
System Informatics (Системная информатика), No. 8 (2016) 53

УДК 004.8

Formalisms for conceptual design of information systems∗

Anureev I.S. (Institute of Informatics Systems)

A class of information systems considered in this paper is defined as follows: a system

belongs to the class if its change can be caused by both its environment and factors inside

the system, and there is an information transfer from it to its environment and from its

environment to it. Two formalisms (information transition systems and conceptual transi-

tion systems) for abstract unified modelling of the artifacts (concept sketches and models)

of the conceptual design of information systems of the class, early phase of information

systems design process, are proposed. Information transition defines the abstract unified

information model for the artifacts, based on such general concepts as state, information

query, answer and transition. Conceptual transition systems are a formalism for conceptual

modelling of information transition systems. They defines the abstract unified conceptual

model for the artifacts. The basic definitions of the theory of conceptual transition systems

are given. A language of conceptual transition systems is defined.

Keywords: information system, information transition system, conceptual structure, on-

tology, ontological element, conceptual, conceptual state, conceptual configuration, concep-

tual transition system, conceptual information transition model, transition system, CTSL

1. Introduction

The conceptual models play an important role in the overall system development life cycle

[1]. Numerous conceptual modelling techniques have been created, but all of them have a

limited number of kinds of ontological elements and therefore can only represent ontological

elements of fixed conceptual granularity. For example, entity-relationship modelling technique

[2] uses two kinds of ontological elements: entities and relationships.

The purpose of the paper is propose formalisms for abstract unified modelling of the artifacts

(concept sketches and models) of the conceptual design of information systems (IS for short)

by ontological elements of arbitrary conceptual granularity. In our two stage approach the

informational and conceptual aspects of the system that the conceptual model represents are

described by two separate formalisms. The first formalism describes the informational model

of the system, and the second formalism describes the conceptual model of the informational

∗Partially supported by RFBR under grants 15-01-05974 and 15-07-04144 and SB RAS interdisciplinary integration project

No.15/10.

54 Anureev I.S. Formalisms for conceptual design of information systems

model.

An information transition system (ITS for short) is an extension of an information query

system (IQS for short) characterized additionally by the exogenous and endogenous transition

relations specifying transitions on states. The exogenous transition relation models change of

an information system caused by its environment. It associates queries with binary relations

on states called transition relations and answers returning by state pairs from these transition

relations called transitions. The endogenous transition relation models change of an information

system caused by factors inside the system. It is defined as a transition relation with answers

returning by transitions of the transition relation.

A wide variety of information systems is modelled by ITSs in the information aspect, in-

cluding database management systems with transitions initiated by queries, expert systems

with transitions initiated by operations with facts and rules, social networks with transitions

initiated by actions of users in accordance with certain communications protocols, abstract

machines specifying operational semantics of programming languages with transitions initiated

by instructions of abstract machines, verification condition generators specifying axiomatic se-

mantics of programming languages with transitions initiated by inference rules and so on.

We consider that the second formalism used for for conceptual modelling of ITSs must meet

the following general requirements (in relation to modelling of a ITS):

1. It must model the conceptual structure of states and state objects of the ITS.

2. It must model the content of the conceptual structure.

3. It must model information queries, information query objects, answers and answer objects

of the IQS.

4. It must model the interpretation function of the ITS.

5. It must be quite universal to model typical ontological elements (concepts, attributes,

concept instances, relations, relation instances, individuals, types, domains, and so on.).

6. It must provide a quite complete classification of ontological elements, including the

determination of their new kinds and subkinds with arbitrary conceptual granularity.

7. The model of the interpretation function must be extensible.

8. It must have language support. The language associated with the formalism must define

syntactic representations of models of states, state objects, queries, query objects, answers

and answer objects and includes the set of predefined basic query models.

9. It must model the change of the conceptual structure of states and state objects of the

System Informatics (Системная информатика), No. 8 (2016) 55

ITS.

10. It must model the change of the content of the conceptual structure.

11. It must model the transition relations of the ITS.

12. The model of the exogenous transition relation must be extensible.

As is shown in [3], conceptual configuration systems (CCSs for short) meet the seven re-

quirements in relation to IQSs. Comparison of CCSs with the abstract state machines [4, 5]

which partially meet these requirements was made in [3]. In this paper we present an extension

of CCSs, conceptual transition systems (CTSs for short) as the formalism satisfying the all

above requirements.

The paper has the following structure. The preliminary concepts and notation are given in

section 2. The basic definitions of the theory of CTSs are given in section 3. The language

CTSL of CTSs is described in section 4. Semantics of executable elements in CTSL is defined

in 5. We establish that CTSs meet the above requirements in section 6.

2. Preliminaries

2.1. Sets, sequences, multisets

Let Ob be the set of objects considered in this paper. Let St be a set of sets. Let Int, Nt,

Nt0 and Bl be sets of integers, natural numbers, natural numbers with zero and boolean values

true and false, respectively.

Let the names of sets be represented by capital letters possibly with subscripts and the

elements of sets be represented by the corresponding small letters possibly with extended sub-

scripts. For example, int and int.1 are elements of Int.

Let Sq be a set of sequences. Let st.(∗), st.{∗}, and st.∗ denote sets of sequences of the forms

(ob.1, . . . , ob.nt0), {ob.1, . . . , ob.nt0}, and ob.1, . . . , ob.nt0 from elements of st. For example, Int.(∗) is a

set of sequences of the form (int.1, . . . , int.nt0), and int.∗ is a sequence of the form int.1, . . . , int.nt0 .

Let ob.1, . . . , ob.nt0 , denote ob.1, . . . , ob.nt0 . Let st.(∗nt0), st.{∗nt0}, and st.∗nt0 denote sets of the

corresponding sequences of the length nt0.

Let ob.1 ≺JsqK ob.2 denote the fact that there exist ob.∗.1, ob.∗.2 and ob.∗.3 such that sq =

ob.∗.1, ob.1, ob.∗.2, ob.2, ob.∗.3, or sq = (ob.∗.1, ob.1, ob.∗.2, ob.2, ob.∗.3).

Let [ob ob.1 ←↩ ob.2] denote the result of replacement of all occurrences of ob.1 in ob by ob.2.

Let [sq ob ←↩∗ ob.1] denote the result of replacement of each element ob.2 in sq by [ob.1 ob ←↩ ob.2].

For example, [(a, b) x←↩∗ (f x)] denotes ((f a), (f b)).

56 Anureev I.S. Formalisms for conceptual design of information systems

Let [len sq] denote the length of sq. Let und denote the undefined value. Let [sq . nt] denote

the nt-th element of sq. If [len sq] < nt, then [sq . nt] = und. Let [sq + sq.1], [ob . + sq] and

[sq + . ob] denote ob.∗, ob.∗.1, ob, ob.∗ and ob.∗, ob, where sq = ob.∗ and sq.1 = ob.∗.1.

Let [and sq] denote (cnd.1 and . . . and cnd.nt), where sq = cnd.1, ..., cnd.nt , and [and] denote

true. In the case of nt = 1, the brackets can be omitted.

Let ob.1, ob.2 ∈ St ∪ Sq. Then ob.1 =st ob.2 denote that the sets of elements of ob.1 and ob.2

coincide, and ob.1 =ml ob.2 denote that the multisets of elements of ob.1 and ob.2 coincide.

2.2. Contexts

The terms used in the paper are context-dependent.

Let Lb be a set of objects called labels. Contexts have the form Job.∗K, where the elements

of ob.∗ called embedded contexts have the form: lb:ob, lb: or ob.

The context in which some embedded contexts are omitted is called a partial context. All

omitted embedded contexts are considered bound by the existential quantifier, unless otherwise

specified.

Let obJob.∗K denote the object ob in the context Job.∗K.

The object ’in Job, ob.∗K’ can be reduced to ’in JobK in Job.∗K’ if this does not lead to ambiguity.

2.3. Functions

Let Fn be a set of functions. Let Arg and Vl be sets of objects called arguments and values.

Let [fn arg.∗] denote the application of fn to arg.∗.

Let [support fn] denote the support in JfnK, i. e. [support fn] = {arg : [fn arg] 6= und}.

Let [image fn st] denote the image in Jfn, stK, i. e. [image fn st] = {[fn arg] : arg ∈ st}. Let

[image fn] denote the image in Jfn, [support fn]K. Let [narrow fn st] denote the function fn.1

such that [support fn.1] = [support fn.1]∩st, and [fn.1 arg] = [fn arg] for each arg ∈ [support fn.1].

The function fn.1 is called a narrowing of fn to st. Let [support fn.1] ∩ [support fn.2] = ∅. Let

fn.1 ∪ fn.2 denote the union fn of fn.1 and fn.2 such that [fn arg] = [fn.1 arg] for each arg ∈

[support fn.1], and [fn arg] = [fn.2 arg] for each arg ∈ [support fn.2]. Let fn.1 ⊆ fn.2 denote the

fact that [support fn.1] ⊆ [support fn.2], and [fn.1 arg] = [fn.2 arg] for each arg ∈ [support fn.1].

An object up of the form arg : vl is called an update. Let Up be a set of updates. The objects

arg and vl are called an argument and value in JupK.

Let [fn up] denote the function fn.1 such that [fn.1 arg] = [fn arg] if arg 6= argJupK, and

System Informatics (Системная информатика), No. 8 (2016) 57

[fn.1 argJupK] = vlJupK. Let [fn up, up.∗nt] be a shortcut for [[fn up] up.∗nt]. Let [fn arg.arg.1. . . .

.arg.nt : vl] be a shortcut for [fn arg : [[fn arg] arg.1.arg.nt : vl]]. Let [up.∗] be a shortcut for

[fn up.∗], where [support fn] = ∅.

Let Cnd be a set of objects called conditions. Let [if cnd then ob.1 else ob.2] denote the object

ob such that

• if cnd = true, then ob = ob.1;

• if cnd = false, then ob = ob.2.

2.4. Attributes and multi-attributes

An object ob.ma of the form (up.∗) is called a multi-attribute object. Let Ob.ma be a set

of multi-attribute objects. The elements of [ob.ma w ←↩∗ argJwK] are called multi-attributes

in Job.maK. Let Ob.ma be a set of multi-attributes. The elements of [ob.ma w ←↩∗ vlJwK] are

called values in Job.maK. The sequence up.∗ is called a sequence in Job.maK and denoted by

[sequence in ob.ma]. An object vl is a value in Jatt.m, ob.maK if ob.ma = (up.∗.1, att.m : vl, up.∗.2) for

some up.∗.1 and up.∗.2.

An object ob.ma is an attribute object if the elements of [ob.ma w ←↩∗ argJwK] are pairwise

distinct. Let Ob.a be a set of attribute objects. The multi-attributes in Job.aK are called attributes

in Job.aK. Let Att be a set of objects called attributes.

Let [function ob.a], [ob.a att], and [support ob.a] denote [[sequence in ob.a]], [[function ob.a] att],

and [support [function ob.a]].

