System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 53

VIIK 004.8
Formalisms for conceptual design of information systems*

Anureev I.S. (Institute of Informatics Systems)

A class of information systems considered in this paper is defined as follows: a system
belongs to the class if its change can be caused by both its environment and factors inside
the system, and there is an information transfer from it to its environment and from its
environment to it. Two formalisms (information transition systems and conceptual transi-
tion systems) for abstract unified modelling of the artifacts (concept sketches and models)
of the conceptual design of information systems of the class, early phase of information
systems design process, are proposed. Information transition defines the abstract unified
information model for the artifacts, based on such general concepts as state, information
query, answer and transition. Conceptual transition systems are a formalism for conceptual
modelling of information transition systems. They defines the abstract unified conceptual
model for the artifacts. The basic definitions of the theory of conceptual transition systems
are given. A language of conceptual transition systems is defined.

Keywords: information system, information transition system, conceptual structure, on-
tology, ontological element, conceptual, conceptual state, conceptual configuration, concep-

tual transition system, conceptual information transition model, transition system, CTSL
1. Introduction

The conceptual models play an important role in the overall system development life cycle
[1]. Numerous conceptual modelling techniques have been created, but all of them have a
limited number of kinds of ontological elements and therefore can only represent ontological
elements of fixed conceptual granularity. For example, entity-relationship modelling technique
[2] uses two kinds of ontological elements: entities and relationships.

The purpose of the paper is propose formalisms for abstract unified modelling of the artifacts
(concept sketches and models) of the conceptual design of information systems (IS for short)
by ontological elements of arbitrary conceptual granularity. In our two stage approach the
informational and conceptual aspects of the system that the conceptual model represents are
described by two separate formalisms. The first formalism describes the informational model

of the system, and the second formalism describes the conceptual model of the informational

Partially supported by RFBR under grants 15-01-05974 and 15-07-04144 and SB RAS interdisciplinary integration project
No.15/10.

54 Anureev I.S. Formalisms for conceptual design of information systems

model.

An information transition system (ITS for short) is an extension of an information query
system (IQS for short) characterized additionally by the exogenous and endogenous transition
relations specifying transitions on states. The exogenous transition relation models change of
an information system caused by its environment. It associates queries with binary relations
on states called transition relations and answers returning by state pairs from these transition
relations called transitions. The endogenous transition relation models change of an information
system caused by factors inside the system. It is defined as a transition relation with answers

returning by transitions of the transition relation.

A wide variety of information systems is modelled by ITSs in the information aspect, in-
cluding database management systems with transitions initiated by queries, expert systems
with transitions initiated by operations with facts and rules, social networks with transitions
initiated by actions of users in accordance with certain communications protocols, abstract
machines specifying operational semantics of programming languages with transitions initiated
by instructions of abstract machines, verification condition generators specifying axiomatic se-

mantics of programming languages with transitions initiated by inference rules and so on.

We consider that the second formalism used for for conceptual modelling of I'TSs must meet

the following general requirements (in relation to modelling of a ITS):

1. It must model the conceptual structure of states and state objects of the I'TS.

2. It must model the content of the conceptual structure.

3. It must model information queries, information query objects, answers and answer objects
of the 1QS.

4. It must model the interpretation function of the ITS.

5. It must be quite universal to model typical ontological elements (concepts, attributes,
concept instances, relations, relation instances, individuals, types, domains, and so on.).

6. It must provide a quite complete classification of ontological elements, including the
determination of their new kinds and subkinds with arbitrary conceptual granularity.

7. The model of the interpretation function must be extensible.

8. It must have language support. The language associated with the formalism must define
syntactic representations of models of states, state objects, queries, query objects, answers
and answer objects and includes the set of predefined basic query models.

9. It must model the change of the conceptual structure of states and state objects of the

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 55

ITS.

10. It must model the change of the content of the conceptual structure.

11. It must model the transition relations of the I'TS.

12. The model of the exogenous transition relation must be extensible.

As is shown in [3], conceptual configuration systems (CCSs for short) meet the seven re-
quirements in relation to IQSs. Comparison of CCSs with the abstract state machines [4, 5]
which partially meet these requirements was made in [3|. In this paper we present an extension
of CCSs, conceptual transition systems (CTSs for short) as the formalism satisfying the all
above requirements.

The paper has the following structure. The preliminary concepts and notation are given in
section 2. The basic definitions of the theory of CTSs are given in section 3. The language
CTSL of CTSs is described in section 4. Semantics of executable elements in CTSL is defined

in 5. We establish that CTSs meet the above requirements in section 6.

2. Preliminaries

2.1. Sets, sequences, multisets

Let O, be the set of objects considered in this paper. Let S; be a set of sets. Let I, Ny,
N, and B; be sets of integers, natural numbers, natural numbers with zero and boolean values
true and false, respectively.

Let the names of sets be represented by capital letters possibly with subscripts and the
elements of sets be represented by the corresponding small letters possibly with extended sub-
scripts. For example, i,; and 4,,, are elements of I,;.

Let S, be a set of sequences. Let s, (,), S;.{«}, and s;, denote sets of sequences of the forms

(Ob1s -3 Obnse)s 1015 -+ Obingg b5 AN Op1, - - ., Op.nyy from elements of s,. For example, I, () is a
set of sequences of the form (ins1, .- ., intn,), and iy is a sequence of the form i1, ..., It -
Let 0p1,. .., 0bny, denote op1,. .., 00,0 Let S¢(my)s Stfinw), and S¢sn,, denote sets of the

corresponding sequences of the length ng.

Let op1 <[s,] Ob2 denote the fact that there exist op..1, 0p+2 and op.3 such that s, =
Ob.x.1, Ob.1; Ob.x.2, 0b2, Opx3, OI Sqg = (Ob.*.h Opb.1, Ob.x.2, 0b.2, 0b.*.3)-

Let [op 0p1 <= 0p2] denote the result of replacement of all occurrences of oy in 0, by 0p2.
Let [sq 0p <=4 0p1] denote the result of replacement of each element oy in s, by [0p.1 05 <= 0p2].

For example, [(a,b) x <=, (f z)] denotes ((f a), (f b)).

516) Anureev I.S. Formalisms for conceptual design of information systems

Let [len s,] denote the length of s,. Let und denote the undefined value. Let [s, . n:] denote
the n;-th element of s,. If [len s,] < ny, then [s, . ny] = und. Let [s; + s41], [0p - + 4] and
[s; + . 0p) denote 0y, Op.s.1, Op, Op and oy, 0p, Where s, = op, and s, 1 = 0p.1.

Let [and s,] denote (cpq1 and ... and cpap,), where s, = a1, .- Cndn,, and [and] denote
true. In the case of n; = 1, the brackets can be omitted.

Let op1,0p2 € Sy US,. Then oy =4 o0p2 denote that the sets of elements of 0,1 and oy

coincide, and o0p1 =, 052 denote that the multisets of elements of 0,1 and o5 coincide.
2.2. Contexts

The terms used in the paper are context-dependent.

Let Ly be a set of objects called labels. Contexts have the form [op.], where the elements
of oy, called embedded contexts have the form: I:0p, lp: or 0.

The context in which some embedded contexts are omitted is called a partial context. All
omitted embedded contexts are considered bound by the existential quantifier, unless otherwise
specified.

Let opop.«] denote the object o, in the context [op.].

The object 'in oy, 0.+ can be reduced to ’in [op] in [op.] if this does not lead to ambiguity.
2.3. Functions

Let F), be a set of functions. Let A,, and V; be sets of objects called arguments and values.
Let [f arg.] denote the application of f,, to a,g..

Let [support f,] denote the support in [f,], i. e. [support f,] = {ary : [fn arg] # und}.
Let [image f, s denote the image in [f,, s], . e. [image f, si] = {[fn arg] : arg € si}. Let
[image f,] denote the image in [f,, [support f,]]. Let [narrow f, s;] denote the function f, ;
such that [support f,1] = [support f,1]Nse, and [fr1 arg] = [fn arg| for each a,, € [support f,1].
The function f,; is called a narrowing of f,, to s;. Let [support f,1] N [support fno] = 0. Let
fn1 U fno denote the union f, of f,; and f,o such that [f, a,y] = [fu1 @] for each a,, €
[support fn1], and [f, arg] = [fn2 arg] for each a., € [support fo]. Let fn1 C fn2 denote the
fact that [support f,1] C [support fns], and [fn1 arg] = [fn2 arg] for each a,, € [support f,1].

An object u, of the form a,, : v; is called an update. Let U, be a set of updates. The objects

arg and vy are called an argument and value in [u,].

Let [fn up| denote the function f,; such that [fn,1 ary] = [fn arg] if arg # argu,], and

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) Y

[fn1 arglup]] = viuy]. Let [fn wp, tpsn,] be a shorteut for [[f, up] wpan,]- Let [fr arg.Grga. - ..
rg.p, 2 01] be a shorteut for [fn arg < [[fn arg] arg1. ... Grgm, - vi]]. Let [up.] be a shortcut for
[f1 up], where [support f,] = 0.

Let C,,q be a set of objects called conditions. Let [if c,q then oy else 0p5] denote the object

op such that

e if ¢,,q = true, then o, = 0.1

o if ¢,,g = false, then o, = op5.

2.4. Attributes and multi-attributes

An object 0p e of the form (u,.) is called a multi-attribute object. Let O, be a set
of multi-attribute objects. The elements of [0y, W <. a,4[w]] are called multi-attributes
in [opma]. Let Opma be a set of multi-attributes. The elements of [0y w . yw]] are
called values in [opme]. The sequence w, . is called a sequence in [0p.q] and denoted by
[sequence in 0p.ma|. An object vy is a value in [au.m, Op.ma] If Ob.ma = (Ups1s Qttm * V1, Ups2) for

some Up .1 and up 2.

An object 0y, is an attribute object if the elements of [0y W = arg[w]] are pairwise
distinct. Let Oy, be a set of attribute objects. The multi-attributes in [o,] are called attributes
in [op.a]. Let Ay be a set of objects called attributes.

Let [function op4), [0p.q a1t), and [support o, 4] denote [[sequence in op4]], [[function opq) aul,
and [support [function op4)].

