System Informatics (Cucremuas nadopmaruka), No. 14 (2019) 19

UDK 004.822, 681.51

Constructing Verification-Oriented

Domain-Specific Process Ontologies®

Natalia O. Garanina (A.P. Ershov Institute of Informatics Systems, Institute of
Automation and Electrometry)
Igor S. Anureev (A.P. Ershov Institute of Informatics Systems, Institute of
Automation and Electrometry)
Viadimir E. Zyubin (Institute of Automation and Electrometry, Novosibirsk
State University)

User-friendly formal specification and verification of concurrent systems from various
subject domains are active research topics due to their practical significance. In this pa-
per, we present the method for development of verification-oriented domain-specific process
ontologies which are used to describe concurrent systems of subject domains. One of advan-
tages of such ontologies is their formal semantics which makes possible formal verification
of described systems. Our method is based on the verification-oriented process ontology.
For constructing a domain-specific process ontology, our method uses techniques of se-
mantic markup and pattern matching to associate domain-specific concepts with classes of
the process ontology. We give detailed ontological specifications of these techniques. Our
method is illustrated by the example of developing a domain-specific ontology for typical
elements of automatic control systems.

Keywords: process ontology, pattern matching, semantic markup, automatic control

system, formal verification
1. Introduction

Our long-term goal is a comprehensive approach to supporting formal verification of con-
current systems for ensuring their quality by formal methods. The solution includes methods
for extracting formal models and properties of concurrent systems from the texts of technical
documentation, as well as, instruments for manual correction of the extracted information and

enriching it with new entities.

The research has been supported by the Russian Ministry of Education and Science and the Russian Foundation for Basic

Research (grants 17-07-01600, 19-07-00762).

20 Natalia O. Garanina, Igor S. Anureev, Vladimir E. Zyubin Constructing Verification-Oriented Domain-Specific ...

Our envisaged intellectual system for supporting formal verification of concurrent systems
will automatically extract and generate system requirements. We developed an Ontology of
Specification Patterns as a first step towards creating this system [I]. Another key component
of the system is the Process Ontology for concurrent systems [2]. The content of these ontolo-
gies, i.e. the sets of instances of their classes, are ontological descriptions of some concurrent
system and requirements for it. These descriptions can be extracted from corpus of technical
documentation by our system of information extraction from natural language text [3-5]. Such
descriptions also can be developed by special editors which also can be used for correction of
extracted information. These ontological descriptions for concurrent system processes and re-
quirements are the basis for formal verification of the concurrent system because the Ontology
of Specification Patterns and the Process Ontology have formal semantics. To verify a system, it
is necessary first to choose a suitable verifier (model checker, in particular) taking into account
the formal semantics of the ontology-based requirement presentation. If it exists, we translate
the ontological description of the system into the model specification input language of the
chosen verifier, and the requirements’ description is translated into the property specification
input language of this verifier (usually, this language is some temporal logic). Dealing with
requirements in our system involves not only the formal semantics of specification patterns,

but also the presentation of requirements both in a natural language and in a graphical form.

In this paper, we address both the problem of extracting a concurrent system description
from technical documentation and developing editor for constructing and correcting the onto-
logical description of concurrent systems. These tasks use the Process Ontology, which describes
concurrent systems as consisting of communicating concurrent processes characterized by local
and shared variables, and channels for communication by messages. This ontology has formal
semantics based on labelled transition systems [2]. However, for requirement and verification
engineers, the Process Ontology is very abstract to be suitable for supporting formal verification

with our system.

Since this support system can be used for different subject domains, it is necessary to
develop a method to specialize our abstract Process Ontology for specific subject domains
in order to construct domain-specific processes instances which have variables and channels
corresponding to their subject specialization. For example, in a concurrent system from the
domain of Automatic Control System, the sensor-process must necessarily be connected by at

least one communication channel with the process-controller. We must construct a Domain-

System Informatics (Cucremuas nadopmaruka), No. 14 (2019) 21

Specific Process Ontology to be a special case of the Process Ontology. Hence, this new ontology

has formal semantics which makes possible formal verification of the systems it describes.

