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The paper presents a method for describing the operational semantics of programming

languages. It is based on a domain-specific language designed to specify executable speci-

fications for programming language constructs. This language is an extension of the Lisp

language. The peculiarity of the method is to set the semantics for the program model,

and not for the program itself. Since the specifications are executable, the method actually

allows to ‘program‘ the semantics of programming languages. The method can be used in

teaching computer languages, as well as in creating new programming languages, since it

allows you to describe the constructions of a new language immediately at the level of an

abstract syntactic tree.
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1. Introduction

One of the key methods to ensure the reliability of software is the use of formal methods.

However, such use requires a formal definition of the program. One of these natural definitions

is the operational semantics of programming languages.

The existing definitions of operational semantics can be divided into three groups. The first

group consists of semantics presented manually in a natural or mathematical language. There

is a huge list of works of this kind for specific programming languages. Here ([12], [10], [3], [8],

[7], [4], [5], [17], [2], [6], [16], [13]) are some of them. The second group consists of semantics

represented by program executors (implementations of programming languages). The third

group consists of semantics encoded in formal machine systems ([15], [1], [18], [9], [14]).

All of these ways of representing operational semantics have a number of common disad-

vantages. First, even a small modification of the semantics requires efforts to avoid making

mistakes when editing the representation. With a significant change in semantics, it is nec-

essary to rewrite a significant part of its representation. Secondly, such representations of

semantics cannot provide an understandable and readable general structure at the same time

as the completeness of the analysis of all cases. Thirdly, these representations are not univer-
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sal, capable of accurately preserving the structure of programs of a formalized programming

language, in particular, due to the fact that the structure of the representation is rigidly de-

fined. Fourth, these representations are practically unsuitable for describing the semantics of

programs composed of constructs of several programming languages (A way of combination can

be found in [11]). Fifth, these representations are difficult to adapt to a subset of the same

language, given the specifics of this subset, which makes it possible to simplify the general

semantics.

We present metalanguage approach to the development of formal semantics of programming

languages which is able to largely cope with these disadvantages.

2. Metalanguage approach

The proposed approach has the following features:

1. It applies to program models, not to programs themselves.

2. It is fine-grained, i. e. for each type of program constructs it has its own type of models

and, thus, can be applied in isolation to individual program constructs, building their

operational semantics.

3. It is flexible, since it allows to develop operational semantics only for a fragment of a

target programming language represented by a variety of acceptable types of program

constructs or to develop a family of different operational semantics for the same target

programming language.

4. Models of program constructs are presented in a unified way in a metalanguage of de-

scription of models.

5. The metalanguage also allow to present models of execution contexts of these constructs.

6. The metalanguage has the means to transform these models, thus allowing develop op-

erational semantics as a sequence of transformations of models of program constructs

and their execution contexts and reducing process of development of formal semantics of

programming languages to writing programs in a metalanguage that implements corre-

sponding sequences of transformations.

7. The model transformation means make operational semantics of these constructs exe-

cutable.

8. This approach can be applied to programs that use combinations of several programming

languages.
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2.1. Metalanguage Design

Within the framework of the proposed metalanguage approach, the metalanguage language

PSML, a syntactic extension of Common Lisp, was designed.

PSML contains one extra type mt. It describes a finite set of model languages, as well as a

set of operations for each language from this set. A model language specifies either models of

programming language constructs, or models of execution contexts of these constructs.

This type is extensible, which means that its contents, which include many languages, many

types of constructs for each of these languages, and many value constructs for these types, can

be expanded by special PSML-functions. Let us list these functions.

Let letters s, o, os (possible with indices) denote Lisp symbols, objects and object sequences,

respectively. The initial empty content of type mt is set by function (mt-empty). Function

(mt-lan s) adds a new model language s to type mt. Function (mt-clan s) makes the model

language s the current language. Model execution is always performed in the context of the

current model language.

Let l, t, and c denote a model language, type of models, and value constructor of a type of

models, respectively.

Function (mt-type (c t) os1 ∗ os2 ∗∗ os3) adds a new type t of models and value constructor

c for this type to the current model language. Sequences os1, os2, and os3 are called positional,

attributing, and tagging components and specify three kinds of arguments of c called positional,

attributing and tagging arguments, respectively.

Component os1 specifies positional arguments of c. Its elements have the form (s v), where

v specifies type and optional property of a positional argument, and s specifies an argument

name (called a positional attribute), allowing access to the argument not only by its position,

but also by name of this attribute. Object v can have one of the following forms t′, (t′ l),

(TC t′), (TC (t′ l)), (opt t′), (opt (t′ l)), (opt (TC t′)), and (opt (TC (t′ l))) where s specifies

argument type, i. e. the type of models that it can take as a value, l indicates that type t′ is

a type of models of language l, CT ∈ {list,map} list indicates that values of the argument

are lists of models of type t, map indicates that values of the argument are are finite mappings

from symbols to type t, and option indicates that this argument is optional and can be skipped.