Let [seq—to—att—obj s,] denote (1 : [s, . 1],...,[len sy] : [sq . [len s4]]). Let opq =o (1 :

Ulgy ooy Mg & Upp,). Then [att—obj—to—seq op4] denote (vp1, ..., U,)-

3. Basic definitions of the theory of conceptual transition systems

Conceptual transition systems (CTSs) are transition systems in which states are conceptual
configurations, and transition relations are binary relations on conceptual configurations. In
this section the basic definitions of the theory of conceptual transition systems are presented.

The defined structures of CTSs are constructed from atoms and, thus, defined implicitly in

[[Atm]] :

3.1. Information transition systems

o8 Anureev I.S. Formalisms for conceptual design of information systems

Let Sy be a set of objects called states. An element ¢,, of the form (sy.1, i) is called a
transition. Let T}, be a set of transitions. The states s;1 and sy are called input and output
states in [[t,,].

Let S5, be a set of query systems. An object sy, of the form (Ss.q, trnrit.ex, trnriten) 1S an
information transition system if ¢, ,1t.c0 € Qr X Ans X Ste X Str = By, trnriten € Ans X Syt X Sy —
By, and for all ¢, € @, there exists s;; € Sy such that [value g, s;] # und, or there exist
Si1 € Sy, S € Sy and a,s € Aps such that [t iper @ Ans Sua Sue] = true. Let Sg,; be a
set of information transition systems.

The system s; , is called a query system in [ss;]. The function ¢,,, ... is called an exogenous
transition relation in [[ss,;]. The function t,, 4., is called an endogenous transition relation in
Sy be shorteuts for [t it.ex Gr Qns St Sw.o] = true

[[Ss.t.i]]- Let s4.1 —qr, S0 and Sy —

Ans ans

and [trnrit.en Gns St St = true, respectively.

The elements of Sy [ssq], Ob.slSs.qls QrlSsqll, Ovqlssqll, Anslssql and Opo[ssq] are called
states, state objects, queries, query objects, answers and answer objects in [s,], respectively.
The function value[s;,| is called a query interpretation in [s]

A query ¢, is an information query in [sg.] if [value g, sy # und for some sy. A query g,
is a change query in [ss4;] if [trnriter @ Qns Ste1 Siro] = true for some Sy1, Sy and ays.

A system s, executes tp, if Sy1[[trn] —gan. Ste2ftrn] for some ¢, and ans, or Siq[tin] —an,

Ans

Syr.o[trn] for some a,s. A system sg,,; transits from s;1 to sy0 if 44, executes (sy.1, Su.o)-
3.2. Substitutions, patterns, pattern specifications, instances

A function s, € E;, — Ej, is called a substitution. Let Sy be a set of substitutions. A
function subst € S, x E;. — FEj. is a substitution function if it is defined as follows (the first
proper rule is applied):

o if ¢, € [support sp], then [subst s, €] = [sp e;
o [subst sp Q| = Atm;
[]

subst sy Iy, : €] = [subst sy, ly] : [subst sy, e];

o [subst s,) :: nosubst| = ey

o [subst sy € :: Spy| = [subst sy €] i [subst sp Spel;

[
[
[
o [subst s, €; :: (nosubstexcept e;.)] = [subst [narrow s, {e;.}] el;
[
o [subst sp (€14)] = ([erx w <= [subst s, wl]);

[

o [subst sy €1..] = [e1. w <=, [subst s, w]].

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 59

The sort nosubst specifies the elements to which the substitution s, is not applied. The sort
(nosubstexcept e;..) specifies the elements to which the narrowing of the substitution s, to the
set e, is applied. An element p; is a pattern in [e;, sp] if [subst s, p] = €;. Let P, be a set of
patterns. An element i, is an instance in [p;, sp] if [subst sy p] = ins- Let I, be a set of
instances.

Let V,. and V,.; be sets of objects called element variables and sequence variables, respectively.
An element p, ; of the form (py, (vy4), (vr54)) 1 a pattern specification if {v, ;. }N{v,.} = 0, and
the elements of {v,.} U {v,s.} are pairwise distinct. Let P, ¢ be a set of pattern specifications.

The objects p;, (vr4), and (v,.5.) are called a pattern, element variable specification, and
sequence variable specification in [p;s]. The elements of v, , and v, s, are called element pattern
variables and sequence pattern variables in [p;], respectively.

An element i,y is an instance in [pys, sp] if [support sy = {v..}, [sp v.] € E; for v, €
{Vrs} \{vrss}, [s6 vr] € Epi for v, € {v, 5.}, and 4,4 is an instance in [py, sp]. An element 4,4
is an instance in [p; s] if there exists s, such that i, is an instance in [py.s,]

A function m; € E; X P,; — Sy is a match if the following property holds:

o if [my e; py.s] = sp, then e; is an instance in [p;s, sp].
An element i,y is an instance in [pss, my, Sp]) if [My inst Prs] = Sp. An element i, is an

instance in [p; s, m] if there exists s, such that i, is an instance in [py.s, my,).
3.3. The transition relation

Let Ss.. be a set of conceptual configuration systems. Let C,; be a set of conceptual
configurations. An element t,,, of the form (¢, 1, cnr2) is called a transition. Let T, be a set
of transitions. The configurations ¢,z and ¢, s are called input and output configurations in
[trn]-

The transition relations of a IQS is modelled by the transition relation t,,,.;; € T,, — B;
based on atomic exogenous transition relations, transition rules, atomic endogenous transition
relations, the exogenous transition order and the endogenous transition order. The exogenous
transition relation of the IQS is modelled by atomic exogenous transition relations and tran-
sition rules. The endogenous transition relation of the IQS is modelled by atomic endogenous
transition relations.

Transitions from a configuration ¢, in [t.,,1] are executed by a program in [c,s]. An

element sequence p,, is a program in [c,f] if [c,r (0 : () == state :: program] = (p,4). Let

60 Anureev I.S. Formalisms for conceptual design of information systems

P,, be a set of programs. Thus, programs in configurations are specified by the conceptual
(0 : () == state :: program from the substate program of the configurations. A program in
lens]l is empty if [e,r (0 : () == state :: program| = (). Atomic exogenous transition relations
and transition rules define transitions executed by the first element of the program. Atomic

endogenous transition relations define transitions executed in the case of the empty program.

Let ¢np1 — Cnp2 be a shortcut for [ty Cop1 Cnp2] = true. Transitions can return values.
An element v; is a value in [c,f] if vy = [cnp (0: () =2 state :: value]. An element v; is a value
in [tyn] if copaten] = cng2lten], and v, is a value in [e,p2[tn]]. Thus, the returned values
in transitions are specified by the conceptual (0 : ()) :: state :: value from the substate value
of output configurations of the transitions. A transition t,, returns a value v; if v; is a value
in [t,n]. A transition t,, returns (or generates) an exception e,. if e,. is a value in [t,,]. A
transition t,, is normally executed if ¢,,, returns no exception.

The special variables conf :: in and val :: in reference to the current configuration and the
value in the current configuration, respectively, in the definitions below.

An object t,p, rit.e. Of the form (py, (v,4), (Urs.4), fr) is an atomic exogenous transition relation
if (pr, (Urs), (Vr.54)) is @ pattern specification, conf ::in & {v..} U{v, 54}, val 2 in ¢ {v..} U
{Vrss}t, fn € Sy = (Ton — By), [support f,] = {sp : [support sp] = {v,s} U {54} U {conf
in,val : in},[sy v] € Ejforv, € {v..} and [sp v,| € Ep. for v, € {vesi}t}. Let Topriten
be a set of atomic exogenous transition relations. Let c,p1 —f, Cnr2 be a shortcut for
[[f Sb] Cnfa Cnfa) = true.

The objects p;, (vr4), (vrsx), and f, are called a pattern, element variable specification,
sequence variable specification, and value in [, .i.e:]. The elements of v,., and v, 4. are called

element pattern variables and sequence pattern variables in [[t,, 1it.c.], respectively.

A function t,, rit.exs € Ei — Trnriter 1S called an atomic exogenous transition specification
if [support tipirers) is finite. A relation t,, e, 1S an atomic exogenous transition relation
in [tenriters) if [Ernriters Mm] = trnrites for some n, € E;. An element n, is a name in
[[trn.rlt.ea:atrn.rlt.ew.s]] i [trn.rlt.eac.s nm] = trn.’rlt.em~ An element Ny, @ Nalne n Htrn.rlt.em.s]] if N

is & name in [tynriter, trnritess] for some top, ripes. Let cup1 —n,..s, Cnp2 be a shortcut for

Sb
Cnfl —>fnﬂ[trn.rlt4ez.s nm“]:'sb Cnf2

An element 7, of the form (pt, (vr4), (Ursx), (bg)) is a transition rule if by € Ej ., (pt, (Vr4),
(vrs.«)) is a pattern specification, conf ::in ¢ {v..} U{v.s4}, and val 2 in & {v,.} U {v,s.}

Let R; be a set of transition rules.

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 61

The objects p, (vrx), (vr54) and by are called a pattern, element variable specification,
sequence variable specification and body in [r;]. The elements of v,. and v, ;. are called
element pattern variables and sequence pattern variables in [[r;], respectively.

An attribute element 7, is called a transition rule specification if [support r;] C E;, and
limage r;5] C E;. A rule ry is a rule in [ry] if [r.s n,) = 7 for some n,, € E;. An element n,,
is a name in [ry, 7] if [ri.s 7] = r. An element n, a name in [r;s] if n,, is a name in [ry, 4]
for some r;.

A function t.,pit.en € {Cny : [cnp (0 :()) == state :: program] = ()} x Cpy — By is called an
atomic endogenous transition relation. Let T, ..., be a set of atomic endogenous transition
relations.

A function t,,,it.ens € Ep — Trpriren 18 called an atomic endogenous transition specifi-
cation if [support t.p.i.en.s| is finite. A relation t,,,y.e, is an atomic endogenous transition
relation in [t itens] if [Ernritens Mm] = trnriten for some n, € E;. An element n,, is a
name in [trn rit.ens trnrit.en.s] if [Ernritens Mm) = trniren. An element n,, a name in [t rir.en.s]
if n,, is a name in [ty riten, trnritens) fOr some top, pipen. Let ¢pp —n,. cnp be a shortcut for
[trnritens Tnl Cup Cupa] = true.

