
System Informatics (Системная информатика), No. 2 (2013) 71

UDK: 519.681.3, 519.681.2

Title: Causality versus True Concurrency in the Setting of Real-Time Models

Author(s):

Nataliya S. Gribovskaya (A.P. Ershov Institute of Informatics Systems, SB RAS)

Abstract: The contribution of the paper is to clarify connections between real-time models

of concurrency. In particular, we defined a category of timed causal trees and investigated how

it relates to other categories of timed models. Moreover, using a larger model called timed event

trees, we constructed an adjunction from the category of timed causal trees to the category

of timed event structures. Thereby we showed that timed causal trees are more trivial than

timed event structures because they reflect only one aspect of true concurrency, causality, and

they apply causality without a notion of event. On the other hand, the first model is more

expressive than the latter in that possible runs of a timed causal tree can be defined in terms

of a tree without restrictions, but the set of the possible runs of any event structure must be

closed under the shuffling of concurrent transitions.

Keywords: real-time models, true concurrency, causality, relations, unification, category

theory

1. Introduction. In recent decades, category theoretical approaches have been actively used

for the specification and investigation of concurrent systems and processes. We will mention

just one example, which is directly related to the concurrency theory. The category theory has

helped us to classify and unify various models for concurrency and has provided an abstract

language for expressing relationships between seemingly very different models. The basic goal is

to formulate the fact that one model is more expressive than another in terms of an ‘embedding’

or coreflection (reflection) — the category theoretical notion defined as an adjunction, in which

the unit (counit) is an isomorphism. In the setting of this approach, models are represented

as categories: each model is equipped with a notion of morphism that shows how one model

instance can be simulated by another. Moreover, the existence of (co)reflection between models

allows us to translate concepts and properties from one model to another.

At present, the concurrency theory has a great variety of formal models that can be clas-

sified based on different principles. For example, concurrent models are split to interleaving

models and true concurrent models. For interleaving models, such as synchronization trees,

causal trees and transition systems, the concurrency is simulated by a sequence of actions.

For true concurrent models, such as event structures, transition systems with independence, la-

belled asynchronous transition systems, causal trees and Petri nets, the concurrency is modelled

implicitly through the relation of independence.

In [3, 5] Winskel, Nielsen and Joyal have applied the category theory to unify the many

models for concurrency and to establish the relationships between them. They have shown that



72 Nataliya S. Gribovskaya Causality versus True Concurrency in the Setting of Real-Time Models

the categories of such models as synchronization trees, transition systems, event structures,

transition systems with independence and asynchronous transition systems are related by core-

flections. In particular, they have found out the following facts. Intuitively, synchronization

trees are transition systems with no cyclic behaviour. Moreover, a synchronization tree may

be transferred to a special kind of an event structure with an empty independence relation.

The transition systems may be regarded as transition systems with independence in which the

independence relation is empty. An event structure may be translated to a special type of a

transition system with independence. Finally, transition systems with independence may be

considered as asynchronous transition systems, which have at most one transition with the

same label between two same states. Later Nielsen and Winskel proved that there exists a

coreflection between Petri nets and asynchronous transition systems (see [4]). In [2] Fröschle

and Lasota integrated a new model, the causal trees of Darondeau and Degano, into Winskel

and Nielsen’s framework. Also they have shown that there is an adjunction from causal trees

to event structures. Causal trees are some variant of synchronization trees with enriched action

labels that supply information about which transitions causally depend on each other. Thereby,

they reflect the only one aspect of true concurrency, causality. On the other hand, there is one

aspect in which event structures are less expressive than causal trees: their notion of run is in-

duced abstractly by the consistency and causal dependency relation. In particular, this means

the set of runs of any event structure is closed under the shuffling of concurrent transitions.

More recently, great efforts have been made to develop formal methods for real-time systems.

These are systems whose correctness depends crucially upon real-time considerations. As a

result, time extensions of concurrent models such as timed automata, times synchronization

trees, timed transition systems, timed event structures, and timed Petri nets have appeared and

have been investigated. However, only a few examples of the category theoretical classification

for timed models are described in literature.

The contribution of the paper is to show the applicability of the general categorical frame-

work proposed by Winskel and Nielsen and to clarify connections between real-time models of

concurrency. In particular, we defined categories for such models as timed transition systems,

timed synchronization trees, timed causal trees and timed event structure, and investigated

how they relate with each other. Moreover, using a larger model called timed event trees we

showed the existence of an adjunction from the category of timed causal trees to the category

of timed event structures.