A Domain-Specific Process Ontology differs from the original Process Ontology in a set
of axioms and rules that specify domain-specific restrictions on the attributes of the Process
Ontology classes. This set of axioms has a declarative character. Ontology axioms can be used
to check integrity and consistency of the ontology content. In case of the ontological concurrent
system representation, integrity and consistency mean that instances of the ontology processes
corresponding to processes of the subject domain have all necessary variables, channels and

actions.

The declarative aspect of an ontology of domain-specific processes is suitable for checking
the correctness of descriptions of already created or extracted concurrent systems. But for
creating or correcting such a system, a constructive approach based on patterns of domain-
specific processes is better. In this paper, we propose the method of constructing the domain-
specific content of the Process Ontology using domain-specific patterns. The construction of
this content includes several steps. First, we enrich classes of the Process Ontology (Section
2) with semantic markup attributes containing a string description of terms from a subject
domain. The resulting new ontology called Semantically-Marked Process Ontology (Section
allows us to construct the domain-specific content of the Process Ontology. Then, patterns of
domain-oriented processes are defined as instances of the Process-Oriented Semantic-Markup
Patterns Ontology (Section . We illustrate our method with the example from the subject
domain of Automatic Control Systems (Section [5). Development of the process ontology for
this domain is especially important because a user-friendly formal specification and verification
of automatic control systems, and, in general, cyber-physical systems have crucial practical

significance.

2. Process Ontology

We consider an ontology as a structure, which includes the following elements: (1) a finite
non-empty set of classes, (2) a finite non-empty set of data attributes and relation attributes,
and (3) a finite non-empty set of domains of data attributes. Fach class is defined by a set
of attributes. Data attributes take values from domains, and relation attributes’ values are
instances of classes. An instance of a class is defined by a set of attribute values for this class.

A content of an ontology is a set of instances of its classes.

22 Natalia O. Garanina, Igor S. Anureev, Vladimir E. Zyubin Constructing Verification-Oriented Domain-Specific ...

T T
L Ll Typer Firo, Ciro.]
(] — ——{ Process)y IndAc, Free
iType: Domain | o ——~ TN Capacity: N
4 N - Write: WriteMode
P Read: Readblode
I Reliable: Bool
‘:(Variabiej*-- i

-~

{Operation: Conpare {_Action
:

|

J
A

AN

| { When

N /—_ ™~ //’J
-+ Expression j&-——-
\-7‘-< 1

G

onstant =0,

\
S

Type: MaimTypes Id ¥ Id |
Vafué’\t‘alue Operation: Operations Operation: BoolOperations

Fig. 1. Process Ontology.

The Process Ontology PO provides an ontological description of a concurrent system by
a set of its instances. We consider a concurrent system as a set of communicating processes.
Processes (described by the class Process) are characterized by sets of local and shared variables;
a list of actions on these variables which change their values; a list of channels for the process
communication; and a list of communication actions for sending messages. The process variables
(the class Variable) and constants (the class Constant) take values in domains of basic types
(Booleans, finite subsets of integers or strings for enumeration types) and finite derived types.
Initial conditions of the variable values can be defined by comparison with constants. The
actions of the processes (the class Action) include operations over variables’ values. The enable
condition for each action is a guard condition (the class Condition) for the variable values
and the content of the channels. The processes can send messages through channels (the class
Channel) under the guard conditions (the class Condition). The communication channels are
characterized by the type of reading messages, capacity, modes of writing and reading, and
reliability. Figure [1] represents the Process Ontology. Classes are presented by white ovals.
Relations between classes are shown as dashed arrows with names in grey ovals. These arrows
are solid if the relation is one-to-many, and dotted, if the relation is one-to-one. Class data

attributes placed in dash-dot rectangles are connected with their classes by dash-dot arrows.