Let [support o rit.ex.s), [SUpport tr isen.s] and [support r;s] be pairwise disjoint.

An element 0,44y Of the form (n,,.) is called an exogenous transition order in [,y it.cx.ss
Tis] i {nma} C [support typ, ip.ee.s|U[support r 5|, and the elements of n,, , are pairwise distinct.
It specifies the order of application of atomic exogenous transition relations and transition rules.

An element 0,4 ¢ en Of the form (n,,) is called an endogenous transition order in [t,,, i.en.s]
if {nm«} C [support tpritens), and the elements of n,, . are pairwise distinct. It specifies the
order of application of atomic endogenous transition relations.

The information about the transition rule specification and the transition orders is stored in
the substate transition of the configurations. The conceptuals (0 : rules) :: state :: transition,
(=1 : exogenous,0 : order) :: state :: transition and (—1 : endogenous,0 : order) :: state ::
transition define the transition rule specification, exogenous transition order and endogenous
transition order. The conceptual (0 : history) :: state :: transition defines the substates that
store the information about transitions preceding the transition to the current configuration.

An element ¢, is consistent With (£,y,.rit.cx.s, s trn.rit.en.ss Ordtrn.cxs Ord.trn.en) i the following
properties hold:

o if [support trpn ritex.s] N [support [cap (0 : rules) :: state :: transition]] = 0;

62

Anureev I.S. Formalisms for conceptual design of information systems

o if [support oq.trn.en] N [support [cnr (0 : rules) :: state :: transition]] = 0;

o if r; s Ccnr (0:rules) :: state :: transition];

o if N1 <[oruimen] Mm2s ANd N1, Mo € [cnp (=1 @ ewogenous,0 : order) :: state ::
transition|, then 1,1 <[, ; (~Liezogenous,0:order):state:transition]] Mm.2}

o if Nyt <[o,uimen] Mm2s A0A N1, Mo € [cnp (=1 @ endogenous,0 : order) :: state ::

transition], then Nma <[[[cnf (—1:endogenous,0:order)::state::transition]] Tm.2-

Let e, # cny be a shortcut for [c,r program.(0 : () : (er.)]. Let e . # v # cnp be a

shortcut for [c, s program.(0: () : (e4), value.(0: ()) : vy].

Let [add—history c,f1 to c,r2]| denote [narrow c,r1 [support cupi] \ {[cnp1 (0 : history) :

state :: transition|}] U [narrow cpp1 {[cap1 (0 : history) :: state :: transition|}]. A function

trn.rlt € Cnflc X Onf — Bl is a transition relation in Htrn.rlt.e:c.57 Tl.ss trn.rlt.en.57 Ord.trn.exs Ord.trn.en]]

if it is defined by the following definition rules (the first proper rule is applied):

o if ¢, is not consistent with (t,y.1t.ca.s, s, trnrit.en.ss Ord.trn.exs Ordtrnen)s then [t coy
Cnpa) = false;

oif trnrites = [trnritens Mml, € is an instance in [pes[trnriteal], M, spl, €1« # cny
~FrmsyU(con finien pvalzinlens]) €lx1 FE U # Cop1, and vy # und, then (execute—
exogenous—transition, ey, (M Nms)), €lx F Cnf = €1x1 F U F Cofpa;

oif trnrites = [trnaitess M), € s an instance in [prs[trnrites]: M, 58], €1s # Cng
i spU(con frzinzcn p alzsinzv fens]) Elx.1 # Upa # Cny1, then (ezecute—exogenous—transition,
er, (Mm Nmx))s s # Cnp — (execute—exogenous—transition, e, (Nm.)), €1« # |add—
history cpp1 to cnyl;

o if tryriter = [trnarites.s Mm), and e; is not an instance in [py s[trn.rit.e2], M), then (execute—
exogenous—transition, e€;, (Nm, Nmx)), €1« F# Cnp — (execute—exrogenous—transition,
€, (nm*)), elx 7 Cnfs

o if 1, = [[cnf (0 : rules) :: state :: transition| n,,], and e is an instance in [p; s[r1], M, so],
then (execute—exogenous—transition, e, (N Nmx)), €1x F Cnp — ([Subst s, U (conf ::
in: cpp,val in ufenr]) balri]], (execute—exogenous—transition, e, (N M), (€1.4),
Cnf); e« 7 Cnfs

o if v; # und, then (execute—exogenous—transition, €;, (N Nm.x), (€141), Cnf1)s €1x F U
Cnf — €1 F UL H Cop;

o (execute—exogenous—transition, (N, M), €, (€1x1), Cnf1), €x # und # cpy —

(execute—ezogenous—transition, e;, (Nm.)), €1 # [add—history c,s to cpfal;

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 63

o if r; = [[cnf (0 : rules) :: state :: transition] ny,|, and e; is not an instance in [py 5[], m.],
then (execute—exogenous—transition, e;, (N Nms)), € # Cnp — (execute—
exogenous—transition, e;, (Mm+)), €s # Cnf;

o (execute—exogenous—transition, e, (), €. # oy — €. # und # cyy;

oif toyriten = [trnritens Mml, Cnf —nn, €Ls F U # Cnp1, and v # und, then (execute—
endogenous—transition, (N, Num..)) # Cof = €1x F# VI # Cof1;

oif tipriten = [trnritens Nml, and ¢,y —n,, € €. F# Ung # Cnp1, then (execute—
endogenous—transition, (Npy Nm.)) # Cnp — €1 €1« F Und F Cnf1s

oif toriten = [trnritens Nm), and Cof —>p, F# Una # Cny1, then (execute—endogenous—
transition, (N, Nm.)) # oy — (execute—endogenous—transition, (Npy,.)) # |add—
history cpf1 to cnfl;

e ¢, e F# Cnp — (execute—exogenous—transition, e, [c,r (—1 : exogenous,0 : order) ::
state :: transition]), e, # cay;

o # ¢,y — (execute—endogenous—transition, [c,s (—1 : endogenous,0 : order) :: state ::

transition]), # cuy.
3.4. Conceptual transition systems

An ObjeCt Ss.t.c of the form (Ss.c.catrn.rlt.ez.sa Tlss brn.rit.en.s, Ord.trn.ex Ord.trn.en) is a conceptual
transition system if s, .. is a conceptual configuration system, t,, rit.cx.ss Tl.ss trnrit.en.ss Ord.trn.cz
and 0,q4m.en are an atomic exogenous transition specification, transition rule specification,
atomic endogenous transition specification, exogenous transition order and endogenous transi-
tion order in [Ayy,[$s.cc]], and the sets [support t,, is.ce.s|, [Support tipn vis.en.s| and [support ;]
are pairwise disjoint. It specifies the transition system (C, ¢[Ss.c.c]s trnrit[Ernritex.s, Tis, trnriten.ss
Ord.trn.cxs Ordtrn.en, Mi[Ss.cc]]). Let Ssiec be a set of conceptual transition systems.

The elements of Atm [[Ss.c.c]]a El [[ss.c.c]]a Cncpl [[Ss.c.c]]a Stt [[Ss.c.c]]a Onf [[Ss.c.c]] and Trn [[Atm [[ss.c.c]]]]
are called atoms, elements, conceptuals, states, configurations and transitions in [ss.]-

The ObjeCtS Lrn.rit.ez.ss Tl.ss brnrlt.en.sy Ordtrn.exs Ordtrn.en, intr.a.s[[ss.c.c]]a df.s[[ss.c.c]]; Ord.intr [[Ss.c.c]]
and my[ss..] are called an atomic exogenous transition specification, transition rule speci-
fication, atomic endogenous transition specification, exogenous transition order, endogenous
transition order, atomic element interpretation specification, element definition specification,

element intepretation order and match in [ss¢.].

The function Lrn.rit [[trn.rlt.e:v.sa Tlss rn.rit.en.s) Ord.trn.exs Ord.trn.en, mt]] is called a transition rela-

64 Anureev I.S. Formalisms for conceptual design of information systems

tion in [[Sgrc]. A system sg,. executes t,, if sy1[tin] = Su2[trn]- A system sg; . transits from
Sit.1 t0 Sie2 if 540 executes (sp1, Su.2).

An element ¢; is interpretable in [ss;.] if ¢ is interpretable in [sscc[ss..c]]-

An element e¢; is executable in [ss.] if there exist n,, such that e; is an instance in

[[pt.s[[[trn.rlt.ex.s nm]]]a mt]]a or ¢ Is an instance in [[pt.s[[[rl.s nm]]]a mt]]'
3.5. Conceptual information transition models

An object mgiiq. of the form (Sstc, Tprs, Tprg, Tpra) 1S @ conceptual information transi-
tion model in [ss.4;] if (Ss.c.c[Ss.tcls Tprss Tprgs Tpra) 18 @ conceptual query model in [s; 4[ss.c4]],
[trn.rlt.ea:[[ss.t.i]] Gr Qns Stt.1 5tt.2] = [trn.rlt[[ss.t.c]] [[Tpr.s Stt.l] (0 : ()) i state i program : ([Tpr.q C]r])]
[7pr.s si2] (0:()) = state :: value : [rprq ansl]], and [tensiren[Ss.ei] ns sua suzl = trnrulssicl
[rpr.s Stea] (0:()) =z state = program : ()] [[rprs Sta) (0: () == state 2 value : [1prq ansl]]. Let
Mg +.4.. be a set of conceptual query transition models.