Let [seq−to−att−obj sq] denote (1 : [sq . 1], ..., [len sq] : [sq . [len sq]]). Let ob.a =st (1 :

vl.1, ..., nt : vl.nt). Then [att−obj−to−seq ob.a] denote (vl.1, ..., vl.nt).

3. Basic definitions of the theory of conceptual transition systems

Conceptual transition systems (CTSs) are transition systems in which states are conceptual

configurations, and transition relations are binary relations on conceptual configurations. In

this section the basic definitions of the theory of conceptual transition systems are presented.

The defined structures of CTSs are constructed from atoms and, thus, defined implicitly in

JAtmK.

3.1. Information transition systems

58 Anureev I.S. Formalisms for conceptual design of information systems

Let Stt be a set of objects called states. An element trn of the form (stt.1, stt.2) is called a

transition. Let Trn be a set of transitions. The states stt.1 and stt.2 are called input and output

states in JtrnK.

Let Ss.q be a set of query systems. An object ss.t.i of the form (ss.q, trn.rlt.ex, trn.rlt.en) is an

information transition system if trn.rlt.ex ∈ Qr×Ans×Stt×Stt → Bl, trn.rlt.en ∈ Ans×Stt×Stt →

Bl, and for all qr ∈ Qr there exists stt ∈ Stt such that [value qr stt] 6= und, or there exist

stt.1 ∈ Stt, stt.2 ∈ Stt and ans ∈ Ans such that [trn.rlt.ex qr ans stt.1 stt.2] = true. Let Ss.t.i be a

set of information transition systems.

The system ss.q is called a query system in Jss.t.iK. The function trn.rlt.ex is called an exogenous

transition relation in Jss.t.iK. The function trn.rlt.en is called an endogenous transition relation in

Jss.t.iK. Let stt.1 →qr,ans stt.2 and stt.1 →ans stt.2 be shortcuts for [trn.rlt.ex qr ans stt.1 stt.2] = true

and [trn.rlt.en ans stt.1 stt.2] = true, respectively.

The elements of SttJss.qK, Ob.sJss.qK, QrJss.qK, Ob.qJss.qK, AnsJss.qK and Ob.aJss.qK are called

states, state objects, queries, query objects, answers and answer objects in Jss.t.iK, respectively.

The function valueJss.qK is called a query interpretation in Jss.t.iK.

A query qr is an information query in Jss.t.iK if [value qr stt] 6= und for some stt. A query qr

is a change query in Jss.t.iK if [trn.rlt.ex qr ans stt.1 stt.2] = true for some stt.1, stt.2 and ans.

A system ss.t.i executes trn if stt.1JtrnK→qr,ans stt.2JtrnK for some qr and ans, or stt.1JtrnK→ans

stt.2JtrnK for some ans. A system ss.t.i transits from stt.1 to stt.2 if ss.t.i executes (stt.1, stt.2).

3.2. Substitutions, patterns, pattern specifications, instances

A function sb ∈ El → El.∗ is called a substitution. Let Sb be a set of substitutions. A

function subst ∈ Sb × El.∗ → El.∗ is a substitution function if it is defined as follows (the first

proper rule is applied):

• if el ∈ [support sb], then [subst sb el] = [sb el];

• [subst sb atm] = atm;

• [subst sb lb : el] = [subst sb lb] : [subst sb el];

• [subst sb el :: nosubst] = el;

• [subst sb el :: (nosubstexcept el.∗)] = [subst [narrow sb {el.∗}] el];

• [subst sb el :: srt] = [subst sb el] :: [subst sb srt];

• [subst sb (el.∗)] = ([el.∗ w ←↩∗ [subst sb w]]);

• [subst sb el.∗] = [el.∗ w ←↩∗ [subst sb w]].

System Informatics (Системная информатика), No. 8 (2016) 59

The sort nosubst specifies the elements to which the substitution sb is not applied. The sort

(nosubstexcept el.∗) specifies the elements to which the narrowing of the substitution sb to the

set el.∗ is applied. An element pt is a pattern in Jel, sbK if [subst sb pt] = el. Let Pt be a set of

patterns. An element inst is an instance in Jpt, sbK if [subst sb pt] = inst. Let Inst be a set of

instances.

Let Vr and Vr.s be sets of objects called element variables and sequence variables, respectively.

An element pt.s of the form (pt, (vr.∗), (vr.s.∗)) is a pattern specification if {vr.s.∗}∩{vr.∗} = ∅, and

the elements of {vr.∗} ∪ {vr.s.∗} are pairwise distinct. Let Pt.s be a set of pattern specifications.

The objects pt, (vr.∗), and (vr.s.∗) are called a pattern, element variable specification, and

sequence variable specification in Jpt.sK. The elements of vr.∗ and vr.s.∗ are called element pattern

variables and sequence pattern variables in Jpt.sK, respectively.

An element inst is an instance in Jpt.s, sbK if [support sb] = {vr.∗}, [sb vr] ∈ El for vr ∈

{vr.∗} \ {vr.s.∗}, [sb vr] ∈ El.∗ for vr ∈ {vr.s.∗}, and inst is an instance in Jpt, sbK. An element inst

is an instance in Jpt.sK if there exists sb such that inst is an instance in Jpt.s, sbK.

A function mt ∈ El × Pt.s → Sb is a match if the following property holds:

• if [mt el pt.s] = sb, then el is an instance in Jpt.s, sbK.

An element inst is an instance in Jpt.s,mt, sbK if [mt inst pt.s] = sb. An element inst is an

instance in Jpt.s,mtK if there exists sb such that inst is an instance in Jpt.s,mt, sbK.

3.3. The transition relation

Let Ss.c.c be a set of conceptual configuration systems. Let Cnf be a set of conceptual

configurations. An element trn of the form (cnf.1, cnf.2) is called a transition. Let Trn be a set

of transitions. The configurations cnf.1 and cnf.2 are called input and output configurations in

JtrnK.

The transition relations of a IQS is modelled by the transition relation trn.rlt ∈ Trn → Bl

based on atomic exogenous transition relations, transition rules, atomic endogenous transition

relations, the exogenous transition order and the endogenous transition order. The exogenous

transition relation of the IQS is modelled by atomic exogenous transition relations and tran-

sition rules. The endogenous transition relation of the IQS is modelled by atomic endogenous

transition relations.

Transitions from a configuration cnf in Jtrn.rltK are executed by a program in JcnfK. An

element sequence prg is a program in JcnfK if [cnf (0 : ()) :: state :: program] = (prg). Let

60 Anureev I.S. Formalisms for conceptual design of information systems

Prg be a set of programs. Thus, programs in configurations are specified by the conceptual

(0 : ()) :: state :: program from the substate program of the configurations. A program in

JcnfK is empty if [cnf (0 : ()) :: state :: program] = (). Atomic exogenous transition relations

and transition rules define transitions executed by the first element of the program. Atomic

endogenous transition relations define transitions executed in the case of the empty program.

Let cnf.1 → cnf.2 be a shortcut for [trn.rlt cnf.1 cnf.2] = true. Transitions can return values.

An element vl is a value in JcnfK if vl = [cnf (0 : ()) :: state :: value]. An element vl is a value

in JtrnK if cnf.1JtrnK → cnf.2JtrnK, and vl is a value in Jcnf.2JtrnKK. Thus, the returned values

in transitions are specified by the conceptual (0 : ()) :: state :: value from the substate value

of output configurations of the transitions. A transition trn returns a value vl if vl is a value

in JtrnK. A transition trn returns (or generates) an exception exc if exc is a value in JtrnK. A

transition trn is normally executed if trn returns no exception.

The special variables conf :: in and val :: in reference to the current configuration and the

value in the current configuration, respectively, in the definitions below.

An object trn.rlt.ex of the form (pt, (vr.∗), (vr.s.∗), fn) is an atomic exogenous transition relation

if (pt, (vr.∗), (vr.s.∗)) is a pattern specification, conf :: in /∈ {vr.∗} ∪ {vr.s.∗}, val :: in /∈ {vr.∗} ∪

{vr.s.∗}, fn ∈ Sb → (Trn → Bl), [support fn] = {sb : [support sb] = {vr.∗} ∪ {vr.s.∗} ∪ {conf ::

in, val : in}, [sb vr] ∈ El for vr ∈ {vr.∗} and [sb vr] ∈ El.∗ for vr ∈ {vr.s.∗}}. Let Trn.rlt.ex

be a set of atomic exogenous transition relations. Let cnf.1 →fn,sb cnf.2 be a shortcut for

[[fn sb] cnf.1 cnf.2] = true.

The objects pt, (vr.∗), (vr.s.∗), and fn are called a pattern, element variable specification,

sequence variable specification, and value in Jtrn.rlt.exK. The elements of vr.∗ and vr.s.∗ are called

element pattern variables and sequence pattern variables in Jtrn.rlt.exK, respectively.

A function trn.rlt.ex.s ∈ El → Trn.rlt.ex is called an atomic exogenous transition specification

if [support trn.rlt.ex.s] is finite. A relation trn.rlt.ex is an atomic exogenous transition relation

in Jtrn.rlt.ex.sK if [trn.rlt.ex.s nm] = trn.rlt.ex for some nm ∈ El. An element nm is a name in

Jtrn.rlt.ex, trn.rlt.ex.sK if [trn.rlt.ex.s nm] = trn.rlt.ex. An element nm a name in Jtrn.rlt.ex.sK if nm

is a name in Jtrn.rlt.ex, trn.rlt.ex.sK for some trn.rlt.ex. Let cnf.1 →nm,sb cnf.2 be a shortcut for

cnf.1 →fnJ[trn.rlt.ex.s nm]K,sb cnf.2.

An element rl of the form (pt, (vr.∗), (vr.s.∗), (bd)) is a transition rule if bd ∈ El.∗, (pt, (vr.∗),

(vr.s.∗)) is a pattern specification, conf :: in /∈ {vr.∗} ∪ {vr.s.∗}, and val :: in /∈ {vr.∗} ∪ {vr.s.∗}.

Let Rl be a set of transition rules.

System Informatics (Системная информатика), No. 8 (2016) 61

The objects pt, (vr.∗), (vr.s.∗) and bd are called a pattern, element variable specification,

sequence variable specification and body in JrlK. The elements of vr.∗ and vr.s.∗ are called

element pattern variables and sequence pattern variables in JrlK, respectively.

An attribute element rl.s is called a transition rule specification if [support rl.s] ⊆ El, and

[image rl.s] ⊆ El. A rule rl is a rule in Jrl.sK if [rl.s nm] = rl for some nm ∈ El. An element nm

is a name in Jrl, rl.sK if [rl.s nm] = rl. An element nm a name in Jrl.sK if nm is a name in Jrl, rl.sK

for some rl.

A function trn.rlt.en ∈ {cnf : [cnf (0 : ()) :: state :: program] = ()} × Cnf → Bl is called an

atomic endogenous transition relation. Let Trn.rlt.en be a set of atomic endogenous transition

relations.