Classes of PO are universal because they do not take into account the features of a subject

domain. In the next section, we define an extension of ontology PO — a semantically-marked

System Informatics (Cucremuas nadopmaruka), No. 14 (2019) 23

process ontology that specifies necessary information about the subject domain.
3. Semantically-Marked Process Ontology

In this section, we formally describe our method of the semantic markup of the Process
Ontology. This markup is used for matching the abstract processes of PO to specific processes
of a chosen subject domain. The marking up is performed by enriching the classes of ontology
PO with string labels corresponding to the concept of the subject domain. This classes with
several service classes form the new semantically-marked process ontology. The instances of the
subject domain processes can be constructed using this new ontology and the Process-Oriented
Semantic-Markup Patterns Ontology described in the next section,

The semantically-marked process ontology (SM PQO) contains domains Classes, Domains,
Types, Values corresponding to elements of PO ontology, domains S Label, S Attribute, classes
AValue, Element and Element T (T € Domains) corresponding to semantic labelling, and
classes of ontology PO enriched with semantic attributes based on listed new domains and
classes.

Domains Classes and Domains include names of classes and domains from ontology PO.
Domain Types = Classes U Domains includes all names from ontology PO. Domain Values
includes all attribute values of PO: Values = UperypesV al(T'), where Val(T') is values of T,
which are instances for T € C'lasses and the corresponding values for T" € Domains.

Domain SLabel is a finite set of semantic labels which are strings. String labels specify
information associated with the attribute values of ontology PO. This information can be
about a subject domain (ex., "sensor" or "pressure") or special features of modeling processes
(ex., "periodic start").

Domain SAttribute is a finite set of semantic attributes which are string. Like labels, these
semantic attributes specify subject domain information associated with the attribute values
of ontology PO. The difference is that strings of the semantic attributes must be a string
description of the attribute values of ontology PO (ex., "100", "true" or "instance of class
Controller").

Further in class definitions, we add a superscript * for multi-valued attributes and superscript
1 for mandatory single-valued attributes. Class AValue (which instances are called attribute
values) has two single-valued attributes: Attribute! with values in SAttribute and Value! with

values in Values which specify the name of a semantic attribute and its value.

24 Natalia O. Garanina, Igor S. Anureev, Vladimir E. Zyubin Constructing Verification-Oriented Domain-Specific ...

Class T of ontology SM PO is some class of ontology PO enriched with two attributes:
SLabels* with values in SLabel and SAattributes* with values in AValue (called marking
attributes) which add the semantic markup to instances of class T'. This attributes connect
abstract notions of Process Ontology with a chosen subject domain. Attribute S Labels specifies
a set of semantic labels. Attribute SAttributes specifies a set of semantic attributes with their
values. Attribute S Attributes cannot contain two instances of class AValue with the same
value of attribute Atrribute for unambiguity of naming values in ontology PO. Attributes of
T without the markup are called base attributes.

Class Element T is constructed for each domain 7" € Domains. This class has the marking
attributes and attribute Value! with values in 7. Attribute Value specifies a value, and the
marking attributes add the semantic markup to this value. Thus, in ontology SM PO, values
of PO domains can be marked up.

Class Element has only the marking attributes SLabels* and SAattributes*. This class
models new semantic classes (classes defined only by the semantic markup) in ontology SM PO.
New semantic classes is used to construct new subject-oriented classes for ontology of processes
in specific domains. This classes are used just for a readable description of a subject domain.
They must be transformed to elements of ontology PO.

We illustrate addition of information about a subject domain to elements of ontology PO
using the example of a sensor measuring temperature in degrees Celsius in the range from 0 to

1000. This sensor is specified by the following instance of class process of SM PO ontology:

Process (BAVs, SLabels:{"sensor"},
SAttributes:{AValue (Attribute:"Dimension", Value:"temperature"),
AValue (Attribute:"unit", Value:"Celsius"),
AValue (Attribute:"range",
Value:Element (SLabels:{"range"},
SAttributes:{AValue (Attribute:"left", Value:"0"),
AValue (Attribute:"right", Value:"1000")2})})

Listing 1: Sensor instance

Here the tuple T'(A4; : Vi,..., A, : V},) denotes an instance of class T with values Vj, ..., V,, of
attributes Aj, ..., A,, the set {V1,...,V,} lists values of a multi-valued attribute, and BAV's
are base attributes from ontology PO.

