statements allow processes to start/stop other processes and to stop

themselves - either normally or in error state. These statements are responsible for divergence

and convergence of control flow:
START PROC <process name >;
STOP PROC <process name >;
STOP;
ERROR;

Processes are also able to check whether other processes are in their active or passive (states

STOP and ERROR) states using selection statements in conjunction with ACTIVE/PASSIVE predicates,

e.g.:
IF (PROC <process name > IN STATE ACTIVE) { ... }

To provide means for tracking time, timeout statements have been introduced in Reflex:
TIMEOUT <clocks num > <statement >

This statement can only be used once in a state function and should then be the last

statement in the state body. It allows to specify a reaction to the event of the process spending

more than the specified amount of time in its current state.

The process body can contain variable definitions with port bindings and scope directives:
<type > <variable name > = <port binding > <scope directive >;

Supported types are BOOL for Boolean values as well as INT, SHORT, LONG, FLOAT and DOUBLE that

behave the same way as in C. The FOR ALL scope directive is to indicate that this variable can be

used by any processes in the program. Port binding makes the variable being read into from an

input port or written into the port if that port is defined as output. Ports used in the program

are defined before the process definitions in the following format:
<direction > <port name > <base address >
<offset > <size in bits >;
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One important feature of variables bound to ports is that all read and write operations for

these variables are double-buffered. The values of I/O ports are read once per program cycle

and each value is stored in two instances – one for read and one for write operations. New values

for the output ports are set and sent to external devices at the end of the cycle. This way all

processes read the same port values even if they are modified inside that cycle of execution.

3. Operational Semantics of Reflex

Let N be a set of natural numbers (including 0). Let U∗ be a set of all sequences from

elements of set U , |u| and u.i denote length and i-th element of sequence u ∈ U∗, respectively.

Let < u1, . . . , um > denote a sequence of elements u1, ..., um and con(w1, . . . , wn) denote

concatenation of sequences w1, ..., wn.

For the set A of Reflex programs we define: sets T , CR, H and E of types, constructs,

statements and expressions, set val(t) of all values of type t ∈ T , and set Γ = ∪t∈Tval(T ) of all

values.

For each program α ∈ A we define: its environment π, set P = {p1, . . . , pn} of processes,

set Θ of process states, set F of functions, set V = Vs ∪ Vl of variables, set Vs = Vi ∪ Vo of

shared variables (they are shared with π), set Vl of local variables (Vr ∩ Vl = ∅), set Vi of input

variables (π can only write to them), set Vo of output variables (π can only read from them),

Vi∩Vo = ∅, function vt ∈ V → T associating variables with their types, function pso ∈ P → Θ∗

associating processes with ordered sequence of their states (they are listed in the order they

appear in p), ordered sequence po ∈ P n of processes (they are listed in the order their definitions

appear in α), function psv ∈ Θ→ H associating process states with their bodies (statements),

function par ∈ F → Vl associating functions with their parameters, and function bod ∈ F → H

associating functions with their bodies (statements).

For each program α we consider that the following restrictions hold:

1. Program α is well-formed.

2. Information about ports of α and matching variables with ports is not taken into ac-

count as it relates to communication with physical devices. Program α interacts with its

environment directly through input and output variables.

3. Variable access levels in α are not taken into account, since they determine only the

correct access to variables, which is provided for well-formed programs.

4. There is no overload of names of process states, variables and function parameters, i.
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e. α is a result of renaming overloaded names. Therefore we can consider that function

parameters are also variables. For each function f , new variable val_f specifying the

return value of f is added to α.

5. There is no a tact declaration and constant declarations in α, i. e. α is a result of

execution of all C-like macro substitutions.

6. Processes are executed sequentially in each tact.

Since Reflex is an extension of C, its operational semantics is based on a transition system

(S, Si,→R,→C), where S is a set of states, Si ⊆ S is a state of initial states, →R and →C

are transition relations for Reflex-specific constructs and C programs, respectively. There are

several solutions for description of operational semantics of C [7–11]. Therefore we focus on

operational semantics of Reflex-specific constructs, considering that relation →C is determined

by one of these approaches (our description is closest to the approach [10]).

