
System Informatics (Системная информатика), No. 8 (2016) 1

УДК 004.052, 519.179.2

A Verification Method for a Family of Multi-agent

Systems of Ambiguity Resolution»

Natalia Garanina (A.P. Ershov Institute of Informatics Systems),

Elena Sidorova (A.P. Ershov Institute of Informatics Systems)

In the paper we describe a verification method for families of distributed systems gen-

erated by context-sensitive network grammar of a special kind. The method is based on

model checking technique and abstraction. A representative model depends on a specifi-

cation grammar for family of systems. This model simulates a behavior of the systems

in such a way that properties which hold for the representative model are satisfied for all

these systems. We show using this method for verification of some properties of multiagent

system for resolution of context-dependent ambiguities in ontology population.

Keywords: model checking, context-sensitive network grammar, multi-agent systems,

abstraction

1. Introduction

The motivation of our work is the ambiguity resolution problem in the frame of ontology

population from natural language texts. In [6] we describe text analysis algorithms producing

a system of information agents. But features of natural language cause ontology population

ambiguities, which these agents have to resolve. We proposed to evaluate the cardinality of

agents’ contexts, i.e. how much an agent is related with the other agents of the resulting system

via the information contained in it, and to mark the agents the most integrated in the text.

We developed an ambiguity resolution algorithm [5], removing the less integrated agents from

the system.

All agents in parallel perform rather complicate protocols with periodic local synchroniza-

tions. Hence, it is reasonable to use formal verification methods for proving correctness of the

algorithm. We choose model checking technique for a particular multi-agent system. We verify

rather specific multi-agent system of conflict resolution. The works on multi-agent systems

usually focus on the behavior of agents, methods of communication between agents, knowledge

and belief of an agent about environment and other agents, etc [4, 9]. Works about conflict

resolution process usually consider the process in terms of the behavior of the agent depending

2 Garanina N.O., Sidorova E.A. A Verification Method for a Family of Multi-agent Systems of Ambiguity Resolution

on its internal state, reasoning and argumentation methods etc. [8]. The dynamics of the agents

connections is not a subject of these researches. There are papers related to the dynamics of

weighted connections, but they are not the typed and their changes does not affect the internals

of the agent [7]. On the other hand there are works on the study of social networks, in which

the agents are connected by the typed connections, but their weight does not matter [1]. To the

best of our knowledge, there are no works on model checking for a conflict resolution algorithm

of the suggested type.

Model checking technique is widely used for verification of distributed and multiagent sys-

tems [2]. In our case we would like to verify not a particular agent network, but infinite family

of such systems. For verification of infinite network families the model checking method was

suggested in [3]. This method is based on using a context-free network grammar generating

families of distributed systems, and on abstraction by finite automata. The idea of the method

is to construct an invariant network based on a given grammar. This invariant simulates be-

havior of all systems in the family and is consistent with abstract functions associated with

properties to be verified which are expressed by branching time logic ∀CTL. Due to consistent

simulation, properties holding for the representative invariant also holds for all systems in the

family. But authors studied context-free grammars only, while our model of the multiagent

system is generated by a context-sensitive grammar of a special kind. In the paper we define

such network grammar by adding notions of a quasi-terminal and a merging operator to the

standard definition. We show that this verification method still can be used for network families

generated by the new grammar.

The rest of the paper is organized as follows. The next section 2 gives base definitions.

Section 3 presents results on a new merging operator, used in our context-sensitive network

grammar. Section 4 describes using our method for the multiagent system of ambiguity reso-

lution. We conclude in the last section 5 with a discussion of further research.

Acknowledgments. The research has been supported by Russian Foundation for Basic

Research (grant 15-07-04144) and Siberian Branch of Russian Academy of Science (Integra-

tion Grant n.15/10 “Mathematical and Methodological Aspects of Intellectual Information Sys-

tems”).

2. Base Definitions

System Informatics (Системная информатика), No. 8 (2016) 3

Let us give necessary definitions from [3] in a modified form. Modification concerns a merging

operator and quasi-terminals in a network grammar.