Thus, with ontology SM PO we can describe instances of notions from a subject domain
by the semantic markup. However, this ontology is not enough to specify subject notions as
elements of concurrent systems, i.e., to specify restrictions on sets of their instances. In the
next section, we define a process-oriented ontology of semantic-markup patterns. This ontology

is used to define notions of some subject domain using patterns by imposing restrictions on

System Informatics (Cucremuas nadopmaruka), No. 14 (2019) 25

instances of classes of ontology SM PO (what semantic markup can be added to them), as well
as the arity and values of their attributes (the number of values of the attributes and what

semantic markup can be added to these values).
4. Process-Oriented Semantic-Markup Patterns Ontology

Process-oriented semantic-markup patterns ontology (POSM PO) includes domains and
classes of ontology SM PO, domains AMatchSizes and AM atchOperations, and class AMatch.

Let n, m be nonnegative integers. Domain AMatchArities = {"m”,”m|0”,
"mn”,"mn|0”,"m —7,"m — |0”,” — n”} is used for restrictions on the number of attribute
values of an ontology element matched with a pattern.

Domain AMatchOperations = {"=", "<" "<=" "=" 100000 Wp" VMoneof", "all"} is
a set of matching operations. They specify which values of ontology SM PO must be matched
to each other. The set of values of this domain can be extended for a specific subject domain.

Instances of POSM PO classes are called semantic-markup patterns. Each pattern specifies
a set of SM PO instances matching with this pattern. Class T' of ontology POSM PO has
the same attributes as class T' of ontology SM PO, but they have values in AMatch. Class
AMatch specifies the rules for matching attribute values of SM PO classes with patterns for
them. This class has the following attributes: Ar with values in AMatchArities, Op with values
in AMatchOperations and Pat* with values in Values[SM PO] which contains all values of all
attributes of all SM PO classes similarly to domain Values based on ontology PO. Attribute
Ar restricts the number of matched values. Attribute Op defines the matching operation.
Attribute Pat specifies patterns for attribute values.

Let V.A denote the value of attribute A of instance V', and |S| denotes the power of set S.
We consider that instance V' of class T from ontology SM PO is matched with pattern P of
class T from ontology POSM PO iff for each attribute A of P such that P.A = AMatch(Ar :
R,Op: 0O, Pat:Vy,..., V,) the following holds:

1.If R="m" then |V.A| = m.

2.If R="m —" then |V.A| > m.

3.If R="—m" then |[V.A| <m.

4.If R="m —k” then k < |V.A| <m.

5.1f R ="ml|0” then |V.A| =m or |V.A| = 0.
6.If R="m —|0” then |V.A| >mor |[V.A] = 0.

26 Natalia O. Garanina, Igor S. Anureev, Vladimir E. Zyubin Constructing Verification-Oriented Domain-Specific ...

7.1f R="m —n|0” then n < |V.A| <m or |[V.A| = 0.

IO ="="thenn=1and V' =V, for each V' € V.A. The cases when O € {" =",7 <
T <= =707 > 77 5 "1 are defined similarly. This case restricts comparable
attribute values.

9.If O ="in” then n =1 and V' € V] for each V' € V.A. This case defines membership of
attribute values.

10.If O = "oneof” then V is matched with upd(P, A,V;) for some 1 < i < n, where
upd(Q), B, U) denotes the result of setting the value U to attribute B of instance). This
case chooses some pattern value for the attributes.

11.If O = 7all” then there are S, ..., S, such that V.A = {Sy,...,S,}, SinNS; = 0 for
Si # 0, S; # 0, and upd(V, A, S;) is matched with upd(P, A, V;) for each 1 < i < n. This
case chooses all pattern values for the attributes.