The rest of the paper is organized as follows. The basic notions and notations of the category

theory are introduced in Section 2. In the next section, we define categories for timed extensions

of concurrent models and establish some of their properties. Five subsections of Section 3

describe five different models: timed transition systems, timed synchronization trees, timed



System Informatics (Системная информатика), No. 2 (2013) 73

causal trees, timed event structures and timed event trees. Relations between timed models

for concurrency are introduced in Section 4, which consists of five subsections. In the first

subsection a coreflection between the category of timed causal trees and the category of timed

synchronization trees is exhibited. The existence of a coreflection between the category of

timed causal trees and the category of timed event trees is shown in Subsection 4.2. The next

subsection proves the existence of a reflection between the category of timed event structures

and the category of timed event trees. In the fourth subsection, the construction of a coreflection

between the category of timed event structures and the category of timed synchronization trees

is described. Each of above subsections consists of definitions of two functors between two

certain categories, some useful propositions and the main theorem, which asserts the existence of

(co)reflection between the categories. Subsection 4.5 recapitulates the obtained results. Section

5 is the conclusion of the paper.

2. Basics of the Category Theory. In this section we will briefly recall some basic notions

and notations from the category theory [1]. Let us start with the definition of a category.

Definition 1. A category C consists of the following:

- a class ∣C∣, whose elements will be called “objects of the category”;

- for every pair A, B of objects, a set C(A,B), whose elements will be called “morphisms”

or “arrows” from A to B;

- for every triple A, B, C of objects, a composition law C(A,B) × C(B,C) Ð→ C(A,C).
The composite of the pair (f, g) will be written g ○ f or just gf ;

- for every object A, a morphism IA ∈ C(A,A), called the identity on A.

These data are subject to the following axioms.

- Associativity axiom: given morphisms f ∈ C(A,B), g ∈ C(B,C), h ∈ C(C,D) the following
equality holds: h ○ (g ○ f) = (h ○ g) ○ f ;

- Identity axiom: given morphisms f ∈ C(A,B), g ∈ C(B,C), the following equalities hold:

1B ○ f = f , g ○ 1B = g.

Now we adduce the notion of a functor (or a “homomorphism of categories”) with some of

their properties.

Definition 2. A functor F from a category C to a category D consists of the following:

- a mapping ∣C∣ Ð→ ∣D∣ between the classes of objects of C and D; the image of A ∈ C is

written F (A) or just FA;



74 Nataliya S. Gribovskaya Causality versus True Concurrency in the Setting of Real-Time Models

- for every pair of objects A,A′ of C, a mapping C(A,A′) Ð→ D(FA,FA′); the image of

f ∈ C(A,A′) is written F (f) or just Ff .

These data are subject to the following axioms:

- for every pair of morphisms f ∈ C(A,A′), g ∈ C(A′,A′′) F (g ○ f) = F (g) ○ F (f);

- for every object A ∈ C F (1A) = 1FA.

Definition 3. Consider a functor F ∶ C → D and for every pair of objects A,A′ ∈ C, the mapping

C(A,A′)→ D(FA,FA′), f ↦ Ff .

• The functor F is faithful when the above mentioned mappings are injective for all A,A′;

• The functor F is full when the above mentioned mappings are surjective for all A,A′;

• The functor F is full and faithful when the above mentioned mappings are bijective for all

A,A′;

• The functor F is an isomorphism of categories when it is full and faithful and induces a

bijection ∣C∣Ð→ ∣D∣ on the classes of objects.

There is a notion of natural transformations in the category theory, which is an adaptation

of the notion of a “homotopy” between two continuous functions from one space to another.

Definition 4. Consider two functors F,G ∶ C → D from a category C to a category D. A

natural transformation α ∶ F ⇒ G from F to G is a class of morphisms (αA ∶ FA→ GA)A∈C of

D indexed by the objects of C and such that for every morphism f ∶ A → A′ in C, αA′ ○ F (f) =
G(f) ○ αA.

One of the basic conceptions of the category theory is a notion of adjoint functors. There are

various definitions for adjoint functors. Their equivalence is elementary but not at all trivial.

We will use the definitions via reflections and coreflections along functors.

Definition 5. Let F ∶ C → D be a functor and B an object of D. A reflection of B along F is a

pair (RB, ηB) where RB is an object of C, ηB ∶ B → F (RB) is a morphism of D, and if A ∈ ∣C∣
is an object of C and b ∶ B → F (A) is a morphism of D, then there exists a unique morphism

a ∶ RB → A in C such that F (a) ○ ηB = b.

Definition 6. Let F ∶ C → D be a functor and B an object of D. A coreflection of B along F is

a pair (RB, ϵB) where RB is an object of C, ϵB ∶ F (RB)→ B is a morphism of D, and if A ∈ ∣C∣
is an object of C and b ∶ F (A) → B is a morphism of D, then there exists a unique morphism

a ∶ A→ RB in C such that ϵB ○ F (a) = b.