Definition 1.

A Labeled Transition System (LTS) is a structure M = (S,R,ACT, S0), where

• S is the set of states,

• S0 ⊆ S is the set of initial states,

• ACT is the set of actions, and

• R ⊆ S×ACT ×S is the total transition relation, such that for every s ∈ S there is action

a and state s′ for which (s, a, s′) ∈ R (denote as s a−→ s′).

Let LACT be the class of LTSs whose set of actions is a subset of ACT . Let L(S,ACT)

be the class of LTSs whose state set is a subset of S and whose action set is the subset of

ACT . Let ACT1, ACT2 ⊆ ACT . Let we are given two LTSs M1 = (S1, R1, ACT1, S
1
0) and

M2 = (S2, R2, ACT2, S
2
0) in the class LACT .

Definition 2.

A function ∥: LACT × LACT 7→ LACT is called a composition function iff M1 ∥M2 has the form

(S1 × S2, R
′, ACT1 ∪ ACT2, S1

0 × S2
0).

A function ∪ : LACT ×LACT 7→ LACT is called a merging function iff M1 ∪M2 has the form

(S1 ∪ S2, R
′, ACT1 ∪ ACT2, S1

0 ∪ S2
0).

The definition of R′ depends upon the exact semantics of the composition and merging function.

Let Si be words of length i with S as the alphabet.

Definition 3.

Given a state set S and a set of actions ACT , any subset of
∪∞

i=1 L(Si,ACT) is called a network

on the tuple (S,ACT).

We give a definition of a context-sensitive network grammar with quasi-terminals (CSNQ-

grammar) to describe networks, which is the modified definition of a context-free network

grammar from [3]. The set of all LTSs derived by a network grammar forms a network which

is an LTS also. Let S be a state set and ACT be a set of actions. CSNQ-grammar G =

(T,Qt, t, N, P, S) is a grammar, where

• T is a set of terminals, each of which is an LTS in L(S,ACT), these LTSs are sometimes

referred to as basic processes,

4 Garanina N.O., Sidorova E.A. A Verification Method for a Family of Multi-agent Systems of Ambiguity Resolution

• Qt is a set of quasi-terminals, each of which is an LTS in L(S,ACT), their merging gives an

LTS,

• a mapping t : Qt 7→ T associates quasi-terminals to terminals,

• N is a set of nonterminals, each nonterminal defines a network,

• P is a set of production rules of the following forms:

– A −→ B ∥i C, where A ∈ N , and B,C ∈ T ∪ Qt ∪ N , and ∥i is a composition

function.

– {A1, ...An} −→ t(A1) ∪i ... ∪i t(An), where Aj ∈ Qt, and ∪i is a merging function.

• S ∈ N represents the network generated by the grammar.

Note, that this grammar is context-free with respect to composition functions and context-

sensitive with respect to merging functions.

In order to express properties of a model composed from finite, but unspecified number of

LTSs, we define a finite automaton on alphabet S.

Definition 4.

D = (Q, q0, δ, F) is a deterministic automaton over S, where

• Q is the set of automaton states,

• q0 ∈ Q is the initial state,

• δ ⊆ Q× S ×Q is the transition relation,

• F ⊆ Q is the set of accepting states, and

• L(D) ⊆ S∗ is the set of words accepted by D.

We use finite automata over S for specification of atomic state properties. Let D be an automa-

ton over S. State s satisfies D (s |= D) iff s ∈ L(D). A specification language is a universal

branching temporal logic ∀CTL [3] with finite automata over S as the atomic formulas. Syn-

tax of ∀CTL consists of formulas that are composed of Boolean constants, atomic formulas,

connectives ¬, ∨, ∧, and branching time modalities AXφ, AGφ, and φAUψ with standard

semantics.