12. If O is undefined, and A # SLabels, or T = AValue and A # Attribute, then V' is
matched with P.A for each V' € V.A. This case reduces matching set of attribute values
to matching separate attribute values of the set. The remaining cases are special ones for
classes SLabels, AV alue u S Attributes.

13. If O is undefined and A = SLabels then P.SLabels C V.S Labels.

14. If O is undefined, T' = AValue, A = Attribute then n =1, and V.A = V.

15. If O is undefined and A = S Attributes then attributes(P.S Attributes) =
attributes(V.S Atributes), where attributes(AV') is the set of attributes in instance AV
of class AValue.

We have defined a process-oriented ontology of semantic-markup patterns which combines
the Process Ontology with descriptions of notions of a subject domain. A particular set of
instances of this ontology gives the rules for constructing the corresponding subject-oriented
process ontology. Classes and domains of POSM PO provide a language for constructive us-
ing axioms which restrict abstract processes of PO with respect to a subject domain because
these axioms can specify only numbers of attribute values and their ranges. In the next sec-

tion, we construct some typical elements of Automatic Control Systems (ACSs) using classes

POSMPO.

5. Domain-Specific Process Ontology for Typical Elements of

Automatic Control Systems

System Informatics (Cucremuas nadopmaruka), No. 14 (2019) 27

In this section, we define semantic-markup patterns for typical elements of automatic control

systems: simple and complex sensors, controllers, actuators and the controlled object.

Sitmple and complex sensors, and related entities are defined by patterns in Listing

Process(// Simple sensor

Local:AMatch("0"),

SharedRead:AMatch("1", Variable(SLabels:{"Observed value"})),
SharedWrite:AMatch("0"),

Actions:AMatch("0"),

Channels:AMatch("1-",

Channel (SLabels:{"Channel from sensor to controller"})),
ComActs:AMatch("1-", ComAction(SLabels:{"Sending observed value from simple sensor"})),
SLabels:{"Simple sensor"},

SAttributes: {AValue("Physical quantity",

Element (SLabels:{"Physical quantity"})})

Element (// Physical quantity

SLabels:{"Physical quantity"},

SAttributes: {AValue("Dimension", AMatch(Op:"in", Pat:Dimension)),
AValue ("Unit", AMatch(Op:"in", Pat:Unit)),

AValue ("Range", Element{SLabels:{"Range"}})})

Element (// Range

SLabels:{"Range"},

SAttributes: {AValue("Left", AMatch(Op:"in", Pat:Float)),
AValue ("Right", AMatch(Op:"in", Pat:Float))l})

Variable(// Observed value

Users:AMatch(Op:"all",

Pat:{AMatch("1", Process(SLabels:{"Controlled Object"})),
AMatch("1-", Process(SLabels:{"Simple sensor"}))}),
SLabels:{"Observed value"},

SAttributes: {AValue("Physical quantity",

Element (SLabels:{"Physical quantity"})2})

Channel(// Channel from sensor to controller

From:AMatch("1", "oneof", {Process(Slabels:{"Simple sensor"}),
Process(Slabels:{"Complex sensor"})}),

To:AMatch("1-", Process(SLabels:{"Controller"})),

Type:AMatch("1", "=", "FIFO"),
Capacity:AMatch("1", "=", 1),
Write:AMatch("1", "=", "01ld"),
Read: AMatch("1", "=", "Keep"),
Reliable:AMatch("1", "=", "true"),

SLabels:{"Channel from sensor to controller"})

ComAction(// Sending observed value from simple sensor
From:AMatch("1", Process(Slabels:{"Simple sensor"})),
To:AMatch("1-", Channel (SLabels:{"Controller"})),
Message:AMatch("1",

Expression (0Opl:AMatch("1",

Variable (SLabels:{"Observed value"l}))))
SLabels:{"Sending observed value from simple sensor"})