System Informatics (Системная информатика), No. 2 (2013) 75

Definition 7. A functor R ∶ D → C is left adjoint to the functor F ∶ C → D (and F is right

adjoint to R) when there exists a natural transformation η ∶ 1D ⇒ F ○R, called the unit of the

adjunction, such that for every B ∈ D, a pair (RB,ηB) is a reflection of B along F .

Definition 8. A functor R ∶ D → C is right adjoint to the functor F ∶ C → D (and F is left

adjoint to R) when there exists a natural transformation ϵ ∶ F ○R⇒ 1D, called the counit of the

adjunction, such that for every B ∈ D, a pair (RB, ϵB) is a coreflection of B along F .

We will call an adjunction in which the unit (the counit) is a natural isomorphism as a

coreflection (a reflection).

3. Models for Concurrency. In this section we study the timed extensions of five different

concurrent models. Four of them are well-known interleaving and true concurrency models, and

the fifth one is called event trees and embeds causal trees as well as event structures. Event

trees are like event structures because causality and concurrency are event-based, global notions.

They are like causal trees because their possible runs are specified explicitly by a tree.

We start by introducing of timed variants of the models, and then we define categories for

them.

3.1. Timed Transition Systems. Let R be a set of non-negative reals and L be a finite

alphabet of actions. Consider the definition of timed transition systems.

Definition 9. A timed transition system T over an alphabet L is a tuple (S, sin, L, T ), where
S is a set of states and sin is the initial state, T ⊆ S × L ×R ×R × S is a set of transitions

such that for all (s, σ, eot, lot, s′) ∈ T we have eot ≤ lot. We will write s
σÐ→

eot, lot
s′ to denote a

transition (s, σ, eot, lot, s′).

Let us define the behaviour of timed transition systems.

Definition 10. Let T be a timed transition system over L.

A configuration of T is a pair ⟨s, ν⟩, where s is a state and ν is a current global time

moment.

A run of T is a sequence γ = ⟨s0, ν0⟩
σ1→ ⟨s1, ν1⟩ . . . ⟨sn−1, νn−1⟩

σn→ ⟨sn, νn⟩ such that ν1 ≤
. . . ≤ νn and for all 1 ≤ i ≤ n there is a transition si−1

σi→
eoti, loti

si such that eoti ≤ νi ≤ loti. Here,
s0 = sin and ν0 is defined to be 0.

We are now ready to introduce the category of timed transition systems.

Definition 11. Given timed transition systems T = (S, sin, L, T ) and T ′ = (S′, s′in, L′, T ′),
a pair (µ,λ) is a morphism between T and T ′, if µ ∶ S → S′ and λ ∶ L → L′ are functions such

that µ(sin) = s′in, and if (s, σ, eot, lot, s′) ∈ T , then (µ(s), λ(σ), eot′, lot′, µ(s′)) ∈ T ′ for some

real numbers eot′ and lot′ such that eot′ ≤ eot and lot ≤ lot′.



76 Nataliya S. Gribovskaya Causality versus True Concurrency in the Setting of Real-Time Models

Timed transition systems and morphisms between them form a category of timed transition

systems,TTS, in which the composition of two morphisms (µ,λ) ∶ T → T ′ and (µ′, λ′) ∶ T ′ → T ′′

is defined as (µ′, λ′)○(µ,λ) ∶= (µ′ ○µ,λ′ ○λ), and the identity morphism is a pair of the identity

functions.

Lemma 1. Given a morphism (µ,λ) ∶ T → T ′ of TTS, if ⟨s0, ν0⟩
σ1→ ⟨s1, ν1⟩ . . . ⟨sn−1, νn−1⟩

σn→
⟨sn, νn⟩ is a run of T then ⟨µ(s0), ν0⟩

λ(σ1)→ ⟨µ(s1), ν1⟩ . . . ⟨µ(sn−1), νn−1⟩
λ(σn)→ ⟨µ(sn), νn⟩ will

be a run of T ′.

3.2. Timed Synchronization Trees. Now we contemplate the definition of timed syn-

chronization trees.

Definition 12. A timed synchronization tree S is a timed transition system (S, sin, L, T ) such
that

(i) for all s ∈ S there exists a sequence sin
σ1Ð→

eot1, lot1
s1 . . . sk−1

σkÐ→
eotk, lotk

sk (k ≥ 0) such that

s = sk;

(ii) for all sequence s0
σ1Ð→

eot1, lot1
s1 . . . sk−1

σkÐ→
eotk, lotk

sk (k ≥ 0) it holds if s0 = sk then k = 0;

(iii) if s′
σÐ→

eot, lot
s and s′′

σ′Ð→
eot′, lot′

s, then s′ = s′′, σ = σ′, eot = eot′ and lot = lot′.

Write TST for the full subcategory of timed synchronization trees in TTS.

3.3. Timed Causal Trees. In this subsection we introduce the timed extension of causal

trees, which are a generalization of synchronization trees.