Recall definitions for abstract LTS from [3]. For the simplicity, here the specification lan-

guage contains a single atomic formula D. Given an automaton D = (Q, q0, δ, F) and a word

w ∈ S∗ the function induced by w on Q, fw : Q 7→ Q, is defined by fw(q) = q′ iff q w−→ q′. Note

that w ∈ L(D) if and only if fw(q0) ∈ F . Two states s and s′ are equivalent s ≡ s′ iff fs = f ′
s.

The function fs is called the abstraction of s and is denoted by h(s). Relation |= is extended

to abstract states: h(s) |= D iff fs(q0) ∈ F . Hence s |= D iff h(s) |= D.

System Informatics (Системная информатика), No. 8 (2016) 5

Let FD be the set of functions corresponding to the deterministic automaton D. The ab-

straction function h extended to FD is defined by h(f) = f for f ∈ FD and extension the

function h to (S ∪FD) is h((a1, a2, ..., an)) = h(a1) ◦ ... ◦ h(an). From now on we consider LTSs

in the network N on the tuple (S ∪ FD, ACT).

Definition 5. (of abstract LTS)

Given an LTS M = (Si, R,ACT, S0) in the network N , the corresponding abstract LTS is

defined by h(M) = (Sh, Rh, ACT, Sh
0), where

• Sh = {h(s)|s ∈ Si} is the set of abstract states,

• Sh
0 = {h(s)|s ∈ S0}, and

• the relation Rh is defined as follows. For any h1, h2 ∈ Sh, and a ∈ ACT :

(h1, a, h2) ∈ Rh ⇔ ∃s1, s2[h1 = h(s1) ∧ h2 = h(s2) ∧ (s1, a, s2) ∈ R].

M ′ simulates M (denoted M ≼M ′) iff there is a simulation preorder E ⊆ S×S ′ ((s, s′) ∈ E

denoted s ≼ s′) that satisfies the following conditions: for every s0 ∈ S0 there is s′0 ∈ S ′
0 such

that s0 ≼ s′0. For every s, s′, if s ≼ s′ then

• h(s) = h(s′), and

• for every s1 such that s a−→ s1 there is s′1 such that s′ a−→ s′1 and s1 ≼ s′1.

3. The Merging Operator in the Verification Framework

The first two propositions of the following lemma were proved in [3], the last is proved below:

Lemma 1.

1. M ≼ h(M), i.e., h(M) simulates M .

2. If M ≼M ′, then h(M) ≼ h(M ′).

3. M ∪M ′ ≼ h(M) ∪ h(M ′)

Proof of (3) is obvious: M ∪M ′ ≼ h(M ∪M ′) due to (1), and h(M ∪M ′) = h(M)∪ h(M ′).�

The following theorem about satisfiability of properties in an LTS and its simulator was

proved in [3] and holds for our new framework.

Theorem 1.

Let φ be a formula in ∀CTL over the atomic formula D. Let M and M ′ be two LTSs such that

M ≼M ′. Let s ≼ s′. Then s′ |= φ implies s |= φ.

6 Garanina N.O., Sidorova E.A. A Verification Method for a Family of Multi-agent Systems of Ambiguity Resolution

Definition 6.

A merging or composition operator • ∈ {∪, ∥} is called monotonic with respect to a simulation

preorder ≼ if and only if given LTSs such that M1 ≼M2 and M ′
1 ≼M ′

2, we have that M1•M ′
1 ≼

M2 •M ′
2. A network grammar G is called monotonic if and only if all rules in the grammar use

only monotonic composition and merging operators.

We modify a synchronous framework from [3] with results for the merging operator. Let

models be a form of LTSs, Moore machines M = (S,R, I, O, S0) such that inputs I and outputs

O must be disjoint. In addition, they have a special internal action denoted by τ . The set of

actions is ACT = {τ} ∪ 2I∪O, where each noninternal action is a set of inputs and outputs. A

transition s a−→ t from s in a machine M with a = i∪ o such that i ⊆ I and o ⊆ O occurs only

if the environment supplies inputs i and the machine M produces the outputs o.