Let u.w denote the value of function u for argument w.

A state s ∈ S is defined as a tuple (gc, cp, lc, ps, vv, ih, oh, cf), where gc ∈ N is a global

clock, cp ∈ P is a current process, lc ∈ P → N is a function associating processes with their

local clocks, all clocks count time in ticks (one tick corresponds to one iteration of control loop),

ps ∈ P → Θ is a function associating processes with their states, vv ∈ V → Γ is a function

associating variables with their values, ih ∈ Vi → Γ∗ is an input history (ih.v.i is a value of

v ∈ Vi written by π during i-th tick of global clock gc), oh ∈ Vo → Γ∗ is an output history

(oh.v.i is a value of v ∈ Vo read by π during i-th tick of global clock gc), and current function

cf (its body is executed).

Let s.gc, ..., s.oh denote access to component gc, ..., oh of state s.

A state s is initial if gc = 0, lc.p = 0 for each p ∈ P , ps(po.1) = pso.(po.1), ps.(po.i) = stop

for each 1 < i ≤ n, |ih.v| = 0 for each v ∈ Vi, and |oh.v| = 1 for each v ∈ Vo.

For the transition system we define: set ΞC = CC × S of configurations of C programs, set

ΞR = CR×S of configurations of Reflex programs, and set Ξ = ΞC ∪ΞR of configurations. The

transition relations have the following properties: →C∈ ΞC × ΞC and →R∈ ΞR × Ξ.

Operational semantics of Reflex-specific constructs is defined by transition rules. Many of

these rules use meta-assignment u1.u2...um := u;.

Meta-assignment. Let upd(w, u1.u2. ... .um, u) be a function replacing w.u1.u2. ... .um by

u in w. Then meta-assignment is defined by rule

(u1.u2. ... .um := u;, s)→R (u, upd(s, u1.u2. ... .um, u)).
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Program. Program α is defined by rules

(α;, s)→R (CONTROL LOOP;, s);

(CONTROL LOOP;, s)→R

(INPUT; p1; ... pn; OUTPUT; TICK; CONTROL LOOP;, s).

Construct CONTROL LOOP; defines repeated control loop. Constructs INPUT; and OUTPUT; interact

with environment, writing to input variables and reading from output variables, respectively.

Construct p; executes process p. Construct TICK; increments the value of global and local clocks.

These constructs are defined by rules

If vv′ ∈ V → Γ, and ih′(v) = con(ih(v), < vv′(v) >) for each v ∈ Vi
then (INPUT;, s)→R (ih := ih′;, s);

If oh′(v) = con(oh(v), < vv(v) >) for each v ∈ Vo
then (OUTPUT;, s)→R (oh := oh′;, s);

(p;, s)→ (psv.(ps.p), s);

(TICK;, s)→ (gc := s.gc+ 1; lc.p1 := s.lc.p1 + 1; ...; lc.pn := s.lc.pn + 1;, s).

Activity predicates. They are defined by rules:

((PROC p IN STATE ACTIVE), s)→R (s.ps.p 6= STOP ∧ s.ps.p 6= ERROR, s);

(PROC IN STATE ACTIVE, s)→R ((PROC s.cp IN STATE ACTIVE), s);

((PROC p IN STATE INACTIVE), s)→R (s.ps.p = STOP ∨ s.ps.p = ERROR, s);

(PROC IN STATE INACTIVE, s)→R ((PROC s.cp IN STATE INACTIVE), s);

((PROC p IN STATE STOP), s)→R (s.ps.p = stop, s);

(PROC IN STATE STOP, s)→R ((PROC s.cp IN STATE STOP), s);

((PROC p IN STATE ERROR), s)→R (s.ps.p = ERROR, s);

(PROC IN STATE ERROR, s)→R ((PROC s.cp IN STATE ERROR), s).