A function trn.rlt.en.s ∈ El → Trn.rlt.en is called an atomic endogenous transition specifi-

cation if [support trn.rlt.en.s] is finite. A relation trn.rlt.en is an atomic endogenous transition

relation in Jtrn.rlt.en.sK if [trn.rlt.en.s nm] = trn.rlt.en for some nm ∈ El. An element nm is a

name in Jtrn.rlt.en, trn.rlt.en.sK if [trn.rlt.en.s nm] = trn.rlt.en. An element nm a name in Jtrn.rlt.en.sK

if nm is a name in Jtrn.rlt.en, trn.rlt.en.sK for some trn.rlt.en. Let cnf →nm cnf be a shortcut for

[[trn.rlt.en.s nm] cnf cnf.1] = true.

Let [support trn.rlt.ex.s], [support trn.rlt.en.s] and [support rl.s] be pairwise disjoint.

An element ord.trn.ex of the form (nm.∗) is called an exogenous transition order in Jtrn.rlt.ex.s,

rl.sK if {nm.∗} ⊆ [support trn.rlt.ex.s]∪[support rl.s], and the elements of nm.∗ are pairwise distinct.

It specifies the order of application of atomic exogenous transition relations and transition rules.

An element ord.trn.en of the form (nm.∗) is called an endogenous transition order in Jtrn.rlt.en.sK

if {nm.∗} ⊆ [support trn.rlt.en.s], and the elements of nm.∗ are pairwise distinct. It specifies the

order of application of atomic endogenous transition relations.

The information about the transition rule specification and the transition orders is stored in

the substate transition of the configurations. The conceptuals (0 : rules) :: state :: transition,

(−1 : exogenous, 0 : order) :: state :: transition and (−1 : endogenous, 0 : order) :: state ::

transition define the transition rule specification, exogenous transition order and endogenous

transition order. The conceptual (0 : history) :: state :: transition defines the substates that

store the information about transitions preceding the transition to the current configuration.

An element cnf is consistent with (trn.rlt.ex.s, rl.s, trn.rlt.en.s, ord.trn.ex, ord.trn.en) if the following

properties hold:

• if [support trn.rlt.ex.s] ∩ [support [cnf (0 : rules) :: state :: transition]] = ∅;

62 Anureev I.S. Formalisms for conceptual design of information systems

• if [support ord.trn.en] ∩ [support [cnf (0 : rules) :: state :: transition]] = ∅;

• if rl.s ⊆ [cnf (0 : rules) :: state :: transition];

• if nm.1 ≺Jord.trn.exK nm.2, and nm.1, nm.2 ∈ [cnf (−1 : exogenous, 0 : order) :: state ::

transition], then nm.1 ≺J[cnf (−1:exogenous,0:order)::state::transition]K nm.2;

• if nm.1 ≺Jord.trn.enK nm.2, and nm.1, nm.2 ∈ [cnf (−1 : endogenous, 0 : order) :: state ::

transition], then nm.1 ≺J[cnf (−1:endogenous,0:order)::state::transition]K nm.2.

Let el.∗ # cnf be a shortcut for [cnf program.(0 : ()) : (el.∗)]. Let el.∗ # vl # cnf be a

shortcut for [cnf program.(0 : ()) : (el.∗), value.(0 : ()) : vl].

Let [add−history cnf.1 to cnf.2] denote [narrow cnf.1 [support cnf.1] \ {[cnf.1 (0 : history) ::

state :: transition]}] ∪ [narrow cnf.1 {[cnf.1 (0 : history) :: state :: transition]}]. A function

trn.rlt ∈ Cnf.c × Cnf → Bl is a transition relation in Jtrn.rlt.ex.s, rl.s, trn.rlt.en.s, ord.trn.ex, ord.trn.enK

if it is defined by the following definition rules (the first proper rule is applied):

• if cnf is not consistent with (trn.rlt.ex.s, rl.s, trn.rlt.en.s, ord.trn.ex, ord.trn.en), then [trn.rlt cnf

cnf.1] = false;

• if trn.rlt.ex = [trn.rlt.ex.s nm], el is an instance in Jpt.sJtrn.rlt.exK,mt, sbK, el.∗ # cnf

→nm,sb∪(conf ::in:cnf ,val::in:vlJcnf K) el.∗.1 # vl # cnf.1, and vl 6= und, then (execute−

exogenous−transition, el, (nm nm.∗)), el.∗ # cnf → el.∗.1 # vl # cnf.1;

• if trn.rlt.ex = [trn.rlt.ex.s nm], el is an instance in Jpt.sJtrn.rlt.exK,mt, sbK, el.∗ # cnf

→nm,sb∪(conf ::in:cnf ,val::in:vlJcnf K) el.∗.1 # und # cnf.1, then (execute−exogenous−transition,

el, (nm nm.∗)), el.∗ # cnf → (execute−exogenous−transition, el, (nm.∗)), el.∗ # [add−

history cnf.1 to cnf];

• if trn.rlt.ex = [trn.rlt.ex.s nm], and el is not an instance in Jpt.sJtrn.rlt.exK,mtK, then (execute−

exogenous−transition, el, (nm, nm.∗)), el.∗ # cnf → (execute−exogenous−transition,

el, (nm.∗)), el.∗ # cnf ;

• if rl = [[cnf (0 : rules) :: state :: transition] nm], and el is an instance in Jpt.sJrlK,mt, sbK,

then (execute−exogenous−transition, el, (nm nm.∗)), el.∗ # cnf → ([subst sb ∪ (conf ::

in : cnf , val :: in : vlJcnfK) bdJrlK], (execute−exogenous−transition, el, (nm nm.∗), (el.∗),

cnf), el.∗ # cnf ;

• if vl 6= und, then (execute−exogenous−transition, el, (nm nm.∗), (el.∗.1), cnf.1), el.∗ # vl

cnf → el.∗ # vl # cnf ;

• (execute−exogenous−transition, (nm nm.∗), el, (el.∗.1), cnf.1), el.∗ # und # cnf →

(execute−exogenous−transition, el, (nm.∗)), el.∗.1 # [add−history cnf to cnf.1];

System Informatics (Системная информатика), No. 8 (2016) 63

• if rl = [[cnf (0 : rules) :: state :: transition] nm], and el is not an instance in Jpt.sJrlK,mtK,

then (execute−exogenous−transition, el, (nm nm.∗)), el.∗ # cnf → (execute−

exogenous−transition, el, (nm.∗)), el.∗ # cnf ;

• (execute−exogenous−transition, el, ()), el.∗ # cnf → el.∗ # und # cnf ;

• if trn.rlt.en = [trn.rlt.en.s nm], cnf →nm el.∗ # vl # cnf.1, and vl 6= und, then (execute−

endogenous−transition, (nm nm.∗)) # cnf → el.∗ # vl # cnf.1;

• if trn.rlt.en = [trn.rlt.en.s nm], and cnf →nm el el.∗ # und # cnf.1, then (execute−

endogenous−transition, (nm nm.∗)) # cnf → el el.∗ # und # cnf.1;

• if trn.rlt.en = [trn.rlt.en.s nm], and cnf →nm # und # cnf.1, then (execute−endogenous−

transition, (nm nm.∗)) # cnf → (execute−endogenous−transition, (nm.∗)) # [add−

history cnf.1 to cnf];

• el, el.∗ # cnf → (execute−exogenous−transition, el, [cnf (−1 : exogenous, 0 : order) ::

state :: transition]), el.∗ # cnf ;

• # cnf → (execute−endogenous−transition, [cnf (−1 : endogenous, 0 : order) :: state ::

transition]), # cnf .

3.4. Conceptual transition systems

An object ss.t.c of the form (ss.c.c, trn.rlt.ex.s, rl.s, trn.rlt.en.s, ord.trn.ex, ord.trn.en) is a conceptual

transition system if ss.c.c is a conceptual configuration system, trn.rlt.ex.s, rl.s, trn.rlt.en.s, ord.trn.ex

and ord.trn.en are an atomic exogenous transition specification, transition rule specification,

atomic endogenous transition specification, exogenous transition order and endogenous transi-

tion order in JAtmJss.c.cKK, and the sets [support trn.rlt.ex.s], [support trn.rlt.en.s] and [support rl.s]

are pairwise disjoint. It specifies the transition system (CnfJss.c.cK, trn.rltJtrn.rlt.ex.s, rl.s, trn.rlt.en.s,

ord.trn.ex, ord.trn.en,mtJss.c.cKK). Let Ss.t.c be a set of conceptual transition systems.

The elements of AtmJss.c.cK, ElJss.c.cK, CncplJss.c.cK, SttJss.c.cK, CnfJss.c.cK and TrnJAtmJss.c.cKK

are called atoms, elements, conceptuals, states, configurations and transitions in Jss.t.cK.

The objects trn.rlt.ex.s, rl.s, trn.rlt.en.s, ord.trn.ex, ord.trn.en, intr.a.sJss.c.cK, df.sJss.c.cK, ord.intrJss.c.cK

and mtJss.c.cK are called an atomic exogenous transition specification, transition rule speci-

fication, atomic endogenous transition specification, exogenous transition order, endogenous

transition order, atomic element interpretation specification, element definition specification,

element intepretation order and match in Jss.t.cK.

The function trn.rltJtrn.rlt.ex.s, rl.s, trn.rlt.en.s, ord.trn.ex, ord.trn.en,mtK is called a transition rela-

64 Anureev I.S. Formalisms for conceptual design of information systems

tion in Jss.t.cK. A system ss.t.c executes trn if stt.1JtrnK→ stt.2JtrnK. A system ss.t.c transits from

stt.1 to stt.2 if ss.t.c executes (stt.1, stt.2).

An element el is interpretable in Jss.t.cK if el is interpretable in Jss.c.cJss.t.cKK.

An element el is executable in Jss.t.cK if there exist nm such that el is an instance in

Jpt.sJ[trn.rlt.ex.s nm]K,mtK, or el is an instance in Jpt.sJ[rl.s nm]K,mtK.

3.5. Conceptual information transition models

An object mdl.t.q.c of the form (ss.t.c, rpr.s, rpr.q, rpr.a) is a conceptual information transi-

tion model in Jss.t.iK if (ss.c.cJss.t.cK, rpr.s, rpr.q, rpr.a) is a conceptual query model in Jss.qJss.t.iKK,

[trn.rlt.exJss.t.iK qr ans stt.1 stt.2] = [trn.rltJss.t.cK [[rpr.s stt.1] (0 : ()) :: state :: program : ([rpr.q qr])]

[[rpr.s stt.2] (0 : ()) :: state :: value : [rpr.a ans]]], and [trn.rlt.enJss.t.iK ans stt.1 stt.2] = [trn.rltJss.t.cK

[[rpr.s stt.1] (0 : ()) :: state :: program : ()] [[rpr.s stt.2] (0 : ()) :: state :: value : [rpr.a ans]]]. Let

Mdl.t.q.c be a set of conceptual query transition models.