If l = lisp, t′ is a built-in lisp type name (for example, symbol).

Component os2 specifies named arguments of c that are used to annotate models of type c.

Its elements have the form (s v), where s specifies an argument name (called an annotating
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attribute), and v specifies type of the argument and has the same form as in component os1

except for the optional property.

Component os3 specifies tagging arguments of c that are used to tag models of type c. Its

elements have the form s, where s is called a tag.

Function (mt-utype t (t1 ... tn)) adds a new type t of models which is a union of types t1,

..., tn. Let us note that this type does not have its own value constructor.

Function (mt-ltype t s) adds a new type t of models which values match the values of the

Lisp type s.

PSML has functions of access to contents of mt and attribute update in it.

Function (mt-aget m a) returns the value of attribute a of model m. Function (mt-aset m a o)

assigns value o to attribute a of model m. These functions have generalized forms

(mt-aget m a1 ... an) and (mt-aset m a1 ... an o) that allow you to access the value and

assign the value according to the hierarchy of attributes a1, ..., an, respectively.

Functions (mt-type m) and (mt-aname p) return a type of model m and a name of positional

attribute in position p.

Function (mt-is-model m) checks whether m is a model of the current model language.

Function (mt-clan-get m) returns the current model language.

Function (mt-lans) returns a current list of model languages. Function (mt-mtypes l) returns

a list of types of models of language l. Function (mt-mtypes) returns a list of types of models

of the current language.

Function (mt-function f ((l t x) y) o) specifies actions given by body o for function f of two

arguments, model x of type t of construct language l and execution context y. If l is omitted,

the current language is assumed.

There are variants of the above functions wit prefix mt-g- instead of mt-. These variants

have additionally a model language as the first argument.

2.2. Approach Steps

The application of the proposed approach consists of the following four steps:

1. To program the content of type mt corresponding to the target programming language L

(its program constructs and execution contexts) in PSML.

2. To develop a translator of L-constructs to their primary models. A primary model of

a program construct is a model that directly represents the construct without adding
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additional information (for example, as result of semantic analysis). A primary model

corresponds an AST of the construct obtained as a result of syntactic analysis, with one

exception that this tree is additionally semantically marked with attributes and concepts

(types of models) within the terminology of the subject area (a programming language).

This is the only step that is performed by an external tool (for example, a parser gener-

ator), but because of one-to-one translation, it is simple.

3. To program a translator of primary models of L-constructs to their secondary models

in PSML. A secondary model is a result of enriching the primary model of a program

construct with additional information. This result is achieved by adding new annotating

attributes to the construct and their meanings, as well as adding new tags. At the

same time, the positional component of the construct does not change, just as the old

annotating attributes and tags do not change. Enriching program construct models with

additional information allows to simplify operational semantics development. Specialized

external tools (for example, static analysis tools) can be used to execute this step.

4. To specify function op-sem for each program construct model in PSML. Let us note

that although the full power of Common Lisp can be used in defining such a function,

experiments show that it is possible to identify a limited subset of functions sufficient to

describe the semantics of typical programming languages, thus defining DSL (Domain-

Specific Language) for the operational semantics development.

2.3. Example

In this section the proposed approach is applied to a ’programming language’ consisting

exactly of the constructs contained in the program fragment below.

i n t a = 1 ; i n t b = 2 ; i n t c ; i n t ∗ p = &c ;

asm ( " . inte l_syntax nop r e f i x \n\ t " // GAS d i r e c t i v e

"mov eax , %1\n\ t "

"add eax , %2\n\ t "

"mov %0, eax\n\ t "

:"= r "( c )

: " r "( a ) , " r "(b)

: " eax"

) ;
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This fragment denoted further by PF illustrates combination of two languages: C and Assem-

bler.

In the first step, the content of type mt is set. Due to lack of space, this type will immediately

contain the specification of the primary and secondary models, while attributes and tags related

to the secondary model will be highlighted in bold.