Definition 13. A timed causal tree C is a tuple (S, sin, L, T,<) where (S, sin, L, T ) is a

timed synchronization tree and < ⊆ T ×T , the causal dependency relation, is a strict order such

that for all transitions (s, σ, eot, lot, s′) and (s′′, σ′, eot′, lot′, s′′′) of C if (s, σ, eot, lot, s′) <
(s′′, σ′, eot′, lot′, s′′′), then there exists a sequence s′

σ1Ð→
eot1, lot1

s1 . . . sk−1
σkÐ→

eotk, lotk
s′′ for some k ≥ 0.

We will say that two transitions (s, σ, eot, lot, s′) and (s′′, σ′, eot′, lot′, s′′′) of C are consistent
(denoted (s, σ, eot, lot, s′) Con (s′′, σ′, eot′, lot′, s′′′)) iff either (s, σ, eot, lot, s′) = (s′′, σ′, eot′,
lot′, s′′′) or there exists a sequence s0

σ1Ð→
eot1, lot1

s1 . . . sk−1
σkÐ→

eotk, lotk
sk (k ≥ 0) such that (s′ = s0

∧ s′′ = sk) or (s′′′ = s0 ∧ s = sk). A run of C = (S, sin, L, T,<) is a sequence γ = ⟨s0, ν0⟩
σ1→
K1

⟨s1, ν1⟩ . . . ⟨sn−1, νn−1⟩
σn→
Kn

⟨sn, νn⟩ such that ⟨s0, ν0⟩
σ1→ ⟨s1, ν1⟩ . . . ⟨sn−1, νn−1⟩

σn→ ⟨sn, νn⟩ is a run

of (S, sin, L, T ) and Ki = {j ∣ 1 ≤ j ≤ i, (sj−1, σj, eotj, lotj, sj) < (si−1, σi, eoti, loti, si)} for all

1 ≤ i ≤ n.
We are ready to equip timed causal trees with a notion of morphism and thus define a

category of timed causal trees.



System Informatics (Системная информатика), No. 2 (2013) 77

Definition 14. Given timed causal trees C = (S, s0, L, T,<) and C′ = (S′, s′0, L′, T ′, <′), a
pair (µ,λ) is a morphism between C and C′, if (µ,λ) is a morphism between timed synchro-

nization trees (S, s0, L, T ) and (S′, s′0, L′, T ′) and for all transitions (s, σ, eot, lot, s1) and
(s2, σ1, eot1, lot1, s3) of C, if (s, σ, eot, lot, s1) Con (s2, σ1, eot1, lot1, s3) and (µ(s), λ(σ), eot′,
lot′, µ(s1)) <′ (µ(s2), λ(σ1), eot′1, lot′1, µ(s3)) for some eot′, lot′, eot′1, lot

′
1 ∈ R such that

eot′ ≤ eot, lot ≤ lot′, eot′1 ≤ eot1 and lot1 ≤ lot′1, then (s, σ, eot, lot, s1) < (s2, σ1, eot1, lot1, s3).

Timed causal trees and their morphisms form a category of timed causal trees, TCT.

Lemma 2. Given a morphism (µ,λ) ∶ C → C′ of TCT, if γ = ⟨s0, ν0⟩
σ1→
K1

⟨s1, ν1⟩ . . . ⟨sn−1, νn−1⟩
σn→
Kn

⟨sn, νn⟩ is a run of C, then γ′ = ⟨µ(s0), ν0⟩
λ(σ1)→
K′1

⟨µ(s1), ν1⟩ . . . ⟨µ(sn−1), νn−1⟩
λ(σn)→
K′n
⟨µ(sn), νn⟩

will be a run of C′ for some K ′1, . . . ,K
′
n such that K ′i ⊆Ki for all 1 ≤ i ≤ n.

3.4. Timed Event Structures. This subsection is dedicated to the most popular true

concurrency model — timed event structures. Let us first give the definition of this model.

Definition 15. A timed event structure is a tuple E = (E, <, Con, L, l, Eot, Lot), where E
is a set of events; < ⊆ E ×E is a strict order (the causality relation), satisfying the principle of

finite causes: ∀e ∈ E ◇ e ↓= {e′ ∈ E ∣ e′ < e} is finite; Con ⊆ 2E (the consistency relation) consists

of finite subsets of events which can occur together in a run, satisfying the following principles:

∀e ∈ E ◇ {e} ∈ Con; Y ⊆ X ∈ Con ⇒ Y ∈ Con and X ∈ Con ∧ e < e′ ∈ X ⇒ X ∪ {e} ∈ Con; L
is a set of actions; l ∶ E → L is a labelling function and Eot, Lot ∶ E → R are functions of the

earliest and the latest occurrence times of events, satisfying the following: Eot(e) ≤ Lot(e) for
all e ∈ E.