Process(// Complex sensor

SharedRead:AMatch("1-", Variable(SLabels:{"Observed value"})),
SharedWrite:AMatch ("0"),

Channels:AMatch("1-",

Variable (SLabels:{"Channel from sensor to controller"})),
ComActs:AMatch("1-",

ComAction(SLabels:{"Sending message from complex sensor"l})),
SLabels:{"Complex sensor"},

SAttributes: {AValue("Physical quantity",

Element (SLabels:{"Physical quantity"})3})

ComAction(// Sending message from complex sensor
From:AMatch("1", Process(Slabels:{"Complex sensor"})),

To:AMatch("1-", Channel (SLabels:{"Controller"})),
SLabels:{"Sending message from complex sensor"})

Listing 2: Sensors

In this and the following listings, we use the following abbreviations: sLabeis:s for sLabeis:amatch(

28 Natalia O. Garanina, Igor S. Anureev, Vladimir E. Zyubin Constructing Verification-Oriented Domain-Specific ...

Value:S), AMatch(R, 0, P) fOI' AMatch(Ar:R, op:0, Pat:P), Where &, 0, or p can be omitted, aMatcn(r, 0, p) for
{AMatch(R, 0, {P})}, AValue(A, V) fOI Avalue(Attribute:A, Value:V), and T for aMatch(op:"in", Pat:T).

These patterns impose the following restrictions on sensors. Sensors must read observed
values from variables shared with the controlled object and cannot change it. They must have
outgoing channels connecting them with controllers and communication actions for sending
messages to the controllers. There must be at least one controller and at least one shared
variable associated with each sensor. Simple sensors have no local variables and actions whereas
complex sensors have ones. Simple sensors can observe exactly one shared variable and send
the observed value unchanged to controllers. For sensors, processing physical quantities must
be defined. They are characterized by dimensions ('temperature", "pressure", "density", etc.), units
of measurement ("centimeter", "kilogran", "volt", etc.) and ranges.

Controllers, actuators and controlled objects are restricted by patterns in Listing [3]
Process(// Controller

SharedRead: AMatch("0"), SharedWrite:AMatch("0"),
Channels:AMatch("all",

{AMatch("1-", Channel (SLabels:{"Channel from sensor to controller"}),
AMatch("0-", Channel(SLabels:{"Channel from actuator to controller"},
AMatch("1-", Channel (SLabels:{"Channel from controller to actuator"},

AMatch ("O-", Channel (SLabels:{"Channel from controller to controller"})}),
ComActs:AMatch("1-", ComAction(SLabels:{"Sending message from controller"})),

SLabels:{"Controller"})

Process(// Actuator
SharedRead: AMatch("0"), SharedWrite:AMatch("0"),
Channels:AMatch("all",

{AMatch("1-", Channel(SLabels:{"Channel from controller to actuator"}),
AMatch("0-", Channel (SLabels:{"Channel from actuator to controller"},
AMatch("1", Channel(SLabels:{"Channel from actuator to controlled object"})}),
ComActs:AMatch("1-", ComAction(SLabels:{"Sending message from actuator"})),

SLabels:{"Actuator"})

Process(// Controlled object

SharedRead:AMatch("0"),

SharedWrite:AMatch("1", Variable(SLabels:{"Observed value"})),

Channels:AMatch("1-", Channel(SLabels:{"Channel from actuator to controlled object"}),
ComActs:AMatch("0"),

SLabels:{"Controlled object"})

Listing 3: Controllers, actuators and controlled objects

Controllers and actuators must not have shared variables. Controllers must have output
channels connecting them with other controllers and actuators, and input channels connecting
them with sensors and actuators. Actuators must have output channels connecting them with
controllers and the controlled object, and input channels connecting them with controllers.
There must be at least one sensor and at least one actuator connected with a controller through
input and output channels, respectively. There must be at least one controller and the only
controlled object connected with an actuator through input and output channels, respectively.