Naturally, for the merging operator inputs and outputs of merging machines must be disjoint

also. Let I ∩O′ = ∅ and O ∩ I ′ = ∅. The merging of M and M ′, M ′′ =M ∪M ′ is defined by

• S ′′ = S ∪ S ′,

• S ′′
0 = S0 ∪ S ′

0,

• I ′′ = I ∪ I ′ and O′′ = O ∪O′, and

• s′′ a′′−→ s′′1 is a transition in R′′ iff the following holds: s′′ a−→ s′′1 is a transition in R and

s′′
a′−→ s′′1 is a transition in R′ for some a, a′ such that a′′ = a or a′′ = a′.

Lemma 2.

The merging ∪ is monotonic with respect to ≼.

Proof. Let M = (S,R, I, O, S0), M1 = (S1, R1, I1, O1, S1,0), M ′ = (S ′, R′, I ′, O′, S ′
0), M ′

1 =

(S ′
1, R

′
1, I

′
1, O

′
1, S

′
1,0) be four Moore machines. Assume that M ≼ M1 and M ′ ≼ M ′

1. Let

E ⊆ S × S1 and E ′ ⊆ S ′ × S ′
1 be the corresponding simulation relations. We prove that

M ∪M ′ ≼M1 ∪M ′
1.

We say that (s′′, s′′1) ∈ E ′′ iff (s′′, s′′1) ∈ E or (s′′, s′′1) ∈ E ′. We show that E ′′ has the

required properties. It is clear from the definition that given state s0 ∈ S0 ∪ S ′
0, there exists

s0,1 ∈ S0,1 ∪ S ′
1,0 such that (s0, s0,1) ∈ E ∪ E ′.

Assume that (s, s1) ∈ E ∪ E ′.

(1) By assumption, we have that h(s) = h(s1).

(2) Let s a′′−→ t be a transition in M ∪M ′. This means that there exists transition s a−→ t in M

or transition s a′−→ t in M ′ such that a′′ = a or a′′ = a′. By definition there exists t1 ∈ S1 ∪ S ′
1

System Informatics (Системная информатика), No. 8 (2016) 7

such that s1
a−→ t1 or s1

a′−→ t1, where (t, t1) ∈ E or (t, t1) ∈ E ′. Therefore, s1
a′′−→ t1 and

(t, t1) ∈ E ′′. The proof is thus complete. �

The notion of a representative give us a way to construct a simulation invariant. Given a

CSNQ-grammar G, we associate with each symbol A of the grammar a representative process

rep(A). Let us adopt the definition of a monotonicity property for a set of representative

processes of CSNQ-grammar:

• for every terminal and quasi-terminal A: h(rep(A)) ≽ h(A), and

• for every rule A −→ B ∥ C: h(rep(A)) ≽ h(h(rep(B)) ∥ h(rep(C))).

We extend the proof of the following theorem on context-free network grammar from [3] to

CSNQ-grammars:

Theorem 2.

Let G be a monotonic grammar and suppose we can find representatives for the symbols of G

that satisfy the monotonicity property. Let A be a symbol of the grammar G, and let a be an

LTS derived from A using the rules of the grammar G. Then, h(rep(A)) ≽ a.

Proof. We prove that h(rep(A)) ≽ h(a). Since h(a) ≽ a, the result follows by transitivity. Let

A⇒k a, i.e., A derives a in k steps. Induction on k.

(k = 0) Proved in [3].

(k = 1) In the case A,B are quasi-terminals in a rule A,B −→ t(A)∪ t(B) and a = t(A)∪ t(B).

The result follows from the monotonicity property and Lemma 1.

(k ≥ 1) Proved in [3]. �

Verification method is exactly the same as in [3]. Assume that we are given monotonic

grammar G and ∀CTL formula φ with atomic formulas D1, ..., Dk. To check that every LTS

derived by the grammar G satisfies φ we perform the following steps:

1. For every symbol A in G choose representative process rep(A) and construct the abstract

LTS h(rep(A)) with respect to the formulas D1, ..., Dk.