The objects sscc[sst.c] and ss ¢ are called a conceptual configuration system and conceptual
transition system in [mg.rq.], respectively. The functions 7, s, 7prq and 7., are called a state
representation, query representation and answer representation in [mg.¢.q.c]-

A system sg;; is conceptually modelled in [s,..] if there exists mg.¢q4. such that ss¢. =
Ss.telMait.qe], and ma 4. is a conceptual query model in [ss.;]. The set [image 1, ;] is called

an ontology in [Ss.¢s, Mait.q.c]-

3.6. Extensions

A system sg;;1 is an extension of Sgy;0 if Ss4[ssei1] i an extension of sg4[[sst.i2], and
Stﬂss't'i'l]] < St[[ss't'ij]] for each st € {tTn.Tlt.e;mtrn.’rlt.en}-
A system sg;.1 is an extension of Sgyeo if Sgcc[Ssici] 18 an extension of sg.c[Ss.ic2],
5¢[Sst.c1l] C 5¢[Sst.c2] for each s; € {trnrit.e.s: Ti.s, Lrnriten.s), and the following property hold:
o if M. _<|I07'd.t7'n.ez'ﬂs.s‘t.cAl]”] Nm.2, and Nm.1, Nm.2 € O’r’d.t’r’n.ew[[ss.t.c.Z]]7 then
Nm.1 <[[Ord4trn.ez[[ss.t.c.2]]ﬂ Nm.2;5
oif Ny =[ord.trn.enlss.t.c.1]l N2, and N1, Mo € Ord.trn.en[[ss.t.cQ]], then

Mim.1 —<[[01"d.t7‘nAen[[ss.tAc42]]]] Nm.2-

A CCS [, is a language of CTSs if the conceptual structures (atoms, elements, conceptuals

and so on) of [, is syntactically defined.

3.7. Programs

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 65

A program p,, is executed in [t.,] if py is a program in [cnr1[tm]], and cppatin] —
Cnf2ltn]. A program p,, executes (initiates) t,, if p,, is executed in [t,,].

An element v; is a value in [p,g, t,,] if pry executes [t,,], and v; is a value in [¢,,]. A program
Drg Teturns vy in [t,.,] if v is a value in [p.g, t,]. A program p,, returns v; in [c,s] if there
exists t,,, such that p,, returns v in [t,,,], and ¢,p = cpp1[trn]-

A program p,, returns (or generates) an exception e, in [[t,,] if e, is a value in [p,g, t,n].
A program p,, is normally executed in [t,,] if p,, is executed in [¢,,], and ¢,, is normally
executed.

An element ¢; is executed in [t,,,] if there exist p,, such that p,, is executed in [t,,], and
e; = [prg - 1]. An element e; executes (initiates) t,, if e; is executed in [t,,].

An element v; is a value in [e;, t,,,] if ¢ is executed in [t,,], and v; is a value in [t,,]. An
element v; returns v; in [[t,,,] if v; is a value in v, t,,,]. An element v; returns v; in [c,f] if there
exists t,,, such that v, returns v in [t,,,], and ¢,f = cpp1[trn]-

An element e; returns (or generates) an exception e, in [t,,,] if e, is a value in [e;, ¢,,]. An

element e; is normally executed in [¢,,] if ¢; is executed in [¢,,], and t,, is normally executed.
3.8. Safe configurations, transitions, programs and elements

A configuration ¢,y is locally safe if v;[c,] # und.

A transition t,, is safe if ¢, ;1[t;n] and ¢, r2[t,] are locally safe.

A configuration ¢, is safe if there is no ¢, s such that ¢,y —* ¢,51 and ¢,z is not locally
safe.

A program p,, is safe in [c,f] if p,4 is a program in [c,¢], and ¢, is safe. A program p,, is
safe if p,4 is safe in [c,f] for each c,;.

An element ¢; is safe in [¢,f] if €, = [prgllcns] - 1], and p,4 is safe in [c,f]. An element e; is

safe if ¢; is safe in [[c,] for each ¢, .
4. The CTSL language

The CTSL language (Conceptual Transition System Language) is a basic language of CTSs.
The CCSL language is a sublanguage of CTSL. Interpretable and executable elements of CTSL
are called basic elements of CT'Ss.

D Xpy0, CcONf oan

Let Sp - (I X, Y Yo, 220, UlUg, VIV, W:Wy, T1:T1.0y vy Lyy

Cnf, val :an s yens]).

66 Anureev I.S. Formalisms for conceptual design of information systems

4.1. Syntax of CCSL

CTSL is an extension of CCSL. Therefore, atoms, elements, conceptual states, conceptual
configurations, pattern specifications and element definitions are represented in CTSL as in
CCSL.

The element (rule p; var (v..) seq (v.s.) then bg) :: name :: ny, in CCSL represents the
transition rule (py, (Vr4), (Urs.s), bg) With the name n,,.

For simplicity, we omit the names of atomic transition relations and transition rules.

4.2. The special forms for atomic exogenous transition relations,

transition rules and atomic endogenous transition relations

In this section we define the special forms for atomic exogenous transition relations, transi-
tion rules and atomic endogenous transition relations used below.

The form (transition p, var (v..) seq (v.s.) then f,) :: name :: n,, denotes the atomic
exogenous transition relation (pg, (Vy4), (Vrsx), fn) With the name n,,.

The objects var (v,.) and seq (v,s.) in the form (transition ...) can be omitted. The
omitted objects correspond to var () and seq (), respectively.

The form (endogenous—transition f,) :: name :: n,, denotes the atomic endogenous tran-
sition relation f,, with the name n,,.

Let {v..}, {Vrsst, {vrs1} and {v, .2} are pairwise disjoint, {v, 43} C {v,« fU{vp w1 JU{vy 42},
and (e;.) € {(),und,abn}. The form (rule p; var (v,.) seq (Vys.) abn (vy.1) und (v,.2) val
(Urx3) €14 where cnq then by) called a rule form is defined as follows:

o (rule p; var (v,.) seq (Vps) und (V1) abn (v,.2) val (Vy.3) €. where c,q then by) is a
shortcut for (rule p; var (v,..) seq (Urs.) abn (Vp.1) und (Vy.2) val (Vy.3) €. then (if cuq
then by else und));

o (rule py var (v,.) seq (Vy.sx) und (Vy41) abn (Vp.0) val (Vy. 3, V) €14 then by) is a shortcut
for (rule py var (v.4) seq (Vy.s.x) und (V1) abn (V,40) val (V.43) €. then (let w be v, in
[subst (v, 2 % :w) by])), where w is a new element that does not occur in this definition;

o (rule p; var (v.) seq (Vys4) und (Vy.1) abn (v,.2) val () e, then by) is a shortcut for
rule py var (v,) seq (Vrsx) und (V1) abn (v,..2) €. then by);

o (rule py var (v,.) seq (Vpsi) und (Vyu1, vy) abn (v.2) €. then by) is a shortcut for

(
(
(
(rule py var (vy.) seq (Urs.) und (Vp.1) abn (Vp.2) €4 then (if (v, is undefined) then

und else by));

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 67

o (rule p; var (v.) seq (Vs4) und () abn (v,.2) €. then by) is a shortcut for (rule p; var
(Vrs) 5€q (Vrsx) abn (Vrs2) €rs then bg);
o (rule p; var (v,.) seq (Vy.s.x) abn (Vy.2, V) €14 then by) is a shortcut for (rule p, var (v,.)
seq (Uyss) abn (Vp42) €14 then (if (v, is abnormal) then v, else by));
o (rule p; var (v..) seq (vrs.4) abn () e, then by) is a shortcut for (rule p; var (v,..) seq
(Ur.s.x) €1x then bg);
o (rule p; var (v,.) seq (vy.s.) und then by) is a shortcut for (rule p, var (v,.) seq (Vy.s.4)
then (if (val ::in is undefined) then skip else by);
o (rule py var (v,..) seq (Vrsx) abn then by) is a shortcut for (rule p; var (v,.) seq (Vy.s.4)
then (if (val ::in is abnormal) then skip else by).
The element c¢,, specifies the restriction on the values of the pattern variables. The undefined
value is propagated through the variables of v,, 1. Abnormal values are propagated through
the variables of v, 2. The sequence ¢, specifies propagation of abnormal values depending on
the value of val :: in. The undefined value is propagated when e;, = und. Abnormal values
are propagated when e;, = abn. The special element v, :: x references to the value of element
associated with the pattern variable v,. A pattern variable is evaluated if the element associated
with it is evaluated. Thus, the sequence v, , 3 contains evaluated pattern variables. A pattern
variable is quoted if the element associated with it is not evaluated. Let F,,,, be a set of rule
forms.
The objects var (v,.), seq (Urs«), und (vVy.1), abn (vVy.2), val (v,.3) and where ¢,q in the
form (rule ...) can be omitted. The omitted objects correspond to var (), seq (), und (), abn (),

val () and where true, respectively.

5. Semantics of executable elements in CTSL

5.1. Element interpretation

The element z :: value returning the interpretation of x is defined by the rule
(rule x ::value var (x) abn then z ::wvalue :: atm);
(transition x :: value :: atm var (z) then f,),

where xg :: value :: atm e # Cnp =>4, .5, €1 F# [Value To Cop] F# Cpf
5.2. Abnormal elements operations

The element und is defined by the rule

68 Anureev I.S. Formalisms for conceptual design of information systems

(rule und abn then und : q).
The element e, is defined by the rule
(rule = var (x) abn where (x is exception) then x ::q) :: name :: ("Q” exception).
The rule satisfies the property: 7, <[o,ym..] (@, exception) for each n,, such that n,, is
a name of an atomic exogenous transition relation or transition rule with the pattern distinct
from v,, where v, is a variable of this pattern.
The element ¢; :: ¢ is defined by the rule
(rule x::q var (z) abn then x :: q :: value).
The element ¢; of the form (catch :: u z y) called an undefined value handler is defined as
follows:
(transition (catch ::u x y) var (x) seq (y) then f,),
where (catch = w xg Yo), €1« # U # Cof =5, [SUbSt (zo V) Yo, e« # true # cnp. The
elements x and y are called a variable and body in [e;]. The element e; replaces all occurences
of x in y by the current value, resets the current value to true and executes the modified body.
The element ¢; of the form (catch = y) called an exception handler is defined as follows:
(rule (catch z y) var (z) seq (y) und then (catch :u x y)).
The elements z and y are called a variable and body in [e].
The element ¢; of the form (throw x) is defined by the rule
(rule (throw z) var (x) wval (x) abn then (throw x :: *): atm);
(transition (throw x) :: atm var (x) then f,),
where (throw xo) :: atm, €.« # Cnf —f,.5, €1x F To F# Cnp. The element z is called a body in
led-
The deletion (delete—exception x) of the exception of the type x is defined by the rule
(rule (delete—exception x) var (x) und then (catch w
(if ((w is exception) and (((element in w) .. type) = x:q))
then (throw true) else (throw w :: q)))).