Let C ⊆ E. Then C is left-closed iff ∀e, e′ ∈ E ◇ e ∈ C ∧ e′ < e ⇒ e′ ∈ C; C is consistent iff

C ∈ Con; C is a configuration of E iff C is left-closed and consistent. Let C(E) denote the set

of all finite configurations of E .

An execution of a timed event structure is a timed configuration which consists of a con-

figuration and a timing function recording global time moments at which events occur and

satisfies some additional requirements. Let E = (E, <, Con, L, l, Eot, Lot) be a timed event

structure, C ∈ C(E), and T ∶ C → R. Then TC = (C,T ) is a timed configuration of E iff

∀ e ∈ C ◇ Eot(e) ≤ T (e) ≤ Lot(e) and ∀ e, e′ ∈ C ◇ e < e′ ⇒ T (e) ≤ T (e′). Informally speaking,

the first condition expresses that an event can occur at a time when its timing constraints are

met; and the second condition states that for any two events e and e′ occurred if e causally

precedes e′, then e should temporally precede e′. We use TC(E) to denote the set of timed

configurations of E .



78 Nataliya S. Gribovskaya Causality versus True Concurrency in the Setting of Real-Time Models

Let E be a timed event structure and TC = (C,T ), TC ′ = (C ′, T ′) ∈ TC(E). We will write

TC
e→
d
TC ′ iff C ∪ {e} = C ′, and T ′∣C = T and T ′(e) = d. A run of E is a sequence of the form

TC0
e1→
d1
TC1

e2→
d2
. . .

en→
dn
TCn, where n ≥ 0 and TC0 = (∅,∅) is the initial timed configuration.

Now let us recall the notion of morphism between timed event structures.

Definition 16. Let E = (E, <, Con, L, l, Eot, Lot) and E ′ = (E′, <′, Con′, L′, l′, Eot′, Lot′)
be timed event structures. A pair (µ,λ), where µ ∶ E → E′ and λ ∶ L→ L′ are functions, is called

a morphism, if l′ ○ µ = λ ○ l and for all C ∈C(E) the following holds:

• µ C ∈C(E ′);

• ∀e, e′ ∈ C ◇ if µ(e) = µ(e′) then e = e′;

• ∀e ∈ C ◇ Eot′(µ(e)) ≤ Eot(e) and Lot(e) ≤ Lot′(µ(e)).

Timed event structures and their morphisms form a category of timed event structures,

TES.

Lemma 3. Given a morphism (µ,λ) ∶ E → E ′ of TES, if TC = (C,T ) is a timed configuration

of E , then TC ′ = (µ C,T ′), where T ′ ○ µ = T will be a timed configuration of E ′.

3.5. Timed Event Trees. The main goal of this paper is to expose an adjunction from

the category of timed causal trees to the category of timed event structures. In order to achieve

this aim, we will use a larger model, timed event trees, that embeds timed causal trees as well

as timed event structures.

Definition 17. A timed event tree ET is a tuple (S, sin, E, T , <, L, l, Eot, Lot), where
(S, sin, E, T ) is a timed synchronization tree, <⊆ E ×E is a strict order, L is a set of labels,

l ∶ E → L is a labelling function, and Eot, Lot ∶ E → R are functions of the earliest and latest

occurrence times of events, satisfying the following:

(i) for all e ∈ E there exists a transition (s, e, eot, lot, s′) ∈ T ;

(ii) if s
eÐ→

eot, lot
s′ and s

eÐ→
eot′, lot′

s′′, then eot = eot′, lot = lot′ and s′ = s′′;

(iii) if s
eÐ→

eot, lot
s′ and u

eÐ→
eot′, lot′

u′, then there is no sequence s0
e1Ð→

eot1, lot1
s1 . . . sk−1

ekÐ→
eotk, lotk

sk

(k ≥ 0) such that (s′ = s0 ∧ u = sk) or (u′ = s0 ∧ s = sk);

(iv) if e < e′ and s e′Ð→
eot, lot

s′ then there is a sequence s0
e1Ð→

eot1, lot1
s1 . . . sk−1

ekÐ→
eotk, lotk

sk (k ≥ 0)
such that e1 = e and s = sk;

(v) Eot(e) ≤ Lot(e), for all e ∈ E;



System Informatics (Системная информатика), No. 2 (2013) 79

(vi) Eot(e) ≤ eot ≤ lot ≤ Lot(e), for all (s, e, eot, lot, s1) ∈ T .