2. Check that the set of representatives satisfies the monotonicity property. Theorem 2

implies that for every a derived by the grammar G, h(rep(S)) ≽ a.

3. Perform model checking on h(rep(S)) with specification φ. By Theorem 1, if h(rep(S)) |=

φ, then for all LTSs M derived by the grammar G, M |= φ.

For finding monotonic representatives we could use an algorithm from [3] setting {t(A)} as an

initial representative association set of every quasi-terminal A.

8 Garanina N.O., Sidorova E.A. A Verification Method for a Family of Multi-agent Systems of Ambiguity Resolution

4. Verification of Multiagent Ambiguity Resolution

A detailed description of the multiagent algorithm for ambiguity resolution in ontology pop-

ulation is given in [5]. In this paper we sketch a communication structure without considering

agents’ actions on message processing.

Let a set of information agents be given. Some of agents are in a conflict corresponding to

some ambiguity. An agent-master constructs a conflict-free set of information agents taking into

account integration of conflict agents in the system. This integration is evaluated by computing

weights and conflict weights of the agents. A conflict is resolved by removing a weak agent from

the system. The agent-master performs the main protocol of constructing the conflict-free set,

while the information agents perform protocols of computing their weights.

Every information agent is connected with the master by two-way channel. Information

agents are linked with others by labeled connections of two types corresponding their conflict

reaction: removing (rem-type) and updating (upd-type). Every labeled connection is acyclic.

Processing of every conflict reaction induced by specified connection is considered to be certain

base process. An information agent can be union of such processes. This fact specifies a

form of a grammar generating family of our multiagent systems for various number of agents

connected in various ways. Agents are connected by two-way channels corresponding to these

labeled connections. This structure of multiagent network is generated by the following context-

sensitive grammar with quasi-terminals G = (T,Qt, t, N, P, S). Let a set of connections be

C = {c1, ..., cn} and cki be a connection having conflict type k ∈ {rem, del}.

• terminals T = {master}∪
∪n

i=1{rooti, interi, leafi}∪vrtxsi, and vrtxsi = {vrtx | vrtx =

interj or vrtx = leafj, j ∈ [1..n]} and |vrtxsi| = i,

• quasi-terminals Qt =
∪n

i=1{INTERi, LEAFi},

• associate mapping t : Qt 7→ T is defined by t(INTERi) = interi, and t(LEAFi) = leafi

for every i ∈ [1..n],

• nonterminals N = {S}
∪n

i=1{ROOTi, SUBi};

• set of production rules P for every i ∈ [1..n]:

1. S −→ master ∥m ROOT1 ∥m . . . ∥m ROOTn

2. ROOTi −→ (ROOTi ∥cki SUBi)
∨
(rooti ∥cki SUBi)

3. SUBi −→ (SUBi ∥cki SUBi)
∨
(INTERi ∥cki SUBi)

∨
(SUBi ∥cki LEAFi)

∨
(INTERi ∥cki LEAFi)

∨
(interi ∥cki SUBi)

∨
(SUBi ∥cki leafi)

∨

System Informatics (Системная информатика), No. 8 (2016) 9

(interi ∥cki LEAFi)
∨
(INTERi ∥cki leafi)

∨
(interi ∥cki leafi)

4. {V1, ..., Vm} −→ t(V1) ∪ ... ∪ t(Vm) = vrtxm, where for every j ∈ [1..m] Vj ∈

{INTERi, LEAFi}, and if Vj = INTERi then for every l ∈ [1..m] holds Vl ̸= LEAFi

(i ∈ [1..n]).

Parallel composition of agent-processes is synchronous. Protocols for computing weights and

conflict weights are highly parallel. Hence it is very important to prove that they terminate

and are synchronized properly. Satisfiability of these properties is necessary for correctness of

weight computing. Launch of these computing could be modeled by sending tokens.