5.3. Statements

The element skip is defined as follows:
(rule skip abn then skip :: atm);
(transition skip :: atm then f,),

where skip :: atm, ep # Cnf — 4,5 €l FF Cnf-

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 69

The sequential composition e; of the form (seq e;.) is defined by the rule
(rule (seq x) var (x) seq (x) then x)
The elements of e, are called elements in [e;] and e, is called a body in [e;]. The element ¢
executes its elements sequentially from left to right.
The conditional element (if x then y else z) is defined as follows:
(rule (if = then y else z) var (x) seq (y, z) val (x) abn
then (if x:: % then y else z):: atm);
(transition (if x then y else z):: atm var (x) seq (y, z) then f,),
where (if xo then yo else zy) :: atm, e # cnf =>4, .5, [1f [To # und] then yo else 2], €. # Cny.
The element (if = then y) is a shortcut for (if = then y else skip).
The conditional element (if x then y elseif z then u ... else v) is defined as follows:
(definition (if x then y elseif z) var (z) seq (y, z) abn
then (if x then y else (if 2))).
The element ¢; of the form (let x be y in z) is defined as follows:
(rule (let = be y in z) var (x) seq (y, z) abn then (let x be y in z):: atm);
(transition (let x be y in z) ::atm var (x) seq (y, z) then f,),
where (let xg be yo in 2p) == atm, e # oy —>..5, Yo, (let zo be—val—in zy), e, # cnp. The
elements x, y and z are called a substitution variable, substitution value and substitution body
in Je].
The auxiliary element (let © be—val—in y) is defined as follows:
(transition (let x be—val—in y) var (x) seq (y) abn then f,),
where (let xg be—val—in o), €1« # Vi F# Cnf —> 1.5, [SUbSE (To V1) Yo, €14 F Cnf-
The element e; of the form (let :: seq x be y in z), where x € E), y € L, and
[len x| = [len y], is defined by the rule
(rule (let :: seq x, y be (2), u in v) var (x) seq (y, z, u, v) abn
then (let x be z in (let :: seq y be u in v)));
(rule (let :: seq be in v) seq (v) abn then v).
The elements z, y and z are called a substitution variables specification, substitution values
specification and substitution body in [e;]. The elements of x and y are called substitution
variables and substitution values in [e;].
The iterator e; of the form (while x do y) is defined by the rule
(if (while © do y) var (x) seq (y) abn then (if xz then y (while z do vy))).

70 Anureev I.S. Formalisms for conceptual design of information systems

The elements x and y are called a condition and body in [e].
The iterator e; of the form (foreach x in y do z) is defined as follows:
(rule (foreach x in y do z) var (z, y) seq (z) val (y) abn where (y :: *x is sequence)
then (foreachl z in y::x do z)).
The objects x, y and z are called an iteration variable, iteration structure specifier and body
in [e;]. The element e; executes sequentially z for values of x from e;;, where ¢;; is the value
of y.
The element (foreachl x in y do z) is defined by the rules
(rule (foreachl x in () do y) var (z) seq (y) abn then);
(rule (foreachl x in (y z) do v) var (x, y) seq (z, v) abn
then (let x be y in v), (foreachl x in (z) do v)).

5.4. Characteristic functions for defined concepts

An object df. is a concept definition if dy. is an atomic transition relation of the form
(transition n, if (e11 is era) var (v,..) seq (v.s.) then f,), or dy. is a transition rule of the
form (rule ny, if (e is ep2) var (v..) seq (vy.s.) then bg). Concept definitions specify concepts
and their instances. Concepts specified by them are called defined concepts. The elements ¢ 1
and e o are called an instance pattern and concept pattern in [ds.]. The element (e, is e;)
is called a characteristic function in [dy.]. Let Dy, be a set of concept definitions.

An element ¢, q is a defined concept in [dy., sp]] if ¢pep is an instance in [(e;2, var (v,..) seq
(Ursx)), My, Sp]). An element ¢, 4 is a defined concept in [[dy.] if there exists s, such that ¢,ep.q
is a concept in [dy., sp]. An element ¢, 4 is a defined concept in [c,f] if there exists dy.[cns]
such that ¢,ep.q is a concept in [dyf.]. Let Cyepa be a set of defined concepts.

An element i,y is an instance in [dy., sp] if instn 1S an instance in [(e;.1, var (v,..) seq (vrs.)),
my, sp]]. An element 4,4, is an instance in [dy] if there exists s, such that c,,.4 is an instance
in [df.c, sp].

An element iy, is an instance in [cyep.d, Cof, df.c]l if insm is an instance in [dy.], cpepd is @
defined concept in [dy.], and there exist ¢, and v; such that (execute—exogenous—transition,
(instn 1S Cnep.d)s (Mm)) F# Cnp =" # U # Cunpa, and v; # und. An element i,4,, is an instance
in [enep.ds cny] if there exists dy. such that i,4, is an instance in [chepa, Cng, drc]. An element
Cnep.d 18 an instance in [c,s] if there exists cpepq such that iy, is an instance in [cyep.a, Cns]-

Let 1,4, be a set of instances.

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 71

A set s; is called a content in [Cpep.d, Cnr] if st is a set of all 4,4, such that 4,4, is an instance
in [cnepd, cngl. Let [content cpepa cng] denote the content in [chep.d, Cng]-

The notion of defined concepts is extended to the rules of the form (rule (e;1 is €;2) var (v,.)
seq (Upsx) und (vy.1) val (v..3) where cpq then by). Let r; have this form. An element ¢,y
is a defined concept in [ry, sp] if Cpep.q is @ defined concept in 1, sp], where ;5 is a rule of the
form (rule (e;1 is e12) var (v..) seq (v,.s4) then bgy) such that r; is reduced to ;1.

The element (z is atom) specifying that x is an atom is defined by the rule
(rule (z is atom) var (x) abn then (x is atom) :: value).

The element (z is update) specifying that x is an element update is defined by the rule
(rule (z is update) var (x) abn then (x is update) :: value).

The element (x is multi—attribute) specifying that z is a multi-attribute element is defined
by the rule
(rule (x is multi—attribute) var (x) abn then (z is multi—attribute) :: value).

The element (z is attribute) specifying that = is an attribute element is defined by the rule
(rule (x is attribute) var (x) abn then (x is attribute) :: value).

The element (z is sorted) specifying that z is a sorted element is defined by the rule
(rule (z is sorted) var (x) abn then (x is sorted) :: value).

The element (z is undefined) specifying that = equals und is defined by the rule
(rule (z is undefined) var (x) abn then (z is undefined) :: value).

The element (z is defined) specifying that = does not equal und is defined by the rule
(rule (z is defined) var (z) abn then (z is defined) :: value).

The element (x is exception) specifying that x is an exception is defined by the rule
(rule (z is exception) var (x) abn then (x is exception) :: value).

The element (x is normal) specifying that x is a normal element is defined by the rule
(rule (x is normal) var (x) abn then (x is normal) :: value.

The element (x is normal) specifying that x is an abnormal element is defined by the rule
(rule (z is abnormal) var (x) abn then (x is abnormal) :: value.

The element (z is sequence) specifying that x is a sequence element is defined by the rule
(rule (z is sequence) var (x) abn then (x is sequence) :: value).

The element (x is set) specifying that the elements of the sequence element x are pairwise
distinct is defined as follows:

(rule (z is set) var (x) abn then (z is set) :: value).

72 Anureev I.S. Formalisms for conceptual design of information systems

The element (x is empty) specifying that = is an empty element is defined by the rule
(rule (z is empty) var (z) abn then (x is empty) :: value).
The element (z is nonempty) specifying that x is not an empty element is defined by the
rule
(rule (x is nonempty) var (x) abn then (x is nonempty) :: value).
The element (z is conceptual) specifying that is a conceptual is defined by the rule
(rule (z is conceptual) var (x) abn then (x is conceptual) :: value).
The element (z is (conceptual in y)) specifying that x is a conceptual in the context of the
state y is defined by the rule
(rule (z is (conceptual in y)) var (z, y) abn then (x is (conceptual in y)) :: value.
The element (z is state) specifying that z is a conceptual state is defined by the rule
(rule (z is state) var (x) abn then (x is state) :: value).
The element (z is configuration) specifying that x is a conceptual configuration is defined
by the rule
(rule (z is configuration) var (x) abn then (x is configuration) :: value).
The element (z is nat) specifying that z is a natural number is defined by the rule
(rule (x is nat) var (x) abn then (x is nat) :: value).
The element (x is nat0) specifying that z is either a natural number, or a zero is defined by
the rule
(rule (x is nat0) var (x) abn then (x is nat0) :: value).
The element (x is int) specifying that = is an integer is defined by the rule
(rule (z is int) var (x) abn then (z is int) :: value).
The element (z is (satis fiable in y)) specifying that x is satisfiable in the context of variables
y is defined by the rule
(rule (x is (satisfiable in y)) var (x) seq (y) abn
then (z is (satisfiable in (y))) :: value).
The element (z is (valid in y)) specifying that z is valid in the context of variables y is
defined by the rule
(rule (x is (valid in y)) var (z) seq (y) abn then (z is (valid in (y))) :: value).
The element (z is (sequence y)) specifying that = is a sequence element such that the value
in [(e; is y)] does not equal und for each element ¢; of = is defined by the rule

(rule ((z y) is (sequence z)) var (z, z) seq (y) abn

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 73

then ((z is z) and ((y) is (sequence z)));

)
(rule (() is (sequence x)) wvar (x) abn then true).
The element (z is rule) specifying that x is a rule is defined as follows:
(rule (z is rule) var (z) abn then (x is rule) :: value);
(interpretation (x is rule) var (x) then f,),
where [f,, sp] = [if [0 € R)] then true else und).
The element (z is (rule in y)) specifying that z is a rule in the context of the state y is
defined as follows:
(rule (z is (rule in y)) var (z, y) abn then (x is (rule in y)) :: value);
(definition (x is (rule in y)) var (x, y) where ((x is rule) and (y is state))
then (x is conceptual in y) :: atm);
(interpretation (x is (conceptual in y)) :: atm var (x, y) then f,),
where [f,, sp] = [if [0 € Ri[yo]] then true else und].
The element (x is transition) specifying that x is a transition is defined as follows:
(rule (z is transition) var (x) abn then (x is transition) :: value);

(interpretation (x is transition) var (z) then f,),

where [f,, sp] = [if [xo € T)y] then true else und).
5.5. Elements operations

The element () is defined by the rule
(rule () abn then () ::q).