We say two events e, e′ of a timed event tree ET are consistent (denoted e ConET e′) iff

e = e′ or there exists a sequence s0
e1Ð→

eot1, lot1
s1 . . . sk−1

ekÐ→
eotk, lotk

sk (k ≥ 0) such that (e1 = e and

ek = e′) or (e1 = e′ and ek = e).
A run of ET is a sequence γ = ⟨s0, ν0⟩

e1→ ⟨s1, ν1⟩ . . . ⟨sn−1, νn−1⟩
en→ ⟨sn, νn⟩ such that ν0 ≤

ν1 ≤ . . . ≤ νn and for all 1 ≤ i ≤ n there is a transition si−1
ei→

eoti, loti
si such that eoti ≤ νi ≤ loti.

Here, s0 = sin and ν0 is defined to be 0.

Lemma 4. Let ET = (S, sin,E, T,<, L, l,Eot,Lot) is a timed event tree and sin
e1Ð→

eot1, lot1
s1 . . .

sn−1
enÐ→

eotn, lotn
sn for some n ≥ 1. Then en ↓⊆ {e1, . . . , en}.

Now let us define the category of timed event trees.

Definition 18. Let ET = (S, sin,E, T,<, L, l,Eot,Lot) and ET ′ = (S′, s′in, E′, T ′, <′, L′, l′,
Eot′, Lot′) be timed event trees. A pair (µ,λ), where µ ∶ E → E′ and λ ∶ L → L′ are functions,

is called a morphism, iff

(i) µ(e) ↓⊆ µ(e ↓);

(ii) l′ ○ µ = λ ○ l;

(iii) if sin
e1Ð→

eot1, lot1
s1 . . . sk−1

ekÐ→
eotk, lotk

sk (k ≥ 0), then s′in
µ(e1)Ð→

eot′1, lot′1

s′1 . . . s
′
k−1

µ(ek)Ð→
eot′

k
, lot′

k

s′k for some

s′j ∈ S′ and eot′j ≤ eotj and lotj ≤ lot′j (1 ≤ j ≤ k);

(iv) Eot′(µ(e)) ≤ Eot(e) and Lot(e) ≤ Lot′(µ(e)), for all e ∈ E.

Lemma 5. Given timed event trees ET = (S, sin, E, T , <, L, l, Eot, Lot) and ET ′ = (S′,
s′in, E

′, T ′, <′, L′, l′, Eot′, Lot′), a morphism (µ,λ) ∶ ET → ET ′ generates the unique function

σµ ∶ S → S′ such that (σµ, µ) is a morphism between (S, sin,E, T ) and (S′, s′in,E′, T ′), and

preserves concurrency: for all e, e′ ∈ E if e ConET e′ and µ(e) <′ µ(e′), then e < e′.

Timed event trees and morphisms between them form the category of timed event trees,

TET.

Lemma 6. Given a morphism (µ,λ) ∶ ET → ET ′ of TET, if we have a run γ = ⟨s0, ν0⟩
e1→ ⟨s1, ν1⟩

. . . ⟨sn−1, νn−1⟩
en→ ⟨sn, νn⟩ of T then γ′ = ⟨σµ(s0), ν0⟩

µ(e1)→ ⟨σµ(s1), ν1⟩ . . . ⟨σµ(sn−1), νn−1⟩
µ(en)→

⟨σµ(sn), νn⟩ will be the run of ET ′.

4. Relations Between Timed Models for Concurrency. In this section we investigate

how the category of timed causal trees relates to the other timed model categories. In particular,

we show that there is a coreflection from timed synchronization trees to timed causal trees, a



80 Nataliya S. Gribovskaya Causality versus True Concurrency in the Setting of Real-Time Models

coreflection from timed synchronization trees to timed event structures, a coreflection from

timed causal trees to timed event trees, and a reflection from timed event trees to timed event

structures. Thus, we will get the adjunction from timed causal trees to timed event structures

which arises as the composition of a coreflection from timed causal trees to timed event trees

and a reflection from timed event trees to timed event structures.

4.1. A coreflection between the categories TCT and TST. First, we investigate

a relation between the categories TCT and TST. Clearly, any timed causal tree is a timed

synchronization tree. Hence, we have a functor c2s ∶ TCT → TST that forgets about the

causality information and keeps morphisms. Moreover, it is easy to see that c2s is a faithful

functor.

On the other hand, every timed synchronization tree determines a timed causal tree, in

which the causal dependency relation is given by the order of the transitions in the tree. Now

we can define a functor s2c ∶ TST→ TCT.

Definition 19. Let S = (S, sin, L, T ) and S ′ = (S′, s′in, L′, T ′) be timed synchronization

trees and (µ,λ) ∶ S → S ′ be a morphism of TST. Define s2c(S) = (S, sin, L, T,<∗), where
(s, a, eot, lot, s′) <∗ (u, b, eot′, lot′, u′) if and only if there exists a sequence of transitions s′

e1Ð→
eot1, lot1

s1 . . . sk−1
ekÐ→

eotk, lotk
sk for some k ≥ 1 such that sk = u; and define s2c(µ,λ) = (µ,λ).