The controlled object must be connected with actuators by input channels. There must be at

System Informatics (Cucremuas nadopmaruka), No. 14 (2019) 29

least one shared variable, one sensor and one actuator associated with the controlled object.

Each pattern gives rules for defining an element of ACS in the Process Ontology. With a set
of such patterns, we can specify a system of concurrent processes implementing typical elements

of ACS. Thus, our method can be used to specify domain-specific processes.

6. Discussion and Conclusion

The method of developing a domain-specific process ontologies based on three core ontologies
[6] has several remarkable properties. Verification-oriented process ontology PO specifies a com-
pact universal process model with a labeled transition system as its formal semantics, which can
be used in formal verification methods and model checking, in particular. Semantically-marked
process ontology SM PO makes possible marking instances of PO classes for associating them
with concepts of a subject domain. Moreover, it is also possible to mark values of PO domains
and describe new domain-specific classes. Process-oriented semantic-markup patterns ontol-
ogy POSM PO specifies restrictions on the semantic markup of instances of SM PO classes,
defining the subject concepts associated with these instances. Unlike the declarative approach
describing a domain-specific process ontology by a set of axioms, this approach specifies the
ontology as a set of patterns (instances of ontology POSM PO) for defining domain-specific
processes constructively as instantiation of patterns from this set. All three ontologies are based

on simple concepts that can be used as ontology design patterns [7, [§].

In the future, we plan to add new kinds of matching operations (for example, the current
set of operations does not allow us to express the property that different attributes have the
same instance as a value), to refine the process ontology for automatic control systems and to

advance the method for building other domain-specific process ontologies.

References

1. Garanina, N., Zyubin, V., Lyakh, T., Gorlatch, S. An Ontology of Specification Patterns for
Verification of Concurrent Systems // Proc. of the 17th Intern. Conf. SoMeT-18. New Trends in
Intelligent Software Methodologies, Tools and Techniques. Series: Frontiers in Artificial Intelligence
and Applications, Amsterdam: IOS Press, 2018. Vol. 303. P. 515-528. DOI 10.3233/978-1-61499-
900-3-515.

2. Garanina N.O., Anureev L.S. Verification oriented process ontology // Proc. of 9th Workshop
"Program semantics, specification and verification: theory and applications" (PSSV 2018). 2018.
P. 58-67.

30 Natalia O. Garanina, Igor S. Anureev, Vladimir E. Zyubin Constructing Verification-Oriented Domain-Specific ...

3. Garanina N.O., Sidorova E.A., Bodin E.V. A Multi-agent Text Analysis Based on Ontology of
Subject Domain // Lecture Notes in Computer Science, 2015. Vol. 8974. P. 102-110.

4. Garanina N.O., Sidorova E.A. Context-dependent Lexical and Syntactic Disambiguation in Ontol-
ogy Population // Proc. of the 25th Intern. Workshop on Concurrency, Specification and Program-
ming (CS&P). Humboldt-Universitat zu Berlin, 2016. P. 101-112.

5. Garanina N.O., Sidorova E.A., Kononenko I.S., Gorlatch S. Using Multiple Semantic Measures For
Coreference Resolution In Ontology Population // Intern. Journal of Computing. 2017. Vol. 16.
No. 3. P. 166-176.

6. Scherp A., Saathoff C., Franz T., Staab S. Designing core ontologies // Applied Ontology, 2011.
Vol. 6. No. 3. P. 177-221.

7. Gangemi A., Presutti V. Ontology Design Patterns // Staab, S., Studer, R. (eds.) Handbook on
Ontologies. 2nd edn. Springer, 2009. P. 221-243.

8. Ontology design patterns. http://www.ontologydesignpatterns.org,.

http://www.ontologydesignpatterns.org

	Introduction
	Process Ontology
	Semantically-Marked Process Ontology
	Process-Oriented Semantic-Markup Patterns Ontology
	Domain-Specific Process Ontology for Typical Elements of Automatic Control Systems
	Discussion and Conclusion
	References