The element (len x) specifying the length of the element x is defined by the rule
(rule (len x) var (z) val (z) abn then (len x :: % ::q) :: value).

The element (z = y) specifying the equality of the elements = and y is defined by the rule
(rule (x = y) var (x, y) val (x, y) abn then (x:*:q = y:*:q):value).

The element (x ! = y) specifying the inequality of the elements = and y is defined in the
similar way.

The element (x . y) specifying the y-th element of the sequence element x is defined by the
rule
(rule (z . y) var (x, y) val (x, y) abn then (z::%:q . y:*::q) :value).

The element (x .. y) specifying the value of the attribute element x for the attribute y is
defined by the rule

74 Anureev I.S. Formalisms for conceptual design of information systems

(rule (z .. y) var (z, y) val (z) abn then (x :*:q .. y): value).
The element (xr + y) specifying the concatenation of the sequence elements x and y is
defined by the rule
(rule (xr + y) var (z, y) val (z, y) abn then (x ::*x:q + y:*:q):: value).
The element (x . + y) specifying the addition of the element x to the head of the sequence
element y is defined by the rule
(rule (z .+ y) var (z, y) val (z, y) abn then (x:x:q .+ y:*:q): value).
The element (x .+ :: set y) specifying the addition of the element x to the head of the
sequence element y representing a set is defined as follows:
(rule (x .+ :set y) var (x, y) val (x, y) abn where (y::* is set)
then (z:%:q 4 set y:x:q)::value).
The element (z + . y) specifying the addition of the element y to the tail of the sequence
element x is defined by the rule
(rule (x +. y) var (z, y) val (z, y) abn then (x:x:q +. y:*:q):value).
The element (x + . :: set y) specifying the addition of the element y to the tail of the
sequence element = representing a set is defined by the rule
(rule (x +.: set y) var (z, y) val (x, y) abn where (z :: % is set)
then (z:x:q +.:set y:*:q):abn).
The element (z — . :: set y) specifying the deletion of the element y from the sequence
element x representing a set is defined by the rule
(rule (x —.: set y) var (x, y) val (x, y) abn where (x:: % is set)
then (x::%:q —.:set y:*:q): value).
The element (upd = yy : 21, ..., Yn, : 2n,) specifying the sequential updates of the attribute
element x at the points yq, ..., Yn, by 21, ..., 25, is defined by the rules
(rule (upd x y) var (x) seq (y) val (z) abn
where ((z :: * is attribute) and ((y) is (sequence update))) then (upd : att x :: % y));
(rule (upd ::att x y z) var (y) seq (z) und (x) abn
then (upd :: att (updl ::att x y) 2));
(rule (upd ::att x) var (z) then x);
(rule (updl ::att x y:z) var (z, y, z) val (2) abn
then (updl ::att x y:z:%::q)::value).

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 75

The element (upd x y : z) specifying the update of the sequence element x at the index y
by z is defined by the rule
(rule (upd x y z) var (z, y, z) val (z, y, z) abn

then (upd::seq x:x:q y:x:q z:%:q):value).

The element (z in :: set y) specifying that = is an element of the sequence element y is
defined as follows:
(rule (x in :: set y) var (x, y) val (x, y) abn then (x in :: set y) :: value).

The element (z includes :: set y) specifying that the sequence element z includes the ele-
ments of the sequence element y is defined as follows:
(rule (z includes :: set y) var (x, y) val (x, y) abn then (z includes :: set y) :: value).

The element (attributes in x) specifying the sequence of attributes of the attribute element
x is defined by the rule
(rule (attributes in x) var (x) abn then (attributes in x) :: value).

The element (values in x) specifying the sequence of attribute values of the attribute element
x is defined by the rule
(rule (values in x) var (x) abn then (values in x) :: value).

The element (element in x) specifying the element of the sorted element x is defined by the
rule
(rule (element in z) var (x) abn then (element in x) :: value).

The element (sort in x) specifying the sort of the sorted element x is defined by the rule
(rule (sort in x) var (z) abn then (sort in x) :: value).

The element (attribute in x) specifying the attribute of the element update z is defined by
the rule
(rule (attribute in x) var (x) abn then (attribute in x) :: value).

The element (value in x) specifying the value of the element update x is defined by the rule
(rule (value in x) var (x) abn then (value in x) :: value).

The element (unbracket (z)) is defined by the rule

(rule (unbracket (z)) seq (x) abn then x).

5.6. Boolean operations

The element true is defined by the rule:

(rule true abn then true :: value).

76 Anureev I.S. Formalisms for conceptual design of information systems

The element (x and y) specifying the conjunction of x and y is defined by the rule:
(rule (z and y) var (z, y) abn then (if x then y else und)).

The elements (z o, y), where o, € {or,=>, <=>} specifying the disjunction, implication
and equivalence of x and y are defined in the similar way.

The element (1 and x5 and ... and z,,) specifying the conjunction of x1, xs, ..., ,, is defined
by the rule
(rule (z and y and z) var (x, y) seq (z) abn then ((x and y) and z).

The element (zq or x5 or ... or x,,) specifying the disjunction of x1, 3, ..., z,, is defined in

t
the similar way.
The element (not) specifying the negation of z is defined by the rule

(rule (not z) var (x) abn then (if x then und else true)).
5.7. Integers

The element i,,; is defined by the rule
(rule © var (x) abn where (x is int) then x ::q) :: name :: ("Q”, int).
The rule satisfies the property: ("Q”, exception) <o, . mm..] ("Q”,int).
The element (z + y) specifying the sum of z and y is defined by the rule
(rule (x + y) var (z, y) val (z, y) abn then (x:x:q + y:*:q):: value).
The elements (x o, y), where o, € {—, %, div, mod}, specifying the integer operations —, x,
div and mod, are defined in the similar way.
The element (x < y) specifying that x is less than y is defined by the rule
(rule (x < y) var (x, y) val (x, y) abn then (x:x:q < y:*:q):value).
The elements (x o, y), where o, € {<=, >, >=}, specifying the integer relations <, > and

>, are defined in the similar way.
5.8. Conceptuals operations

The element (z in y) specifying the value of the conceptual = in the state y is defined by
the rule
(rule (z in y) var (z, y) abn then (x in y) :: value).

The element z :: state :: y specifying the value of the conceptual z in the substate with the
name y of the current configuration is defined by the rule

(rule x :: state ::y var (x, y) abn then (x :: state :y) :: value).

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 7

The element ¢, is a shortcut for ¢,y :: ().

The assignment (cpep 2 State = ny, = €;) of €; t0 Cyep :: state :: ny, is defined as follows:
(rule (z:: state :: z == y) var (x, y, z) val (y) abn where (z is conceptual)
then (x :: state::z == y:x):atm);
(transition (x :: state :: z == y):atm var (z, y, z) then f,),
where (zg :: state :: zg == Yyo) == atm, e F# Cop =15 €x F [[Cns 20] o : Yol
The element (¢ ::= €;) is a shortcut for (cpep 2 () == ;). The elements (¢, = State ::
N =) and (Cpep ::=) are shortcuts for (¢, 2 state :: n,, = und) and (chep = und).

5.9. Countable concepts operations

A normal element ¢, is a countable concept in [c,f] if [[c,f countable—concept] (0 :
Cnep.c)] € Ny Thus, the substate countable—concept specifies countable concepts. Let Cyep.. be
a set of countable concepts. The element [[c,, s countable—concept] (0 : ¢pepc)] is called an order
in [chep.cs Cnrll- Let Orgenep.c be a set of orders of countable concepts. An element ny :: cc 2 Cpep.e
is called an instance in [cpepc]. An element n; 2 cc 0 Cpepe 1S an instance in [cpepe, Cng] if
Nt < Ord.encp.e[Cep.cs Cngl-

The element (x is countable—concept) specifying that = is a countable concept is defined as
follows:

(rule (x is countable—concept) var (x) abn then (x is countable—concept) :: value).

The element 7 :: cc :: ¢pep.c is defined by the rule:

(rule x::cc::y var (x, y) abn then x :: cc::y :: value).

Let cpep denote (0 :) = countable—concept. The element (new z) called an instance
generator generates a new instance of the countable concept x and adds this concept if it was
not. It is defined as follows:

(rule (new x) var (z) abn then (new x):: atm);
(transition (new z):: atm var (x) then f,),
where (new o) :: atm, e # Cnp =5 (let W be ey in (if (w is int) then (seq (Cpept =

(w+1)), (let wl be (w+1)in wl :: x::ce)) else (seq (Cpep == 1), 117 cC))), €1x # Cny.
5.10. Matching operations

The conditional pattern matching element e; of the form (if x matches y var z seq u then v

else w), where (y, z,u) is a pattern specification, is defined as follows:

78 Anureev I.S. Formalisms for conceptual design of information systems

(rule (if x matches y var z seq u then v else w) var (z, y, z, u) seq (v, w) abn
where ((z is sequence) and (u is sequence) and (z includes :: set u))

then (if x matches y var z seq u then v else w) :: atm);

(transition (if x matches y var z seq u then v else w) :: atm

var (x, y, z, u, v, w) then f,),

where (if xo matches yo var zy seq ug then vy else wy) = atm, €. # oy =y, [0f [To is an
instance in [(yo, 20, o), M, Sp.1] for some sp1] then [subst sp1 U (conf ::in : cyp,val = in :
vilens]) vo] else [subst (conf ::in : chp,val = in : vfeas]) wol, €« # cnp. The objects z, vy,
z, u, v and w are called a matched element, pattern, variable specification, sequence variable
specification, then-branch and else-branch in [e;]. The elements of z are called pattern variables
in [e;]. The element e; executes the instance of the then-branch v in [s;1] if = is an instance

in [y, sp.1]. Otherwise, the element e; executes the else-branch w.