Proposition 1. The mapping s2c is a fully faithful functor.

Доказательство. First, we note that s2c(S) is a timed causal tree for all timed synchroniza-

tion trees S = (S, sin, L, T ).
Second, we should check that s2c(µ,λ) = (µ,λ) is a morphism of TCT for all mor-

phisms (µ,λ) ∶ S → S ′ of TST. We only need to prove that µ preserves concurrency. Let

(s, a, eot, lot, s′), (u, b, eot′, lot′, u′) ∈ T , (s, a, eot, lot, s′) Con (u, b, eot′, lot′, u′) and (µ(s),
λ(a), eot′, lot′, µ(s′)) <′∗ (µ(u), λ(b), eot′, lot′, u′). This implies the existence of a se-

quence µ(s′)
e′1Ð→

eot′1, lot′1

s′1 . . . s
′
k−1

e′kÐ→
eot′

k
, lot′

k

s′k = µ(u) for some k ≥ 1. Hence, (s, a, eot, lot, s′)

≠ (u, b, eot′, lot′, u′), by the item (ii) of Definition 12. Furthermore, since (s, a, eot, lot, s′)
Con (u, b, eot′, lot′, u′), we may conclude that either (s, a, eot, lot, s′) <∗ (u, b, eot′, lot′, u′) or
(u, b, eot′, lot′, u′) <∗ (s, a, eot, lot, s′). Assume (u, b, eot′, lot′, u′) <∗ (s, a, eot, lot, s′). This
means that there exists a sequence u′

e1Ð→
eot1, lot1

s1 . . . sl−1
elÐ→

eotl, lotl
sl = s for some l ≥ 1. This

implies that µ(u′)
λ(e1)Ð→

eot′′1 , lot′′1

µ(s1) . . . µ(sl−1)
λ(el)Ð→

eot′′
l
, lot′′

l

µ(sl) = µ(s). This contradicts the item (ii)

of Definition 12. Thus, (s, a, eot, lot, s′) <∗ (u, b, eot′, lot′, u′).
Third, consider an identity morphism (1S,1L) ∶ S → S and a pair of morphisms (σ,λ) ∶

S → S ′ and (σ′, λ′) ∶ S ′ → S ′′ from TST. It is obvious that s2c(1S, 1L) = (1S, 1L) and

s2c((σ′, λ′) ○ (σ,λ)) = s2c(σ′ ○ σ,λ′ ○ λ) = (σ′ ○ σ,λ′ ○ λ) = s2c(σ′, λ′) ○ s2c(σ,λ). Thus, s2c is

indeed a functor.



System Informatics (Системная информатика), No. 2 (2013) 81

Finally, we need to clarify that s2c is a fully faithful functor. Take arbitrary objects S and

S ′ of TST. Define a function FS,S′ ∶ TST(S,S ′)→ TCT(s2c(S), s2c(S ′)) such that FS,S′(σ,λ)
= s2c(σ,λ) = (σ,λ) for all morphisms (σ,λ) ∶ S → S ′ of TST. Since s2c is a functor, FS,S′

is a function. Moreover, it is easy to check that FS,S′ is injective, because FS,S′(σ,λ) = (σ,λ).
Hence, s2c is a faithful functor. Next, take an arbitrary morphism (σ,λ) ∶ s2c(S)→ s2c(S ′) of
TCT. Clearly, (σ,λ) is a morphism of TST from S to S ′ and FS,S′(σ,λ) = (σ,λ). Thus, s2c
is a full functor.

Proposition 2. Let S = (S, sin, L, T ) be a timed synchronization tree. Then s2c(S) is a timed

causal tree, (1S,1L) ∶ S → c2s(s2c(S)) is an isomorphism and the pair (s2c(S), (1S,1L)) is a

reflection of S along c2s.

Доказательство. It is clear that c2s(s2c(S)) = S. Hence, (1S,1L) ∶ S → c2s(s2c(S)) = S is

a morphism of TST. Moreover, it is an isomorphism.

Now we should prove that (s2c(S), (1S,1L)) is a reflection of S along c2s, i.e. whenever

C′ is a timed causal tree and (σ,λ) ∶ S → c2s(C′) is a morphism of TST, then there exists a

unique morphism (g, λ′) ∶ s2c(S) → C′ such that (σ,λ) = c2s(g, λ′) ○ (1S,1L). Since c2s(g, λ′)
= (g, λ′), we may conclude that λ′ must be equal to λ and g must match σ. Hence, we should

only show that (σ,λ) ∶ s2c(S) → C′ is a morphism of TCT. Since (σ,λ) ∶ S → c2s(C′) is

a morphism of TST, we only need to check that σ preserves concurrency. Take an arbitrary

(s, a, eot, lot, s′), (u, b, eot∗, lot∗, u′) ∈ T such that (s, a, eot, lot, s′) Con (u, b, eot∗, lot∗, u′) and
(σ(s), λ(a), eot′, lot′, σ(s′)) <′ (σ(u), λ(b), eot′∗, lot′∗, σ(u′)). Since C′ is a timed causal tree, we

may conclude that there exists a sequence σ(s′)
e′1Ð→

eot′1, lot′1

s̄1 . . . s̄k−1
e′kÐ→

eot′
k
, lot′

k

σ(u) for some k ≥ 1.