The objects ss.c.cJss.t.cK and ss.t.c are called a conceptual configuration system and conceptual

transition system in Jmdl.t.q.cK, respectively. The functions rpr.s, rpr.q and rpr.a are called a state

representation, query representation and answer representation in Jmdl.t.q.cK.

A system ss.t.i is conceptually modelled in Jss.t.cK if there exists mdl.t.q.c such that ss.t.c =

ss.t.cJmdl.t.q.cK, and mdl.t.q.c is a conceptual query model in Jss.t.iK. The set [image rpr.s] is called

an ontology in Jss.t.i,mdl.t.q.cK.

3.6. Extensions

A system ss.t.i.1 is an extension of ss.t.i.2 if ss.qJss.t.i.1K is an extension of ss.qJss.t.i.2K, and

stJss.t.i.1K ⊆ stJss.t.i.2K for each st ∈ {trn.rlt.ex, trn.rlt.en}.

A system ss.t.c.1 is an extension of ss.t.c.2 if ss.c.cJss.t.c.1K is an extension of ss.c.cJss.t.c.2K,

stJss.t.c.1K ⊆ stJss.t.c.2K for each st ∈ {trn.rlt.ex.s, rl.s, trn.rlt.en.s}, and the following property hold:

• if nm.1 ≺Jord.trn.exJss.t.c.1KK nm.2, and nm.1, nm.2 ∈ ord.trn.exJss.t.c.2K, then

nm.1 ≺Jord.trn.exJss.t.c.2KK nm.2;

• if nm.1 ≺Jord.trn.enJss.t.c.1KK nm.2, and nm.1, nm.2 ∈ ord.trn.enJss.t.c.2K, then

nm.1 ≺Jord.trn.enJss.t.c.2KK nm.2.

A CCS ln is a language of CTSs if the conceptual structures (atoms, elements, conceptuals

and so on) of ln is syntactically defined.

3.7. Programs

System Informatics (Системная информатика), No. 8 (2016) 65

A program prg is executed in JtrnK if prg is a program in Jcnf.1JtrnKK, and cnf.1JtrnK →

cnf.2JtrnK. A program prg executes (initiates) trn if prg is executed in JtrnK.

An element vl is a value in Jprg, trnK if prg executes JtrnK, and vl is a value in JtrnK. A program

prg returns vl in JtrnK if vl is a value in Jprg, trnK. A program prg returns vl in JcnfK if there

exists trn such that prg returns vl in JtrnK, and cnf = cnf.1JtrnK.

A program prg returns (or generates) an exception exc in JtrnK if exc is a value in Jprg, trnK.

A program prg is normally executed in JtrnK if prg is executed in JtrnK, and trn is normally

executed.

An element el is executed in JtrnK if there exist prg such that prg is executed in JtrnK, and

el = [prg . 1]. An element el executes (initiates) trn if el is executed in JtrnK.

An element vl is a value in Jel, trnK if el is executed in JtrnK, and vl is a value in JtrnK. An

element vl returns vl in JtrnK if vl is a value in Jvl, trnK. An element vl returns vl in JcnfK if there

exists trn such that vl returns vl in JtrnK, and cnf = cnf.1JtrnK.

An element el returns (or generates) an exception exc in JtrnK if exc is a value in Jel, trnK. An

element el is normally executed in JtrnK if el is executed in JtrnK, and trn is normally executed.

3.8. Safe configurations, transitions, programs and elements

A configuration cnf is locally safe if vlJcnfK 6= und.

A transition trn is safe if cnf.1JtrnK and cnf.2JtrnK are locally safe.

A configuration cnf is safe if there is no cnf.1 such that cnf →∗ cnf.1 and cnf.1 is not locally

safe.

A program prg is safe in JcnfK if prg is a program in JcnfK, and cnf is safe. A program prg is

safe if prg is safe in JcnfK for each cnf .

An element el is safe in JcnfK if el = [prgJcnfK . 1], and prg is safe in JcnfK. An element el is

safe if el is safe in JcnfK for each cnf .

4. The CTSL language

The CTSL language (Conceptual Transition System Language) is a basic language of CTSs.

The CCSL language is a sublanguage of CTSL. Interpretable and executable elements of CTSL

are called basic elements of CTSs.

Let sb ⊆ (x : x0, y : y0, z : z0, u : u0, v : v0, w : w0, x1 : x1.0, ..., xnt : xnt.0, conf :: in :

cnf , val :: in : vlJcnfK).

66 Anureev I.S. Formalisms for conceptual design of information systems

4.1. Syntax of CCSL

CTSL is an extension of CCSL. Therefore, atoms, elements, conceptual states, conceptual

configurations, pattern specifications and element definitions are represented in CTSL as in

CCSL.

The element (rule pt var (vr.∗) seq (vr.s.∗) then bd) :: name :: nm in CCSL represents the

transition rule (pt, (vr.∗), (vr.s.∗), bd) with the name nm.

For simplicity, we omit the names of atomic transition relations and transition rules.

4.2. The special forms for atomic exogenous transition relations,

transition rules and atomic endogenous transition relations

In this section we define the special forms for atomic exogenous transition relations, transi-

tion rules and atomic endogenous transition relations used below.

The form (transition pt var (vr.∗) seq (vr.s.∗) then fn) :: name :: nm denotes the atomic

exogenous transition relation (pt, (vr.∗), (vr.s.∗), fn) with the name nm.

The objects var (vr.∗) and seq (vr.s.∗) in the form (transition ...) can be omitted. The

omitted objects correspond to var () and seq (), respectively.

The form (endogenous−transition fn) :: name :: nm denotes the atomic endogenous tran-

sition relation fn with the name nm.

Let {vr.∗}, {vr.s.∗}, {vr.∗.1} and {vr.∗.2} are pairwise disjoint, {vr.∗.3} ⊆ {vr.∗}∪{vr.∗.1}∪{vr.∗.2},

and (el.∗) ∈ {(), und, abn}. The form (rule pt var (vr.∗) seq (vr.s.∗) abn (vr.∗.1) und (vr.∗.2) val

(vr.∗.3) el.∗ where cnd then bd) called a rule form is defined as follows:

• (rule pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) val (vr.∗.3) el.∗ where cnd then bd) is a

shortcut for (rule pt var (vr.∗) seq (vr.s.∗) abn (vr.∗.1) und (vr.∗.2) val (vr.∗.3) el.∗ then (if cnd

then bd else und));

• (rule pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) val (vr.∗.3, vr) el.∗ then bd) is a shortcut

for (rule pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) val (vr.∗.3) el.∗ then (let w be vr in

[subst (vr :: ∗ : w) bd])), where w is a new element that does not occur in this definition;

• (rule pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) val () el.∗ then bd) is a shortcut for

(rule pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) el.∗ then bd);

• (rule pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1, vr) abn (vr.∗.2) el.∗ then bd) is a shortcut for

(rule pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) el.∗ then (if (vr is undefined) then

und else bd));

System Informatics (Системная информатика), No. 8 (2016) 67

• (rule pt var (vr.∗) seq (vr.s.∗) und () abn (vr.∗.2) el.∗ then bd) is a shortcut for (rule pt var

(vr.∗) seq (vr.s.∗) abn (vr.∗.2) el.∗ then bd);

• (rule pt var (vr.∗) seq (vr.s.∗) abn (vr.∗.2, vr) el.∗ then bd) is a shortcut for (rule pt var (vr.∗)

seq (vr.s.∗) abn (vr.∗.2) el.∗ then (if (vr is abnormal) then vr else bd));

• (rule pt var (vr.∗) seq (vr.s.∗) abn () el.∗ then bd) is a shortcut for (rule pt var (vr.∗) seq

(vr.s.∗) el.∗ then bd);

• (rule pt var (vr.∗) seq (vr.s.∗) und then bd) is a shortcut for (rule pt var (vr.∗) seq (vr.s.∗)

then (if (val :: in is undefined) then skip else bd);

• (rule pt var (vr.∗) seq (vr.s.∗) abn then bd) is a shortcut for (rule pt var (vr.∗) seq (vr.s.∗)

then (if (val :: in is abnormal) then skip else bd).

The element cnd specifies the restriction on the values of the pattern variables. The undefined

value is propagated through the variables of vr.∗.1. Abnormal values are propagated through

the variables of vr.∗.2. The sequence el.∗ specifies propagation of abnormal values depending on

the value of val :: in. The undefined value is propagated when el.∗ = und. Abnormal values

are propagated when el.∗ = abn. The special element vr :: ∗ references to the value of element

associated with the pattern variable vr. A pattern variable is evaluated if the element associated

with it is evaluated. Thus, the sequence vr.∗.3 contains evaluated pattern variables. A pattern

variable is quoted if the element associated with it is not evaluated. Let Frm.r be a set of rule

forms.

The objects var (vr.∗), seq (vr.s.∗), und (vr.∗.1), abn (vr.∗.2), val (vr.∗.3) and where cnd in the

form (rule ...) can be omitted. The omitted objects correspond to var (), seq (), und (), abn (),

val () and where true, respectively.

5. Semantics of executable elements in CTSL

5.1. Element interpretation

The element x :: value returning the interpretation of x is defined by the rule

(rule x :: value var (x) abn then x :: value :: atm);

(transition x :: value :: atm var (x) then fn),

where x0 :: value :: atm el.∗ # cnf →fn,sb el.∗ # [value x0 cnf] # cnf .

5.2. Abnormal elements operations

The element und is defined by the rule

68 Anureev I.S. Formalisms for conceptual design of information systems

(rule und abn then und :: q).

The element exc is defined by the rule

(rule x var (x) abn where (x is exception) then x :: q) :: name :: (”@”, exception).

The rule satisfies the property: nm ≺Jord.trn.exK (”@”, exception) for each nm such that nm is

a name of an atomic exogenous transition relation or transition rule with the pattern distinct

from vr, where vr is a variable of this pattern.

The element el :: q is defined by the rule

(rule x :: q var (x) abn then x :: q :: value).

The element el of the form (catch :: u x y) called an undefined value handler is defined as

follows:

(transition (catch :: u x y) var (x) seq (y) then fn),

where (catch :: u x0 y0), el.∗ # vl # cnf →fn,sb [subst (x0 : vl) y0], el.∗ # true # cnf . The

elements x and y are called a variable and body in JelK. The element el replaces all occurences

of x in y by the current value, resets the current value to true and executes the modified body.

The element el of the form (catch x y) called an exception handler is defined as follows:

(rule (catch x y) var (x) seq (y) und then (catch :: u x y)).

The elements x and y are called a variable and body in JelK.

The element el of the form (throw x) is defined by the rule

(rule (throw x) var (x) val (x) abn then (throw x :: ∗) :: atm);

(transition (throw x) :: atm var (x) then fn),

where (throw x0) :: atm, el.∗ # cnf →fn,sb el.∗ # x0 # cnf . The element x is called a body in

JelK.