Control statements. They are defined by rules

(STOP PROC p;, s)→R (lc.p := 0; ps.p := stop;, s);

(STOP;, s)→R (STOP PROC s.cp;, s);

(ERROR PROC p;, s)→R (lc.p := 0; ps.p := error;, s);

(ERROR;, s)→R (ERROR PROC s.cp;, s);

(START PROC p;, s)→R (lc.p := 0; ps.p := pso.p.1;, s);

(RESTART;, s)→R (START PROC s.cp;, s);

(SET STATE θ;, s)→R (lc.p := 0; ps.p := θ;, s);

If pso.p = con(. . . , < s.ps.(s.cp), θ >, . . .) then (SET NEXT, s)→R (lc.p := 0; ps.p := θ;, s).

Timeout statements. They are defined by rules
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(RESET TIMEOUT;, s)→R (lc.(s.cp) := 0;, s);

If (e, s)→R (γ, s′), and s.cl.(s.cp) ≥ γ then (TIMEOUT e η, s)→R (η, s′);

If (e, s)→R (γ, s′), and s.cl.(s.cp) < γ then (TIMEOUT e η, s)→R (OK, s′).
General statements. They are defined by rules
If (e, s)→R (TRUE, s′) then (IF e η1 ELSE η2, s)→R (η1, s

′);

If (e, s)→R (FALSE, s′) then (IF e η1 ELSE η2, s)→R (η2, s
′);

If (e, s)→R (TRUE, s′) then (IF e η, s)→R (η, s′);

If (e, s)→R (FALSE, s′) then (IF e η, s)→R (OK, s′);

If s.cf = f , and (e, s)→R (γ, s′) then (RETURN e;, s)→R (vv.valf := γ, s′);

({η1 ... ηm}, s)→R (η1 ...ηm, s′);

If (η1, s)→R (OK, s′) then (η1 η2 ... ηm, s)→R (η2 ...ηm, s′).
Expressions. They are defined by rules
If (e, s)→R (FAIL, s′) then (v = e, s)→R (FAIL, s′);

If (e, s)→R (γ, s′) then (v = e, s)→R (vv.v := γ;, s′);

If par.f =< v1, . . . , vm >, FAIL /∈ {γ1, . . . , γm}, and

(e1, s)→R (γ1, s1), (e2, s1)→R (γ2, s2), ..., (em, sm−1)→R (γm, sm)

then (f(e1, . . . , em);, s)→R

(vv.v1 := γ1; . . . ; vv.vm := γm; bod.f, sm);

If par.f =< v1, . . . , vm >, FAIL /∈ {γ1, . . . , γk−1}, γk = FAIL, and

(e1, s)→R (γ1, s1), (e2, s1)→R (γ2, s2), ..., (ek, sk−1)→R (γk, sk)

then (f(e1, . . . , em);, s)→R (FAIL, sk).
Sequential composition. It is defined by rules
If (η1, s)→R (OK, s′) then (η1 η2 ... ηm, s)→R (η2 ...ηm, s′);

If (η1, s)→R (FAIL, s′) then (η1 η2 ... ηm, s)→R (FAIL, s′).

4. Discussion and Conclusion

Reflex has very simple semantics in terms of data structures, expressions and statements. It

has no pointers, arrays, and structures. It has no iteration statements and jump statements. It

has a limited number of operations. Its complexity is due to scan-based execution, interaction

with environment, handling time intervals, process interaction and linking its variables to phys-

ical I/O signals. We propose operational semantics which copes with this complexity by using

concepts of global and local clocks, dividing variables into internal, input and output ones, and

modeling input/output of programs with history of values of input and output variables.

Current critical systems commonly use a lot of floating-point computations, and thus the
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testing or static analysis of programs containing floating-point operators has become a priority.

However, correctly defining the semantics of common implementations of floating-point is tricky,

because semantics may change with many factors beyond source-code level, such as choices made

by compilers [12]. Therefore, we plan to modify operational semantics rules for arithmetical

operations based on the platform-independent approach to specification and verification of

arithmetical operations and standard mathematical functions [13–15].
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