Every base process is defined by the following state variables:

• Name : int is a name of the process;

• Channel: set of {name : int; c_type : bool; dir : bool; agn : int; rmvd : bool}, where

name is a label of a connection, c_type is its type, dir is a direction: a child (dir = 0)

or a parent (dir = 1) named agn, and rmvd is an absence status;

• Rmvd : bool is an absence status;

• Active : bool is an activity status;

•WasActive : bool is a previous activity status.

In synchronous composition of base processes with different names the corresponding channels

of the same name must connect. In merging of processes with the same Name sets of channels

and sets of Channel join. Processes with different names cannot be merged and processes with

the same Name cannot be composed in parallel. Values of above variables define states of a base

process. Its input and output channels correspond to names, types and directions of Channel.

Transitions are defined by sending and receiving tokens through the channels. The initial state

is (Channel, 0, 0, 0), where Channel is a nonempty set of channels with Channel.rmvd = 0,

and a number of channels with dir = 1 does not exceed 1 and a number of channels with

dir = 0 can be equal to 0.

We would like to verify the following properties expressed by ∀CTL. For the protocol of

parallel weight computing: AF({wasActive}∗ ∧ AXAF{¬Active}∗) (every agent was active,

and then all computation will be terminated). For the protocol of conflict weight computing:

AF{¬Active}∗ (all computation will be terminated); AG{Not2Rmvd}∗ (Channels and agents

cannot be removed twice). For every atomic formula we construct a finite deterministic au-

tomaton. They are a base for abstract functions for states of our systems. Then we should

construct a set of consistent representatives for symbols of our grammar. This technique is not

10 Garanina N.O., Sidorova E.A. A Verification Method for a Family of Multi-agent Systems of Ambiguity Resolution

present here.

5. Conclusion

In the paper we present the verification method for families of distributed systems specified

by a context-sensitive grammar with quasi-terminals. This method can be used for verification

of the multi-agent system of ambiguity resolution in ontology population. Properties of the

system are expressed by ∀CTL-formulas.

In the near future we plan to implement the suggested method using model checking tool

SPIN and give formal proofs of correctness of the ambiguity resolution algorithm. But some

properties concerning agent interaction cannot be expressed easily in this framework. This fact

is a reason for trying other more expressive formalisms for properties. Other research direction

is to extend the method for other types of context-sensitive grammars.

Список литературы

1. Bergenti F., Franchi E., Poggi A. Selected models for agent-based simulation of social networks //

In: Procs. 3rd Symposium on Social Networks and Multiagent Systems (SNAMAS 2011) 2011, pp.

27-32.

2. Clarke E.M., Grumberg O., Peled D. Model Checking. MIT Press, 1999.

3. Clarke E.M., Grumberg O., Jha S. Verifying Parameterized Networks // In: ACM Transactions

on Programming Languages and Systems, Vol. 19, No. 5, September 1997. Pages 726-750.

4. Fagin R., Halpern J.Y., Moses Y., Vardi M.Y. Reasoning about Knowledge. MIT Press, 1995.

5. Garanina N., Sidorova E. An Approach to Ambiguity Resolution for Ontology Population // Proc.

of the 24th International Workshop on CS&P. Rzeszow, Poland, Sep. 28-30, 2015. – University of

Rzeszow, 2015, Vol. 1, pp 134-145.

6. Garanina N. O., Sidorova E. A. Ontology Population as Algebraic Information System Processing

Based on Multi-agent Natural Language Text Analysis Algorithms//Programming and Computer

Software, 2015, V. 41, n.3, pp. 140–148.

7. De Gennaro M.C., Jadbabaie, A. Decentralized Control of Connectivity for Multi-Agent Systems

// In: Proc. of 45th IEEE Conference on Decision and Control, pp. 3628 - 3633.

8. Huhns M. N., Stephens L. M. Multiagent Systems and Societies of Agents // In: Multiagent

Systems, MIT Press, 1999 pp. 79–120.

9. Wooldridge, M. An Introduction to Multiagent Systems. Willey&Sons Ltd, 2002.