The deletion (delete−exception x) of the exception of the type x is defined by the rule

(rule (delete−exception x) var (x) und then (catch w

(if ((w is exception) and (((element in w) .. type) = x :: q))

then (throw true) else (throw w :: q)))).

5.3. Statements

The element skip is defined as follows:

(rule skip abn then skip :: atm);

(transition skip :: atm then fn),

where skip :: atm, el.∗ # cnf →fn,sb el.∗ # cnf .

System Informatics (Системная информатика), No. 8 (2016) 69

The sequential composition el of the form (seq el.∗) is defined by the rule

(rule (seq x) var (x) seq (x) then x)

The elements of el.∗ are called elements in JelK and el.∗ is called a body in JelK. The element el

executes its elements sequentially from left to right.

The conditional element (if x then y else z) is defined as follows:

(rule (if x then y else z) var (x) seq (y, z) val (x) abn

then (if x :: ∗ then y else z) :: atm);

(transition (if x then y else z) :: atm var (x) seq (y, z) then fn),

where (if x0 then y0 else z0) :: atm, el.∗ # cnf →fn,sb [if [x0 6= und] then y0 else z0], el.∗ # cnf .

The element (if x then y) is a shortcut for (if x then y else skip).

The conditional element (if x then y elseif z then u ... else v) is defined as follows:

(definition (if x then y elseif z) var (x) seq (y, z) abn

then (if x then y else (if z))).

The element el of the form (let x be y in z) is defined as follows:

(rule (let x be y in z) var (x) seq (y, z) abn then (let x be y in z) :: atm);

(transition (let x be y in z) :: atm var (x) seq (y, z) then fn),

where (let x0 be y0 in z0) :: atm, el.∗ # cnf →fn,sb y0, (let x0 be−val−in z0), el.∗ # cnf . The

elements x, y and z are called a substitution variable, substitution value and substitution body

in JelK.

The auxiliary element (let x be−val−in y) is defined as follows:

(transition (let x be−val−in y) var (x) seq (y) abn then fn),

where (let x0 be−val−in y0), el.∗ # vl # cnf →fn,sb [subst (x0 : vl) y0], el.∗ # cnf .

The element el of the form (let :: seq x be y in z), where x ∈ El.(∗), y ∈ El.(∗), and

[len x] = [len y], is defined by the rule

(rule (let :: seq x, y be (z), u in v) var (x) seq (y, z, u, v) abn

then (let x be z in (let :: seq y be u in v)));

(rule (let :: seq be in v) seq (v) abn then v).

The elements x, y and z are called a substitution variables specification, substitution values

specification and substitution body in JelK. The elements of x and y are called substitution

variables and substitution values in JelK.

The iterator el of the form (while x do y) is defined by the rule

(if (while x do y) var (x) seq (y) abn then (if x then y (while x do y))).

70 Anureev I.S. Formalisms for conceptual design of information systems

The elements x and y are called a condition and body in JelK.

The iterator el of the form (foreach x in y do z) is defined as follows:

(rule (foreach x in y do z) var (x, y) seq (z) val (y) abn where (y :: ∗ is sequence)

then (foreach1 x in y :: ∗ do z)).

The objects x, y and z are called an iteration variable, iteration structure specifier and body

in JelK. The element el executes sequentially z for values of x from el.1, where el.1 is the value

of y.

The element (foreach1 x in y do z) is defined by the rules

(rule (foreach1 x in () do y) var (x) seq (y) abn then);

(rule (foreach1 x in (y z) do v) var (x, y) seq (z, v) abn

then (let x be y in v), (foreach1 x in (z) do v)).

5.4. Characteristic functions for defined concepts

An object df.c is a concept definition if df.c is an atomic transition relation of the form

(transition nm if (el.1 is el.2) var (vr.∗) seq (vr.s.∗) then fn), or df.c is a transition rule of the

form (rule nm if (el.1 is el.2) var (vr.∗) seq (vr.s.∗) then bd). Concept definitions specify concepts

and their instances. Concepts specified by them are called defined concepts. The elements el.1

and el.2 are called an instance pattern and concept pattern in Jdf.cK. The element (el.1 is el.2)

is called a characteristic function in Jdf.cK. Let Df.c be a set of concept definitions.

An element cncp.d is a defined concept in Jdf.c, sbK if cncp is an instance in J(el.2, var (vr.∗) seq

(vr.s.∗)),mt, sbK. An element cncp.d is a defined concept in Jdf.cK if there exists sb such that cncp.d

is a concept in Jdf.c, sbK. An element cncp.d is a defined concept in JcnfK if there exists df.cJcnfK

such that cncp.d is a concept in Jdf.cK. Let Cncp.d be a set of defined concepts.

An element instn is an instance in Jdf.c, sbK if instn is an instance in J(el.1, var (vr.∗) seq (vr.s.∗)),

mt, sbK. An element instn is an instance in Jdf.cK if there exists sb such that cncp.d is an instance

in Jdf.c, sbK.

An element instn is an instance in Jcncp.d, cnf , df.cK if instn is an instance in Jdf.cK, cncp.d is a

defined concept in Jdf.cK, and there exist cnf.1 and vl such that (execute−exogenous−transition,

(instn is cncp.d), (nm)) # cnf →∗ # vl # cnf.1, and vl 6= und. An element instn is an instance

in Jcncp.d, cnfK if there exists df.c such that instn is an instance in Jcncp.d, cnf , df.cK. An element

cncp.d is an instance in JcnfK if there exists cncp.d such that instn is an instance in Jcncp.d, cnfK.

Let Instn be a set of instances.

System Informatics (Системная информатика), No. 8 (2016) 71

A set st is called a content in Jcncp.d, cnfK if st is a set of all instn such that instn is an instance

in Jcncp.d, cnfK. Let [content cncp.d cnf] denote the content in Jcncp.d, cnfK.

The notion of defined concepts is extended to the rules of the form (rule (el.1 is el.2) var (vr.∗)

seq (vr.s.∗) und (vr.∗.1) val (vr.∗.3) where cnd then bd). Let rl have this form. An element cncp.d

is a defined concept in Jrl, sbK if cncp.d is a defined concept in Jrl.1, sbK, where rl.1 is a rule of the

form (rule (el.1 is el.2) var (vr.∗) seq (vr.s.∗) then bd.1) such that rl is reduced to rl.1.

The element (x is atom) specifying that x is an atom is defined by the rule

(rule (x is atom) var (x) abn then (x is atom) :: value).

The element (x is update) specifying that x is an element update is defined by the rule

(rule (x is update) var (x) abn then (x is update) :: value).

The element (x is multi−attribute) specifying that x is a multi-attribute element is defined

by the rule

(rule (x is multi−attribute) var (x) abn then (x is multi−attribute) :: value).

The element (x is attribute) specifying that x is an attribute element is defined by the rule

(rule (x is attribute) var (x) abn then (x is attribute) :: value).

The element (x is sorted) specifying that x is a sorted element is defined by the rule

(rule (x is sorted) var (x) abn then (x is sorted) :: value).

The element (x is undefined) specifying that x equals und is defined by the rule

(rule (x is undefined) var (x) abn then (x is undefined) :: value).

The element (x is defined) specifying that x does not equal und is defined by the rule

(rule (x is defined) var (x) abn then (x is defined) :: value).

The element (x is exception) specifying that x is an exception is defined by the rule

(rule (x is exception) var (x) abn then (x is exception) :: value).

The element (x is normal) specifying that x is a normal element is defined by the rule

(rule (x is normal) var (x) abn then (x is normal) :: value.

The element (x is normal) specifying that x is an abnormal element is defined by the rule

(rule (x is abnormal) var (x) abn then (x is abnormal) :: value.

The element (x is sequence) specifying that x is a sequence element is defined by the rule

(rule (x is sequence) var (x) abn then (x is sequence) :: value).

The element (x is set) specifying that the elements of the sequence element x are pairwise

distinct is defined as follows:

(rule (x is set) var (x) abn then (x is set) :: value).

72 Anureev I.S. Formalisms for conceptual design of information systems

The element (x is empty) specifying that x is an empty element is defined by the rule

(rule (x is empty) var (x) abn then (x is empty) :: value).

The element (x is nonempty) specifying that x is not an empty element is defined by the

rule

(rule (x is nonempty) var (x) abn then (x is nonempty) :: value).

The element (x is conceptual) specifying that x is a conceptual is defined by the rule

(rule (x is conceptual) var (x) abn then (x is conceptual) :: value).

The element (x is (conceptual in y)) specifying that x is a conceptual in the context of the

state y is defined by the rule

(rule (x is (conceptual in y)) var (x, y) abn then (x is (conceptual in y)) :: value.

The element (x is state) specifying that x is a conceptual state is defined by the rule

(rule (x is state) var (x) abn then (x is state) :: value).

The element (x is configuration) specifying that x is a conceptual configuration is defined

by the rule

(rule (x is configuration) var (x) abn then (x is configuration) :: value).

The element (x is nat) specifying that x is a natural number is defined by the rule

(rule (x is nat) var (x) abn then (x is nat) :: value).

The element (x is nat0) specifying that x is either a natural number, or a zero is defined by

the rule

(rule (x is nat0) var (x) abn then (x is nat0) :: value).

The element (x is int) specifying that x is an integer is defined by the rule

(rule (x is int) var (x) abn then (x is int) :: value).

The element (x is (satisfiable in y)) specifying that x is satisfiable in the context of variables

y is defined by the rule

(rule (x is (satisfiable in y)) var (x) seq (y) abn

then (x is (satisfiable in (y))) :: value).

The element (x is (valid in y)) specifying that x is valid in the context of variables y is

defined by the rule

(rule (x is (valid in y)) var (x) seq (y) abn then (x is (valid in (y))) :: value).

The element (x is (sequence y)) specifying that x is a sequence element such that the value

in J(el is y)K does not equal und for each element el of x is defined by the rule

(rule ((x y) is (sequence z)) var (x, z) seq (y) abn

System Informatics (Системная информатика), No. 8 (2016) 73

then ((x is z) and ((y) is (sequence z)));

(rule (() is (sequence x)) var (x) abn then true).

The element (x is rule) specifying that x is a rule is defined as follows:

(rule (x is rule) var (x) abn then (x is rule) :: value);

(interpretation (x is rule) var (x) then fn),

where [fn sb] = [if [x0 ∈ Rl] then true else und].

The element (x is (rule in y)) specifying that x is a rule in the context of the state y is

defined as follows:

(rule (x is (rule in y)) var (x, y) abn then (x is (rule in y)) :: value);

(definition (x is (rule in y)) var (x, y) where ((x is rule) and (y is state))

then (x is conceptual in y) :: atm);

(interpretation (x is (conceptual in y)) :: atm var (x, y) then fn),

where [fn sb] = [if [x0 ∈ RlJy0K] then true else und].