Let {vrs}, {vrs}, {vrs1} and {v,. 2} are pairwise disjoint, and {v, .3} C {v,.} U{v,.1} U
{vy.«2}. The form (if e; matches p, var (v,..) seq (Vrsx) abn (Vy1) und (vy.2) val (v,.3) where

Cna then e else e;3) is defined as follows:

o (if e, matches py var (vy.) seq (Vys.) und (Vy.1) abn (Vy.2) val (Vy.3) where cyq then ey
else e;5) is a shortcut for (if e; matches p, var (v,..) seq (Vrs.) abn (Vy41) und (v, 2) val
(Urx3) then (if c,q then epq else ey :: (nosubstexcept conf ::in,val :: in)) else e;5);

o (if e, matches py var (v..) seq (Vrs.s) und (V1) abn (Vy.2) val (V..3, V) then e else
er2) is a shortcut for (if e; matches p; var (v,.) seq (Vps.) und (vy.1) abn (vy.2) val
(Urx3) then (let w be v, in [subst (v, :: % : w) e;1]) else e2), where w is a new element
that does not occur in this definition;

o (if e, matches py var (v..) seq (Vpsi) und (Vy.1) abn (vy.2) val () then ey else e;2) is
a shortcut for (if e, matches p, var (v,..) seq (Urs.) und (Vy.1) abn (v..2) then e, else
€12);

o (if e, matches p; var (v.) seq (Vy.s4) und (Vy41, v.) abn (v,.2) then by) is a shortcut for
(if e matches py var (v..) seq (Vy.s) und (Vp.1) abn (V.2) then (if (v, is undefined)
then und else e;1) else e;5);

o (if e matches p; var (v.) seq (V.sx) und () abn (v,.2) then e else e;5) is a shortcut
for (if e; matches py var (v,.) seq (Vr.sx) abn (vy.2) then e else e;2);

o (if e, matches p; var (v,.) seq (Vy.s+) abn (vy.2, v.) then e, else e;3) is a shortcut for

(if e matches py var (vy..) seq (Uyss) abn (vy.2) then (if (v, is abnormal) then v, else

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 79

e11) else ers);
o (if e matches py var (v,..) seq (vrsx) abn () then ey else es) is a shortcut for

(if e matches py var (v..) seq (Vrs) then e else e;3).
The element c¢,,4 specifies the restriction on the values of the pattern variables. The undefined
value is propagated through the variables of v,,;. Abnormal values are propagated through
the variables of v, .. The special element v, :: * references to the value of element associated
with the pattern variable v,. A pattern variable is evaluated if the element associated with it
is evaluated. Thus, the sequence v, , 3 contains evaluated pattern variables. A pattern variable
is quoted if the element associated with it is not evaluated.

The objects var (v,.), seq (Vr.sx), und (V41), abn (vVy.2), val (v..3), where c,q and else €5
in this form can be omitted. The omitted objects correspond to var (), seq (), und (), abn (),
val (), where true and else skip, respectively.

The form (e, matches py var (v..) seq (Vys.) und (Vp.1) abn (Vy.2) val (V..3) where c,q) is
a shortcut for (if e; matches p; var (v,..) seq (Vy.s.s) und (Vy.1) abn (Vy.2) val (V..3) where cpq
then true else und). The objects var (v,..), seq (Urs.+), und (Vy.1), abn (Vy42), val (v,.3) and
where ¢, in this form can be omitted. The omitted objects correspond to var (), seq (), und (),

abn (), val () and where true, respectively.
5.11. Interpretations operations

The element (x is definition— form) specifying that x is a definition form is defined as
follows:
(rule (z is definition—form) var (z) abn then (x is definition— form) :: value);
(transition (x is definition—form) var (x) then f,),
where [f,, sp] = [if [v0 € Frm.a) then true else und).

The element f,.,,q4 :: name :: n,, specifying a definition with the name n,, is defined as
follows:
(rule x ::name ::y var (x, y) abn where (x is definition— form)
then x ::name ::y :: atm :: definition);
(transition x :: name :: y = atm :: definition var (x, y) then f,),
where

o if yo € [support [c,s (0 : definitions) :: state :: interpretation]] U [support ipn.q.s), then

xo 1 name Yo i atm o definition, epy # Cnf — 4,5 €lx T UNA F Chf;

80 Anureev I.S. Formalisms for conceptual design of information systems

oif yo & [support [c,y (0 : definitions) :: state :: interpretation]] U [support inirq.s],
and z¢ is reduced to dy, then xy :: name :: yo : atm == definition, €. # Cof —4,.5,
er« # [cny interpretation.(0 : de finitions).yo : dy.

The element (add—interpretation x) adding the interpretation with the name x is defined
as follows:
(rule (add—interpretation x) var (z) abn then (add—interpretation x) :: atm);
(transition (add—interpretation x) :: atm var (x) then f,),
where

o if z € [support [c,s (0 : definitions) :: state :: interpretation]] U [support int.q.s), then
(add—interpretation xg) :: atm, €. # Cnf —fo.s, €lx F |[Cnf interpretation.(0 : order)
[value [[c,r (0 : order) :: state :: interpretation] :: ¢ + . :: set zg :: q] cuyll;

o if xg ¢ [support [c,s (0 : definitions) :: state :: interpretation]] U [support ini.q.s), then
(add—interpretation xg) :: atm, €p. # Cnf —>f,.s, €1 F und F# cuy.

The element (add—interpretation x after y) adding the interpretation with the name x
after the interpretation with the name y is defined as follows:
(rule (add—interpretation x after y) var (x, y) abn
then (add—interpretation x after y):: atm);
(transition (add—interpretation x after y):: atm var (z, y) then f,),
where

o if xy € [support [c,s (0 : definitions) :: state :: interpretation]] U [support in.q.s), and
Yo ¢ [cng (0 : order) :: state :: interpretation] :: ¢ —. = set xo)], then (add—interpretation
Tg) atm, €. F Cnf —fo.s, ELx F UNd F# Cpyp;

o if vy € [support [c,s (0 : definitions) :: state :: interpretation]] U [support ini.q.s), and
[value [cpy (0 : order) :: state :: interpretation] :: ¢ — . :: set To| = Nyys1 Yo Nmos.2, then
(add—interpretation xg) :: atm, €. # Cnf —f..5, €lx # [Cnf interpretation.(0 : order) :
Nm.x.1 Yo Lo nm.*.Q];

o if 2y ¢ [support [c,y (0 : definitions) :: state :: interpretation]| U [support ini.q.s), then
(add—interpretation xg) :: atm, €. # Cnf —> 1,5, €1 F# und # cuy.

The element (delete—interpretation) deleting the interpretation with the name z is defined
as follows:
(rule (delete—interpretation x) var (x) abn then (delete—interpretation x) :: atm);

(transition (delete—interpretation x) :: atm var (x) then f,),

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 81

where
oif vy € [support [c,r (0 : definitions) :: state :: interpretation]] U [support ipir.a.s)
then (delete—interpretation xg) :: atm, €. # Coy —>f..5, €ls F [Coy interpretation.(0 :
order) : [value [c,p (0 : order) :: state :: transition] :: ¢ — . 2 set g q cufl];
o if xy & [support [c,s (0 : definitions) :: state :: interpretation]] U [support ing.q.s), then

(delete—interpretation xg) :: atm, €. # Cof —>f,.5, €1 F Und # Cpy.
5.12. Configurations operations

The element conf :: cur specifying the current configuration is defined as follows:
(rule conf :: cur abn then conf :: cur :: value).

The element val :: cur specifying the value in the current configuration is defined as follows:
(rule wal :: cur abn then wval :: cur :: value);
(definition wval :: cur then wval :: cur :: value);

(interpretation wval :: cur then f,),

where [f,, sp] = vi[car].
5.13. Transitions operations

The element (x is rule— form) specifying that z is a rule form is defined as follows:
(rule (z is rule—form) var (x) abn then (x is rule—form) :: value);
(transition (x is rule—form) var (z) then f,),
where [f, sp] = [if [x0 € Frm.| then true else und.
The element f,,, . :: name :: n,, specifying a rule with the name n,, is defined as follows:
(rule x ::name ::y var (x, y) abn where (x is rule—form)
then x ::name :y:: atm :: rule);
(transition x :: name ::y = atm :: rule var (z, y) then f,),
where
o if yo € [support [c,s (0 : rules) :: state :: transition]] U [support ty, it.es.s| U [support
trnriten.s], then xg it name :: yo == atm = rule, e # Conf — 4,5, €ls F Und # Cny;
o if yo & [support [c,r (0 : rules) :: state :: transition]] U [support t., it.exs) U [support
trnrit.en.s), and zg is reduced to 7, then zg :: name :: yo == atm :: rule, e« # Cnf —>4,.5,
er« # [cny transition.(0 : rules).yo : 7).

The element (add—transition x) adding the transition with the name z is defined as follows:

82 Anureev I.S. Formalisms for conceptual design of information systems

(rule (add—transition x) var (x) abn then (add—transition x):: atm);
(transition (add—transition x) :: atm var (x) then f,),

where

oif 7y € [support [c,y (0 : rules) :: state :: transition]] U [support tipritess), then
(add—transition xg) :: atm, e . # Cof —>f,.5, €lx F [Cny transition.(—1 : exogenous, 0 :
order) : [value [[c,y (—1 : exogenous,0 : order) :: state :: transition] :: ¢ + . :: set xg =
q] engll;

o if xy € [support trp rit.en.s], then (add—transition xo) = atm, €. # Cnf =5, €1 F# [Cns
transition.(—1 : endogenous,0 : order) : [value [[c,y (—1 : endogenous,0 : order) :
state :: transition] :: ¢ + . :: set xg 2 q] curl];

oif o & [support [c,p (0 : rules) :: state :: transition]] U [support te, sit.es.s| U [support
trnritens|, then (add—transition xg) :: atm, €. # Cnf —> 4,5, €16 F und # cuf.