(mt-empty) ; i n n i t i a l i n t i a l i z a t i o n o f type mt

(mt-lan C) ; adding model language C f o r C−cons t ru c t s

; s p e c i f y i n g model types f o r C language

(mt-clan C) ; making C cur rent

(mt-type (seq declaration-sequence) (seq (list declaration))

(mt-utype expression (integer variable derefence addressof))

(mt-ltype integer int)

(mt-ltype variable symbol)

(mt-type (∗ derefence) (pointer (symbol name)))

(mt-type (& addressof) (variable (symbol name)))

(mt-utype declaration (variable-declaration asm-insert))

(mt-type (var variable-declaration) (type type) (name (symbol lisp))

(value (opt expression)) ∗ (always-points-to-var (symbol lisp))

∗ ∗ non-shared )

(mt-type (asm asm-insert-declaration) (code Assembler))

(mt-utype type (simple-type pointer-type))

(mt-ltype simple-type symbol)

(mt-type (pointer pointer-type) (type type))

; s p e c i f y i n g model types f o r I n l i n e Assembler language

(mt-clan Assembler) ; making Assembler cur r ent

(mt-type (insert insert) (GAS (string lisp)) (code (list instruction))

(outputs (list binding)) (inputs (list binding))

(destructed (list (symbol lisp))) )

(mt-type (binds binding) (register-type (symbol lisp)) (var (symbol lisp)))

(mt-utype instruction (mov add))

(mt-type (mov mov) (first operand) (second operand))

(mt-type (add add) (first operand) (second operand))
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(mt-utype operand (simple-operand index-operand))

(mt-ltype simple-operand symbol)

(mt-type (& index-operand) (index (nat lisp)))

After completing the second and third steps, the following secondary model of fragment PF

is obtained:

(seq (var int a 1 ∗ ∗ non-shared) (var int b 2 ∗ ∗ non-shared) (var int c 2)

(var (pointer int) p (& c) ∗ (always-points-to-var c))

(asm (insert (GAS ".intel_syntax noprefix")

(code (mov eax (% 1)) (add eax (% 2)) (mov (% 0) eax))

(outputs ((binds (register-type r) (var c))))

(inputs ((binds (register-type r) (var a))

(binds (register-type r) (var b))))

(destructed (eax)))))

Tag non-shared specifies variables values of which can be accessed in fragment PF only

through their names. Annotating attribute always-points-to-var specifies pointers that always

point to the same variable and returns this variable. From the arrangement of these entities

in this model, it follows that a simple memory model without addresses can be used in the

execution context for PF .

The language C-context specifies the execution context for C constructs of PF and is defined

as follows:

(mt-lan C-context) ; adding C-context language

; s p e c i f y i n g model types f o r C-context language

(mt-clan C-context) ; making C-context cur r ent

(mt-type (context context) ∗ (var-values (map (object lisp)))

(var-types (map type)) (pointers (map (symbol lisp))) )

Thus, this context stores the values of variables in annotating attribute

var-values and the variables through which pointers get values in annotating attribute pointers.

An example of model of language C-context is given below:

(context ∗ (var-values (map (a 1) (b 2) (c 3)))

(var-types (map (a int) (b int) (c int) (p (pointer int))))

(pointers (map (p c))) )
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The language Assembler-context specifies the execution context for Assembler constructs

of PF and is defined as follows:

(mt-lan Assembler-context) ; adding Assembler-context language

; s p e c i f y i n g model types f o r Assembler-context language

(mt-clan Assembler-context) ; making Assembler-context cur r ent

(mt-type (context context) ∗ (reg-values (map (object lisp)))

(index-values (list (object lisp)))

(free-GP -registers (list (symbol lisp))) )

This context stores the values of registers in annotating attribute reg-values and unallocated

general-purpose registers in annotating attribute free-GP -registers. An example of model of

language Assembler-context is given below:

(context ∗ (reg-values (map (eax 1)))

(index-values (nil 1 2))

(free-GP -registers (ecx edx ebx esp ...)) )

In the fourth step, function op-sem is specified for each program construct model. The

PSML code for two cases of specification of this function for C model of type variable corre-

sponding to variable access construct in C and similar Assembler model of type index-operand

corresponding to C variable access construct in Assembler are given below.

(mt-clan C)

(mt-function op-sem ((variable x) y)

(if (symbolp (mt-aget y var-types x))

(mt-aget y var-values x)

(mt-aget (mt-aget y pointers x) var-values))

(mt-clan Assembler)

(mt-function op-sem ((index-operand x) y)

(mt-aget y index-values (mt-aget x index)) )

3. Conclusion

A metalanguage model approach has been proposed that allows programming the operational

semantics of programming languages in terms of these languages themselves, preserving the
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structure of the source program at the model level and representing operational semantics as a

code of transformation of the model in a metalanguage.

In the near future, it is planned to finally fix the design of the metalanguage, clarify the

property lists of global variable mt, modeling the corresponding type mt and its contents, and

implement the designed functions in the form of Lisp macros.
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