The element (x is transition) specifying that x is a transition is defined as follows:

(rule (x is transition) var (x) abn then (x is transition) :: value);

(interpretation (x is transition) var (x) then fn),

where [fn sb] = [if [x0 ∈ Trn] then true else und].

5.5. Elements operations

The element () is defined by the rule

(rule () abn then () :: q).

The element (len x) specifying the length of the element x is defined by the rule

(rule (len x) var (x) val (x) abn then (len x :: ∗ :: q) :: value).

The element (x = y) specifying the equality of the elements x and y is defined by the rule

(rule (x = y) var (x, y) val (x, y) abn then (x :: ∗ :: q = y :: ∗ :: q) :: value).

The element (x ! = y) specifying the inequality of the elements x and y is defined in the

similar way.

The element (x . y) specifying the y-th element of the sequence element x is defined by the

rule

(rule (x . y) var (x, y) val (x, y) abn then (x :: ∗ :: q . y :: ∗ :: q) :: value).

The element (x .. y) specifying the value of the attribute element x for the attribute y is

defined by the rule

74 Anureev I.S. Formalisms for conceptual design of information systems

(rule (x .. y) var (x, y) val (x) abn then (x :: ∗ :: q .. y) :: value).

The element (x + y) specifying the concatenation of the sequence elements x and y is

defined by the rule

(rule (x + y) var (x, y) val (x, y) abn then (x :: ∗ :: q + y :: ∗ :: q) :: value).

The element (x .+ y) specifying the addition of the element x to the head of the sequence

element y is defined by the rule

(rule (x .+ y) var (x, y) val (x, y) abn then (x :: ∗ :: q .+ y :: ∗ :: q) :: value).

The element (x .+ :: set y) specifying the addition of the element x to the head of the

sequence element y representing a set is defined as follows:

(rule (x .+ :: set y) var (x, y) val (x, y) abn where (y :: ∗ is set)

then (x :: ∗ :: q .+ :: set y :: ∗ :: q) :: value).

The element (x + . y) specifying the addition of the element y to the tail of the sequence

element x is defined by the rule

(rule (x + . y) var (x, y) val (x, y) abn then (x :: ∗ :: q + . y :: ∗ :: q) :: value).

The element (x + . :: set y) specifying the addition of the element y to the tail of the

sequence element x representing a set is defined by the rule

(rule (x + . :: set y) var (x, y) val (x, y) abn where (x :: ∗ is set)

then (x :: ∗ :: q + . :: set y :: ∗ :: q) :: abn).

The element (x − . :: set y) specifying the deletion of the element y from the sequence

element x representing a set is defined by the rule

(rule (x − . :: set y) var (x, y) val (x, y) abn where (x :: ∗ is set)

then (x :: ∗ :: q − . :: set y :: ∗ :: q) :: value).

The element (upd x y1 : z1, ..., ynt : znt) specifying the sequential updates of the attribute

element x at the points y1, ..., ynt by z1, ..., znt is defined by the rules

(rule (upd x y) var (x) seq (y) val (x) abn

where ((x :: ∗ is attribute) and ((y) is (sequence update))) then (upd :: att x :: ∗ y));

(rule (upd :: att x y z) var (y) seq (z) und (x) abn

then (upd :: att (upd1 :: att x y) z));

(rule (upd :: att x) var (x) then x);

(rule (upd1 :: att x y : z) var (x, y, z) val (z) abn

then (upd1 :: att x y : z :: ∗ :: q) :: value).

System Informatics (Системная информатика), No. 8 (2016) 75

The element (upd x y : z) specifying the update of the sequence element x at the index y

by z is defined by the rule

(rule (upd x y z) var (x, y, z) val (x, y, z) abn

then (upd :: seq x :: ∗ :: q y :: ∗ :: q z :: ∗ :: q) :: value).

The element (x in :: set y) specifying that x is an element of the sequence element y is

defined as follows:

(rule (x in :: set y) var (x, y) val (x, y) abn then (x in :: set y) :: value).

The element (x includes :: set y) specifying that the sequence element x includes the ele-

ments of the sequence element y is defined as follows:

(rule (x includes :: set y) var (x, y) val (x, y) abn then (x includes :: set y) :: value).

The element (attributes in x) specifying the sequence of attributes of the attribute element

x is defined by the rule

(rule (attributes in x) var (x) abn then (attributes in x) :: value).

The element (values in x) specifying the sequence of attribute values of the attribute element

x is defined by the rule

(rule (values in x) var (x) abn then (values in x) :: value).

The element (element in x) specifying the element of the sorted element x is defined by the

rule

(rule (element in x) var (x) abn then (element in x) :: value).

The element (sort in x) specifying the sort of the sorted element x is defined by the rule

(rule (sort in x) var (x) abn then (sort in x) :: value).

The element (attribute in x) specifying the attribute of the element update x is defined by

the rule

(rule (attribute in x) var (x) abn then (attribute in x) :: value).

The element (value in x) specifying the value of the element update x is defined by the rule

(rule (value in x) var (x) abn then (value in x) :: value).

The element (unbracket (x)) is defined by the rule

(rule (unbracket (x)) seq (x) abn then x).

5.6. Boolean operations

The element true is defined by the rule:

(rule true abn then true :: value).

76 Anureev I.S. Formalisms for conceptual design of information systems

The element (x and y) specifying the conjunction of x and y is defined by the rule:

(rule (x and y) var (x, y) abn then (if x then y else und)).

The elements (x op y), where op ∈ {or,=>,<=>} specifying the disjunction, implication

and equivalence of x and y are defined in the similar way.

The element (x1 and x2 and ... and xnt) specifying the conjunction of x1, x2, ..., xnt is defined

by the rule

(rule (x and y and z) var (x, y) seq (z) abn then ((x and y) and z).

The element (x1 or x2 or ... or xnt) specifying the disjunction of x1, x2, ..., xnt is defined in

the similar way.

The element (not x) specifying the negation of x is defined by the rule

(rule (not x) var (x) abn then (if x then und else true)).

5.7. Integers

The element int is defined by the rule

(rule x var (x) abn where (x is int) then x :: q) :: name :: (”@”, int).

The rule satisfies the property: (”@”, exception) ≺Jord.trn.exK (”@”, int).

The element (x + y) specifying the sum of x and y is defined by the rule

(rule (x + y) var (x, y) val (x, y) abn then (x :: ∗ :: q + y :: ∗ :: q) :: value).

The elements (x op y), where op ∈ {−, ∗, div,mod}, specifying the integer operations −, ∗,

div and mod, are defined in the similar way.

The element (x < y) specifying that x is less than y is defined by the rule

(rule (x < y) var (x, y) val (x, y) abn then (x :: ∗ :: q < y :: ∗ :: q) :: value).

The elements (x op y), where op ∈ {<=, >,>=}, specifying the integer relations ≤, > and

≥, are defined in the similar way.

5.8. Conceptuals operations

The element (x in y) specifying the value of the conceptual x in the state y is defined by

the rule

(rule (x in y) var (x, y) abn then (x in y) :: value).

The element x :: state :: y specifying the value of the conceptual x in the substate with the

name y of the current configuration is defined by the rule

(rule x :: state :: y var (x, y) abn then (x :: state :: y) :: value).

System Informatics (Системная информатика), No. 8 (2016) 77

The element cncpl is a shortcut for cncpl :: ().

The assignment (cncpl :: state :: nm ::= el) of el to cncpl :: state :: nm is defined as follows:

(rule (x :: state :: z ::= y) var (x, y, z) val (y) abn where (x is conceptual)

then (x :: state :: z ::= y :: ∗) :: atm);

(transition (x :: state :: z ::= y) :: atm var (x, y, z) then fn),

where (x0 :: state :: z0 ::= y0) :: atm, el.∗ # cnf →fn,sb el.∗ # [[cnf z0] x0 : y0].

The element (cncpl ::= el) is a shortcut for (cncpl :: () ::= el). The elements (cncpl :: state ::

nm ::=) and (cncpl ::=) are shortcuts for (cncpl :: state :: nm ::= und) and (cncpl ::= und).

5.9. Countable concepts operations

A normal element cncp.c is a countable concept in JcnfK if [[cnf countable−concept] (0 :

cncp.c)] ∈ Nt. Thus, the substate countable−concept specifies countable concepts. Let Cncp.c be

a set of countable concepts. The element [[cnf countable−concept] (0 : cncp.c)] is called an order

in Jcncp.c, cnfK. Let Ord.cncp.c be a set of orders of countable concepts. An element nt :: cc :: cncp.c

is called an instance in Jcncp.cK. An element nt :: cc :: cncp.c is an instance in Jcncp.c, cnfK if

nt ≤ ord.cncp.cJcncp.c, cnfK.

The element (x is countable−concept) specifying that x is a countable concept is defined as

follows:

(rule (x is countable−concept) var (x) abn then (x is countable−concept) :: value).

The element nt :: cc :: cncp.c is defined by the rule:

(rule x :: cc :: y var (x, y) abn then x :: cc :: y :: value).

Let cncpl denote (0 : x) :: countable−concept. The element (new x) called an instance

generator generates a new instance of the countable concept x and adds this concept if it was

not. It is defined as follows:

(rule (new x) var (x) abn then (new x) :: atm);

(transition (new x) :: atm var (x) then fn),

where (new x0) :: atm, el.∗ # cnf →fn,sb (let w be cncpl in (if (w is int) then (seq (cncpl ::=

(w + 1)), (let w1 be (w + 1) in w1 :: x :: cc)) else (seq (cncpl ::= 1), 1 :: x :: cc))), el.∗ # cnf .

5.10. Matching operations

The conditional pattern matching element el of the form (if x matches y var z seq u then v

else w), where (y, z, u) is a pattern specification, is defined as follows:

78 Anureev I.S. Formalisms for conceptual design of information systems

(rule (if x matches y var z seq u then v else w) var (x, y, z, u) seq (v, w) abn

where ((z is sequence) and (u is sequence) and (z includes :: set u))

then (if x matches y var z seq u then v else w) :: atm);

(transition (if x matches y var z seq u then v else w) :: atm

var (x, y, z, u, v, w) then fn),

where (if x0 matches y0 var z0 seq u0 then v0 else w0) :: atm, el.∗ # cnf →fn,sb [if [x0 is an

instance in J(y0, z0, u0),mt, sb.1K for some sb.1] then [subst sb.1 ∪ (conf :: in : cnf , val :: in :

vlJcnfK) v0] else [subst (conf :: in : cnf , val :: in : vlJcnfK) w0], el.∗ # cnf . The objects x, y,

z, u, v and w are called a matched element, pattern, variable specification, sequence variable

specification, then-branch and else-branch in JelK. The elements of z are called pattern variables

in JelK. The element el executes the instance of the then-branch v in Jsb.1K if x is an instance

in Jy, sb.1K. Otherwise, the element el executes the else-branch w.