The element (add—transition x after y) adding the transition with the name x after the
transition with the name y is defined as follows:
(rule (add—transition x after y) var (x, y) abn
then (add—transition x after y) ::atm);
(transition (add—transition x after y):: atm var (z, y) then f,),

where

o if xy € [support [c,r (0 : rules) :: state :: transition|] U [support tipritess|, and yo ¢
lcny (=1 : exogenous,0 : order) :: state :: transition] :: ¢ — . = set x|, then (add—
transition o) :: atm, ey, # Cop =15, €x F und F# cuf;

o if xy € [support [c,s (0 : rules) :: state :: transition||U [support typ rit.ex.s), and [value [c,f
(=1 : exogenous, 0 : order) :: state :: transition] :: ¢ — . :: set To] = Nps1 Yo Nm.s.2, then
(add—transition xo) :: atm, e, F# Cnf =5, €x F [Cny transition.(—1 : exogenous, 0 :
order) : N1 Yo To Mns2];

oif xy € [support tpritens), and yo ¢ [cny (—1 : endogenous,0 : order) :: state ::
transition] :: ¢ — . set x|, then (add—transition zo) :: atm, e« # oy —>fo.s,
e« # und # Cnf;

oif zq € [support trn itens), and [value [c,f (—1 : endogenous,0 : order) :: state :
transition] :: q¢ —. 12 set To] = Ny x1 Yo Nim.x.2, then (add—transition xo) = atm, e, # cuf
— fosp €l F [Cny transition.(—1 : endogenous, 0 : order) : Ny, .1 Yo To Nm.x2];

oif o & [support [c,p (0 : rules) :: state :: transition]] U [support te, sit.es.s| U [support

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 83

trnriten.s], then (add—transition xo) :: atm, €. # Cof —fo.5, €x F und # cpf.

The element (delete—transition x) deleting the transition with the name z is defined as

follows:

(rule (delete—transition x) var (x) abn then (delete—transition x):: atm);

(transition (delete—transition z) :: atm var (x) then f,),
where

oif 2y € [support [c,y (0 : rules) :: state :: transition]] U [support t,priiess), then
(delete—transition xo) :: atm, ej. # Cnf —>f,.5, €ls # [Cnf transition.(—1 : ezogenous, 0 :
order) : [value [c,f (—1 : exogenous, 0 : order) :: state :: transition] :: ¢ — . :: set xg =
q nyl];

o if 2y € [support typ rit.en.s|, then (delete—transition xg) = atm, €. # Cng —>f,.5, €1x F [Cns
transition.(—1 : endogenous,0 : order) : [value [c,y (—1 : endogenous,0 : order) :
state :: transition] :: ¢ — . set xg 1 q cuf]:

oif o & [support [c,p (0 : rules) :: state :: transition]] U [support ty, sit.es.s| U [support
trnriten.s|, then (delete—transition xo) :: atm, e . # Cof —fo.s, €x F und # Cpf.

The element ¢; of the form (modify x) or (modify :: n x) is defined as follows:
(rule (modify x) var (z) then (modify x):: atm);
(rule (modify ::n x) var (x) abn then (modify x) :: atm);
(transition (modify x) :: atm var (x) then f,),
where (modify o) 2 atm, e # v # Cop =45, € # [if [there exists ¢, r1 such that [value
[subst (conf :in : cup,val = in @ vyfcay], conf :: out : cppa,val : out = vifcnpa]) xo] enfl #
und] then v; # cng1 else und # cnf]. The element z is called a transition condition in [e;]. It
specifies the set of configurations reachable from ¢, s for one transition. The elements conf :: in
and conf :: out reference to the input state and the output state, and the elements val :: in

and val :: out reference to values in these states.

@ The execution of the element (modify (((—1 : value, 0 : z, 1 : variable) inconf :: out) =

0)) initiates the transition to a state in which the value of the variable = equals to 0.

@D The execution of the element (modify (((—1 : value, 0 : x, 1 : variable) = ”green”) and
(((—1 : value, 0 : z, 1 : variable) in conf :: out) = "red”))) initiates the transition
from a state in which the value of the variable x equals to "green" to a state in which the

variable x equals to "red".

84 Anureev I.S. Formalisms for conceptual design of information systems

The element ¢; of the form (modify—exist (x) y) or (modify—exist :: n (x) y) is defined as
follows:
(rule (modify—exist (x) y) var (y) seq (x) then (modify—exist (z) y) :: atm);
(rule (modify—exist ::n (z) y) var (y) seq (x) abn then (modify—exist (x) y) :: atm);
(transition (modify—exist (x) y) :: atm var (y) seq (z) then f,),
where (modify—exist (xo) yo) = atm, e . # v # Cof — 1.5, €1 F# [0 [there exists ¢,f1 such
that [[subst (conf ::in : cyp,val o in @ vfe,y], conf o out : cppq,val 2 out = vfcnpa]) Yol is
satisfiable in ((x¢), ¢uf)] then v # cnp1 else und # cnf]. The element y is called a transition

condition in [e;]. The elements of = are called existential variables in [e,].
5.14. Safety operations

The element ¢; of the form (assert x) or (assert :: n z) is defined as follows:
(rule (assert x) var (z) then (assert x):: atm);
(rule (assert x::n) var (x) abn then (assert x):: atm);
(transition (assert x) ::atm var (x) then f,),
where (assert xo) :: atm, e, # Vi # Cof — 15 € F [0f [[value [subst (conf ::incyp,val ::in

V) xo] cnf] # und] then vy else und] # c,¢. The element z is called a safety condition in [e;].
5.15. Branching operations

The element ¢; of the form (branching x) is defined as follows:
(rule (branching x) seq (x) abn then (branching x):: atm);
(transition (branching x) :: atm var (x) then f,),
where (branching xo) :: atm, e, # vi # Cop —>1,.5, # (type : assume) :: exc # [,y branching.
(0 :0) : [((z0), cnf, (e14)) -+ lleng branching] (0 : ())]]]. The elements of = are called
branches in [e;]. The element e; generates the branchpoint with the branches z. The exception
(type : assume) :: exc specifies the failure of the execution of the current branch. The substate
branching contains information about branching. The conceptual (0 : ()) :: state :: branching
specifies the current sequence of branchpoints.

The endogenous transition relation specifying branching is defined as follows:
(endogenous—transition f,) :: name :: branching

where

o if [[c,r branching] (0 : ()] = (((e1x1, €, €1x2), Cnf1, (€143)),€1x), then # (type :

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 85

assume) :: exc # Cnf —branching €3 F# [Cnp1 branching.(0 : () : (((e141, €142)s Cnf1,
(€143)), €1.4)];
o if [[c,y branching] (0 : ()] = (((), cnr1, (erx3)),es), then # (type : assume) :
exc # Cnf —branching # (type : assume) :: exc # [cnp1 branching.(0: () : (e1.4)].
The element ¢; of the form (assume z) or (assume :: n) is defined as follows:
(rule (assume x) var (x) then (assume x):: atm);
(rule (assume ::n x) var (x) abn then (assume x):: atm);
(transition (assume x) :: atm var (x) then f,),
where (assume xg) = atm, e # v # Cof =105, [0f [[value [subst (conf ::in : cpp,val = in
vilensl) wo] cng] # und] then e . # v else # (type : assume) :: exc| # c¢,y. The element x
is called a continuation condition in [e;]. The violation of this condition initiates the failure of
the execution of the current branch.
The element ¢; of the form (assume—exist (x) y) or (assume—exist :: n (x) y) is defined as

follows:
(rule (assume—exist (x) y) var (y) seq (x) then (assume—ezist x):: atm);
(rule (assume—ezist ::n (x) y) var (y) seq (x) abn then (assume—exist x):: atm);
(transition (assume—exist (x) y) :: atm var (y) seq (x) then f,),
where (assume (xg) yo) = atm, e # vy # oy =15, [0f [[subst (conf ::in : c,p,val i in :
vilens]) yo] is satisfiable in [(xg), cnr]] then e, # v else # (type : assume) :: exc|] # c,p. The
element y is called a continuation condition in [e;]. The elements of x are called existential

variables in [e;].
6. Justification of requirements for conceptual transition systems

In this section, we establish that CTSs meet the additional requirements stated in section 1:

8. The formalism must have language support. The language associated with the formalism
must define syntactic representations of models of states, state objects, queries, query
objects, answers and answer objects and includes the set of predefined basic query models.
The CTSL language associated with CTSs defines syntactic representations of models of
states, state objects, queries, query objects, answers and answer objects and includes the
set of predefined basic query models.

9. It must model the change of the conceptual structure of states and state objects of the ITS.

The change of the conceptual structure of the I'TS is described by the transition relation

86

10.

11.

12.

Anureev I.S. Formalisms for conceptual design of information systems

on conceptual configurations specifying conceptual structures of the I'TS with different
sets of ontological elements.

It must model the change of the content of the conceptual structure. The change of the
content of the conceptual structure of the ITS is described by the transition relation
on conceptual states specifying the same conceptual structure of the ITS. In fact, the
distinction between requirements 9 and 10 is relative, for conceptuals allow to define
classifications of ontological elements with different granularity.

It must model the transition relations of the ITS. The transition relations of the ITS are
modelled by the transition relation t,.,,.,;; of the CTS.

The model of the exogenous transition relation must be extensible. The model of the

exogenous transition relation of the IQS is extended by addition of trnasition rules.

Thus, the additional requirements are met for CTSs.

7. Conclusion

In the paper two formalisms (IT'Ss and CTSs) for abstract unified modelling of the artifacts

of the conceptual design of information systems have been proposed by ontological elements

with arbitrary conceptual granularity. The basic definitions of the theory of CTSs have been

given. The language of CTSs has been defined.

We plan to use CTSs to design and prototype software systems as well as to specify opera-

tional and axiomatic semantics of programming languages. In the case of operational semantics

of a programming language, CTSs model an abstract machine of the language. In the case of ax-

iomatic semantics of a programming language, CTSs model a verification conditions generator

for programs in the language.

References

Sokolowski J., Banks C. Modeling and Simulation Fundamentals: Theoretical Underpinnings and

Practical Domains. Wiley, 2010.

Chen P. Entity-relationship modeling: historical events, future trends, and lessons learned //

Software pioneers. Springer-Verlag New York, 2002. P. 296-310.

Anureev I.S. Formalisms for conceptual design of closed information systems // System Informatics.
2016. N 7. P. 69-148.
Gurevich Y. Abstract state machines: An Overview of the Project // Foundations of Information

and Knowledge Systems. Lect. Notes Comput. Sci. 2004. Vol. 2942. P. 6-13.

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 87

5. Gurevich Y. Evolving Algebras. Lipari Guide // Specification and Validation Methods. Oxford
University Press, 1995. P. 9-36.

38

Anureev I.S. Formalisms for conceptual design of information systems