Let {vr.∗}, {vr.s.∗}, {vr.∗.1} and {vr.∗.2} are pairwise disjoint, and {vr.∗.3} ⊆ {vr.∗} ∪ {vr.∗.1} ∪

{vr.∗.2}. The form (if el matches pt var (vr.∗) seq (vr.s.∗) abn (vr.∗.1) und (vr.∗.2) val (vr.∗.3) where

cnd then el.1 else el.2) is defined as follows:

• (if el matches pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) val (vr.∗.3) where cnd then el.1

else el.2) is a shortcut for (if el matches pt var (vr.∗) seq (vr.s.∗) abn (vr.∗.1) und (vr.∗.2) val

(vr.∗.3) then (if cnd then el.1 else el.2 :: (nosubstexcept conf :: in, val :: in)) else el.2);

• (if el matches pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) val (vr.∗.3, vr) then el.1 else

el.2) is a shortcut for (if el matches pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) val

(vr.∗.3) then (let w be vr in [subst (vr :: ∗ : w) el.1]) else el.2), where w is a new element

that does not occur in this definition;

• (if el matches pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) val () then el.1 else el.2) is

a shortcut for (if el matches pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) then el.1 else

el.2);

• (if el matches pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1, vr) abn (vr.∗.2) then bd) is a shortcut for

(if el matches pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) then (if (vr is undefined)

then und else el.1) else el.2);

• (if el matches pt var (vr.∗) seq (vr.s.∗) und () abn (vr.∗.2) then el.1 else el.2) is a shortcut

for (if el matches pt var (vr.∗) seq (vr.s.∗) abn (vr.∗.2) then el.1 else el.2);

• (if el matches pt var (vr.∗) seq (vr.s.∗) abn (vr.∗.2, vr) then el.1 else el.2) is a shortcut for

(if el matches pt var (vr.∗) seq (vr.s.∗) abn (vr.∗.2) then (if (vr is abnormal) then vr else

System Informatics (Системная информатика), No. 8 (2016) 79

el.1) else el.2);

• (if el matches pt var (vr.∗) seq (vr.s.∗) abn () then el.1 else el.2) is a shortcut for

(if el matches pt var (vr.∗) seq (vr.s.∗) then el.1 else el.2).

The element cnd specifies the restriction on the values of the pattern variables. The undefined

value is propagated through the variables of vr.∗.1. Abnormal values are propagated through

the variables of vr.∗.2. The special element vr :: ∗ references to the value of element associated

with the pattern variable vr. A pattern variable is evaluated if the element associated with it

is evaluated. Thus, the sequence vr.∗.3 contains evaluated pattern variables. A pattern variable

is quoted if the element associated with it is not evaluated.

The objects var (vr.∗), seq (vr.s.∗), und (vr.∗.1), abn (vr.∗.2), val (vr.∗.3), where cnd and else el.2

in this form can be omitted. The omitted objects correspond to var (), seq (), und (), abn (),

val (), where true and else skip, respectively.

The form (el matches pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) val (vr.∗.3) where cnd) is

a shortcut for (if el matches pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) val (vr.∗.3) where cnd

then true else und). The objects var (vr.∗), seq (vr.s.∗), und (vr.∗.1), abn (vr.∗.2), val (vr.∗.3) and

where cnd in this form can be omitted. The omitted objects correspond to var (), seq (), und (),

abn (), val () and where true, respectively.

5.11. Interpretations operations

The element (x is definition−form) specifying that x is a definition form is defined as

follows:

(rule (x is definition−form) var (x) abn then (x is definition−form) :: value);

(transition (x is definition−form) var (x) then fn),

where [fn sb] = [if [x0 ∈ Frm.d] then true else und].

The element frm.d :: name :: nm specifying a definition with the name nm is defined as

follows:

(rule x :: name :: y var (x, y) abn where (x is definition−form)

then x :: name :: y :: atm :: definition);

(transition x :: name :: y :: atm :: definition var (x, y) then fn),

where

• if y0 ∈ [support [cnf (0 : definitions) :: state :: interpretation]] ∪ [support intr.a.s], then

x0 :: name :: y0 :: atm :: definition, el.∗ # cnf →fn,sb el.∗ # und # cnf ;

80 Anureev I.S. Formalisms for conceptual design of information systems

• if y0 /∈ [support [cnf (0 : definitions) :: state :: interpretation]] ∪ [support intr.a.s],

and x0 is reduced to df , then x0 :: name :: y0 :: atm :: definition, el.∗ # cnf →fn,sb

el.∗ # [cnf interpretation.(0 : definitions).y0 : df].

The element (add−interpretation x) adding the interpretation with the name x is defined

as follows:

(rule (add−interpretation x) var (x) abn then (add−interpretation x) :: atm);

(transition (add−interpretation x) :: atm var (x) then fn),

where

• if x0 ∈ [support [cnf (0 : definitions) :: state :: interpretation]] ∪ [support intr.a.s], then

(add−interpretation x0) :: atm, el.∗ # cnf →fn,sb el.∗ # [cnf interpretation.(0 : order) :

[value [[cnf (0 : order) :: state :: interpretation] :: q + . :: set x0 :: q] cnf]];

• if x0 /∈ [support [cnf (0 : definitions) :: state :: interpretation]] ∪ [support intr.a.s], then

(add−interpretation x0) :: atm, el.∗ # cnf →fn,sb el.∗ # und # cnf .

The element (add−interpretation x after y) adding the interpretation with the name x

after the interpretation with the name y is defined as follows:

(rule (add−interpretation x after y) var (x, y) abn

then (add−interpretation x after y) :: atm);

(transition (add−interpretation x after y) :: atm var (x, y) then fn),

where

• if x0 ∈ [support [cnf (0 : definitions) :: state :: interpretation]] ∪ [support intr.a.s], and

y0 /∈ [cnf (0 : order) :: state :: interpretation] :: q − . :: set x0], then (add−interpretation

x0) :: atm, el.∗ # cnf →fn,sb el.∗ # und # cnf ;

• if x0 ∈ [support [cnf (0 : definitions) :: state :: interpretation]] ∪ [support intr.a.s], and

[value [cnf (0 : order) :: state :: interpretation] :: q − . :: set x0] = nm.∗.1 y0 nm.∗.2, then

(add−interpretation x0) :: atm, el.∗ # cnf →fn,sb el.∗ # [cnf interpretation.(0 : order) :

nm.∗.1 y0 x0 nm.∗.2];

• if x0 /∈ [support [cnf (0 : definitions) :: state :: interpretation]] ∪ [support intr.a.s], then

(add−interpretation x0) :: atm, el.∗ # cnf →fn,sb el.∗ # und # cnf .

The element (delete−interpretation x) deleting the interpretation with the name x is defined

as follows:

(rule (delete−interpretation x) var (x) abn then (delete−interpretation x) :: atm);

(transition (delete−interpretation x) :: atm var (x) then fn),

System Informatics (Системная информатика), No. 8 (2016) 81

where

• if x0 ∈ [support [cnf (0 : definitions) :: state :: interpretation]] ∪ [support intr.a.s],

then (delete−interpretation x0) :: atm, el.∗ # cnf →fn,sb el.∗ # [cnf interpretation.(0 :

order) : [value [cnf (0 : order) :: state :: transition] :: q − . :: set x0 :: q cnf]];

• if x0 /∈ [support [cnf (0 : definitions) :: state :: interpretation]] ∪ [support intr.a.s], then

(delete−interpretation x0) :: atm, el.∗ # cnf →fn,sb el.∗ # und # cnf .

5.12. Configurations operations

The element conf :: cur specifying the current configuration is defined as follows:

(rule conf :: cur abn then conf :: cur :: value).

The element val :: cur specifying the value in the current configuration is defined as follows:

(rule val :: cur abn then val :: cur :: value);

(definition val :: cur then val :: cur :: value);

(interpretation val :: cur then fn),

where [fn sb] = vlJcnfK.

5.13. Transitions operations

The element (x is rule−form) specifying that x is a rule form is defined as follows:

(rule (x is rule−form) var (x) abn then (x is rule−form) :: value);

(transition (x is rule−form) var (x) then fn),

where [fn sb] = [if [x0 ∈ Frm.r] then true else und].

The element frm.r :: name :: nm specifying a rule with the name nm is defined as follows:

(rule x :: name :: y var (x, y) abn where (x is rule−form)

then x :: name :: y :: atm :: rule);

(transition x :: name :: y :: atm :: rule var (x, y) then fn),

where

• if y0 ∈ [support [cnf (0 : rules) :: state :: transition]] ∪ [support trn.rlt.ex.s] ∪ [support

trn.rlt.en.s], then x0 :: name :: y0 :: atm :: rule, el.∗ # cnf →fn,sb el.∗ # und # cnf ;

• if y0 /∈ [support [cnf (0 : rules) :: state :: transition]] ∪ [support trn.rlt.ex.s] ∪ [support

trn.rlt.en.s], and x0 is reduced to rl, then x0 :: name :: y0 :: atm :: rule, el.∗ # cnf →fn,sb

el.∗ # [cnf transition.(0 : rules).y0 : rl].

The element (add−transition x) adding the transition with the name x is defined as follows:

82 Anureev I.S. Formalisms for conceptual design of information systems

(rule (add−transition x) var (x) abn then (add−transition x) :: atm);

(transition (add−transition x) :: atm var (x) then fn),

where

• if x0 ∈ [support [cnf (0 : rules) :: state :: transition]] ∪ [support trn.rlt.ex.s], then

(add−transition x0) :: atm, el.∗ # cnf →fn,sb el.∗ # [cnf transition.(−1 : exogenous, 0 :

order) : [value [[cnf (−1 : exogenous, 0 : order) :: state :: transition] :: q + . :: set x0 ::

q] cnf]];

• if x0 ∈ [support trn.rlt.en.s], then (add−transition x0) :: atm, el.∗ # cnf →fn,sb el.∗ # [cnf

transition.(−1 : endogenous, 0 : order) : [value [[cnf (−1 : endogenous, 0 : order) ::

state :: transition] :: q + . :: set x0 :: q] cnf]];

• if x0 /∈ [support [cnf (0 : rules) :: state :: transition]] ∪ [support trn.rlt.ex.s] ∪ [support

trn.rlt.en.s], then (add−transition x0) :: atm, el.∗ # cnf →fn,sb el.∗ # und # cnf .

The element (add−transition x after y) adding the transition with the name x after the

transition with the name y is defined as follows:

(rule (add−transition x after y) var (x, y) abn

then (add−transition x after y) :: atm);

(transition (add−transition x after y) :: atm var (x, y) then fn),

where

• if x0 ∈ [support [cnf (0 : rules) :: state :: transition]] ∪ [support trn.rlt.ex.s], and y0 /∈

[cnf (−1 : exogenous, 0 : order) :: state :: transition] :: q − . :: set x0], then (add−

transition x0) :: atm, el.∗ # cnf →fn,sb el.∗ # und # cnf ;

• if x0 ∈ [support [cnf (0 : rules) :: state :: transition]]∪ [support trn.rlt.ex.s], and [value [cnf

(−1 : exogenous, 0 : order) :: state :: transition] :: q − . :: set x0] = nm.∗.1 y0 nm.∗.2, then

(add−transition x0) :: atm, el.∗ # cnf →fn,sb el.∗ # [cnf transition.(−1 : exogenous, 0 :

order) : nm.∗.1 y0 x0 nm.∗.2];

• if x0 ∈ [support trn.rlt.en.s], and y0 /∈ [cnf (−1 : endogenous, 0 : order) :: state ::

transition] :: q − . :: set x0], then (add−transition x0) :: atm, el.∗ # cnf →fn,sb

el.∗ # und # cnf ;

• if x0 ∈ [support trn.rlt.en.s], and [value [cnf (−1 : endogenous, 0 : order) :: state ::

transition] :: q −. :: set x0] = nm.∗.1 y0 nm.∗.2, then (add−transition x0) :: atm, el.∗ # cnf

→fn,sb el.∗ # [cnf transition.(−1 : endogenous, 0 : order) : nm.∗.1 y0 x0 nm.∗.2];

• if x0 /∈ [support [cnf (0 : rules) :: state :: transition]] ∪ [support trn.rlt.ex.s] ∪ [support

System Informatics (Системная информатика), No. 8 (2016) 83

trn.rlt.en.s], then (add−transition x0) :: atm, el.∗ # cnf →fn,sb el.∗ # und # cnf .

The element (delete−transition x) deleting the transition with the name x is defined as

follows:

(rule (delete−transition x) var (x) abn then (delete−transition x) :: atm);

(transition (delete−transition x) :: atm var (x) then fn),

where

• if x0 ∈ [support [cnf (0 : rules) :: state :: transition]] ∪ [support trn.rlt.ex.s], then

(delete−transition x0) :: atm, el.∗ # cnf →fn,sb el.∗ # [cnf transition.(−1 : exogenous, 0 :

order) : [value [cnf (−1 : exogenous, 0 : order) :: state :: transition] :: q − . :: set x0 ::

q cnf]];

• if x0 ∈ [support trn.rlt.en.s], then (delete−transition x0) :: atm, el.∗ # cnf →fn,sb el.∗ # [cnf

transition.(−1 : endogenous, 0 : order) : [value [cnf (−1 : endogenous, 0 : order) ::

state :: transition] :: q − . :: set x0 :: q cnf]];

• if x0 /∈ [support [cnf (0 : rules) :: state :: transition]] ∪ [support trn.rlt.ex.s] ∪ [support

trn.rlt.en.s], then (delete−transition x0) :: atm, el.∗ # cnf →fn,sb el.∗ # und # cnf .

The element el of the form (modify x) or (modify :: n x) is defined as follows:

(rule (modify x) var (x) then (modify x) :: atm);

(rule (modify :: n x) var (x) abn then (modify x) :: atm);

(transition (modify x) :: atm var (x) then fn),

where (modify x0) :: atm, el.∗ # vl # cnf →fn,sb el.∗ # [if [there exists cnf.1 such that [value

[subst (conf :: in : cnf , val :: in : vlJcnfK, conf :: out : cnf.1, val :: out : vlJcnf.1K) x0] cnf] 6=

und] then vl # cnf.1 else und # cnf]. The element x is called a transition condition in JelK. It

specifies the set of configurations reachable from cnf for one transition. The elements conf :: in

and conf :: out reference to the input state and the output state, and the elements val :: in

and val :: out reference to values in these states.

⊕
The execution of the element (modify (((−1 : value, 0 : x, 1 : variable) inconf :: out) =

0)) initiates the transition to a state in which the value of the variable x equals to 0.⊕
The execution of the element (modify (((−1 : value, 0 : x, 1 : variable) = ”green”) and

(((−1 : value, 0 : x, 1 : variable) in conf :: out) = ”red”))) initiates the transition

from a state in which the value of the variable x equals to "green" to a state in which the

variable x equals to "red".

84 Anureev I.S. Formalisms for conceptual design of information systems

The element el of the form (modify−exist (x) y) or (modify−exist :: n (x) y) is defined as

follows:

(rule (modify−exist (x) y) var (y) seq (x) then (modify−exist (x) y) :: atm);

(rule (modify−exist :: n (x) y) var (y) seq (x) abn then (modify−exist (x) y) :: atm);

(transition (modify−exist (x) y) :: atm var (y) seq (x) then fn),

where (modify−exist (x0) y0) :: atm, el.∗ # vl # cnf →fn,sb el.∗ # [if [there exists cnf.1 such

that [[subst (conf :: in : cnf , val :: in : vlJcnfK, conf :: out : cnf.1, val :: out : vlJcnf.1K) y0] is

satisfiable in ((x0), cnf)] then vl # cnf.1 else und # cnf]. The element y is called a transition

condition in JelK. The elements of x are called existential variables in JelK.

5.14. Safety operations

The element el of the form (assert x) or (assert :: n x) is defined as follows:

(rule (assert x) var (x) then (assert x) :: atm);

(rule (assert x :: n) var (x) abn then (assert x) :: atm);

(transition (assert x) :: atm var (x) then fn),

where (assert x0) :: atm, el.∗ # vl # cnf →fn,sb el.∗ # [if [[value [subst (conf :: incnf , val :: in :

vl) x0] cnf] 6= und] then vl else und] # cnf . The element x is called a safety condition in JelK.

5.15. Branching operations

The element el of the form (branching x) is defined as follows:

(rule (branching x) seq (x) abn then (branching x) :: atm);

(transition (branching x) :: atm var (x) then fn),

where (branching x0) :: atm, el.∗ # vl # cnf →fn,sb # (type : assume) :: exc # [cnf branching.

(0 : ()) : [((x0), cnf , (el.∗)) . + [[cnf branching] (0 : ())]]]. The elements of x are called

branches in JelK. The element el generates the branchpoint with the branches x. The exception

(type : assume) :: exc specifies the failure of the execution of the current branch. The substate

branching contains information about branching. The conceptual (0 : ()) :: state :: branching

specifies the current sequence of branchpoints.

The endogenous transition relation specifying branching is defined as follows:

(endogenous−transition fn) :: name :: branching

where

• if [[cnf branching] (0 : ())] = (((el.∗.1, el, el.∗.2), cnf.1, (el.∗.3)), el.∗), then # (type :

System Informatics (Системная информатика), No. 8 (2016) 85

assume) :: exc # cnf →branching el.∗.3 # [cnf.1 branching.(0 : ()) : (((el.∗.1, el.∗.2), cnf.1,

(el.∗.3)), el.∗)];

• if [[cnf branching] (0 : ())] = (((), cnf.1, (el.∗.3)), el.∗), then # (type : assume) ::

exc # cnf →branching # (type : assume) :: exc # [cnf.1 branching.(0 : ()) : (el.∗)].

The element el of the form (assume x) or (assume :: n x) is defined as follows:

(rule (assume x) var (x) then (assume x) :: atm);

(rule (assume :: n x) var (x) abn then (assume x) :: atm);

(transition (assume x) :: atm var (x) then fn),

where (assume x0) :: atm, el.∗ # vl # cnf →fn,sb [if [[value [subst (conf :: in : cnf , val :: in :

vlJcnfK) x0] cnf] 6= und] then el.∗ # vl else # (type : assume) :: exc] # cnf . The element x

is called a continuation condition in JelK. The violation of this condition initiates the failure of

the execution of the current branch.

The element el of the form (assume−exist (x) y) or (assume−exist :: n (x) y) is defined as

follows:

(rule (assume−exist (x) y) var (y) seq (x) then (assume−exist x) :: atm);

(rule (assume−exist :: n (x) y) var (y) seq (x) abn then (assume−exist x) :: atm);

(transition (assume−exist (x) y) :: atm var (y) seq (x) then fn),

where (assume (x0) y0) :: atm, el.∗ # vl # cnf →fn,sb [if [[subst (conf :: in : cnf , val :: in :

vlJcnfK) y0] is satisfiable in J(x0), cnfK] then el.∗ # vl else # (type : assume) :: exc] # cnf . The

element y is called a continuation condition in JelK. The elements of x are called existential

variables in JelK.

6. Justification of requirements for conceptual transition systems

In this section, we establish that CTSs meet the additional requirements stated in section 1:

8. The formalism must have language support. The language associated with the formalism

must define syntactic representations of models of states, state objects, queries, query

objects, answers and answer objects and includes the set of predefined basic query models.

The CTSL language associated with CTSs defines syntactic representations of models of

states, state objects, queries, query objects, answers and answer objects and includes the

set of predefined basic query models.

9. It must model the change of the conceptual structure of states and state objects of the ITS.

The change of the conceptual structure of the ITS is described by the transition relation

86 Anureev I.S. Formalisms for conceptual design of information systems

on conceptual configurations specifying conceptual structures of the ITS with different

sets of ontological elements.

10. It must model the change of the content of the conceptual structure. The change of the

content of the conceptual structure of the ITS is described by the transition relation

on conceptual states specifying the same conceptual structure of the ITS. In fact, the

distinction between requirements 9 and 10 is relative, for conceptuals allow to define

classifications of ontological elements with different granularity.

11. It must model the transition relations of the ITS. The transition relations of the ITS are

modelled by the transition relation trn.rlt of the CTS.

12. The model of the exogenous transition relation must be extensible. The model of the

exogenous transition relation of the IQS is extended by addition of trnasition rules.

Thus, the additional requirements are met for CTSs.

7. Conclusion

In the paper two formalisms (ITSs and CTSs) for abstract unified modelling of the artifacts

of the conceptual design of information systems have been proposed by ontological elements

with arbitrary conceptual granularity. The basic definitions of the theory of CTSs have been

given. The language of CTSs has been defined.

We plan to use CTSs to design and prototype software systems as well as to specify opera-

tional and axiomatic semantics of programming languages. In the case of operational semantics

of a programming language, CTSs model an abstract machine of the language. In the case of ax-

iomatic semantics of a programming language, CTSs model a verification conditions generator

for programs in the language.

References

1. Sokolowski J., Banks C. Modeling and Simulation Fundamentals: Theoretical Underpinnings and

Practical Domains. Wiley, 2010.

2. Chen P. Entity-relationship modeling: historical events, future trends, and lessons learned //

Software pioneers. Springer-Verlag New York, 2002. P. 296-310.

3. Anureev I.S. Formalisms for conceptual design of closed information systems // System Informatics.

2016. N 7. P. 69-148.

4. Gurevich Y. Abstract state machines: An Overview of the Project // Foundations of Information

and Knowledge Systems. Lect. Notes Comput. Sci. 2004. Vol. 2942. P. 6-13.

System Informatics (Системная информатика), No. 8 (2016) 87

5. Gurevich Y. Evolving Algebras. Lipari Guide // Specification and Validation Methods. Oxford

University Press, 1995. P. 9-36.

88 Anureev I.S. Formalisms for conceptual design of information systems