Since (s, a, eot, lot, s′) Con (u, b, eot∗, lot∗, u′), we have three admissible cases: (s, a, eot, lot,
s′) = (u, b, eot∗, lot∗, u′), (s, a, eot, lot, s′) <∗ (u, b, eot∗, lot∗, u′) and (u, b, eot∗, lot∗, u′) <∗

(s, a, eot, lot, s′). If (s, a, eot, lot, s′) = (u, b, eot∗, lot∗, u′) then (σ(s), λ(a), eot′, lot′, σ(s′))
= (σ(u), λ(b), eot′∗, lot′∗, σ(u′)), that contradicts our conditions. If (u, b, eot∗, lot∗, u′) <∗ (s,
a, eot, lot, s′), we have a sequence u′

e1Ð→
eot1, lot1

s̃1 . . . s̃m−1
emÐ→

eotm, lotm
s for some m ≥ 1. Hence, σ(u′)

λ(e1)Ð→
eot′′1 , lot′′1

σ(s̃1) . . . σ(s̃m−1)
λ(em)Ð→

eot′′m, lot′′m
σ(s). This contradicts the item (ii) of Definition 12. Hence,

(s, a, eot, lot, s′) <∗ (u, b, eot∗, lot∗, u′).

Thus we can conclude that (s2c(S), (1S,1L)) is a reflection of S along c2s.

The above results enable us to exhibit an adjunction between the categories TST and TCT.

Theorem 1. The functor c2s is right adjoint to s2c and this adjunction is a coreflection.

Доказательство. The first assertion follows from Proposition 2 and from the fact that for all

morphisms (σ,λ) ∶ C = (S, sin, L, T,<) → C′ = (S′, s′in, L′, T ′,<′) it is true that (1S′ ,1L′) ○



82 Nataliya S. Gribovskaya Causality versus True Concurrency in the Setting of Real-Time Models

(σ,λ) = (σ,λ) = s2c(c2s(σ,λ)) = s2c(c2s(σ,λ))○(1S,1L). Moreover, it follows from Proposition

2 that the unit ψ associates each timed synchronization tree S = (S, sin, L, T ) with the

isomorphism (1S,1L) ∶ S → c2s(s2c(S)). Hence, ψ is a natural isomorphism.

Thus, TST embeds fully and faithfully into TCT and is equivalent to the full subcategory

of TCT consisting of those timed causal trees C that are isomorphic to s2c(c2s(C)).
4.2. A coreflection between the categories TCT and TET. In this subsection we

establish that there is a coreflection from timed causal trees to timed event trees. Note that

any timed event tree gives rise to a timed causal tree by forgetting about events. Hence, we can

specify a functor et2c ∶ TET→ TCT.

Definition 20. Let ET = (S, sin,E, T,<, L, l,Eot,Lot) and ET ′ = (S′, s′in, E′, T ′, <′, L′,
l′, Eot′, Lot′) be timed event trees and (µ,λ) ∶ ET → ET ′ be a morphism of TET. De-

fine et2c(ET ) = (S, sin, L, T ∗,<∗), where T ∗ = {(s, l(e), eot, lot, s′) ∣ (s, e, eot, lot, s′) ∈ T},
(s, l(e), eot, lot, s′) <∗ (u, l(e′), eot′, lot′, u′) if and only if e < e′ and there exists a sequence s′

e1Ð→
eot1, lot1

s1 . . . sk−1
ekÐ→

eotk, lotk
u for some k ≥ 0; and define et2c(µ,λ) = (σµ, λ), where σµ ∶ S → S′

is defined by µ as in Lemma 5.

Proposition 3. The mapping et2c is a faithful functor.

Доказательство. It is clear that et2c(ET ) is indeed a timed causal tree for all timed event

trees ET . The fact that et2c(µ,λ) = (σµ, λ) is a morphism of TCT for all morphisms (µ,λ) ∶
ET → ET ′ of TET follows from Lemma 5 and the equation λ ○ l = l′ ○ µ. Next, we consider

an identity morphism (1E,1L) ∶ ET → ET and a pair of morphisms (µ,λ) ∶ ET → ET ′ and
(µ′, λ′) ∶ ET ′ → ET ′′ from TET. Obviously, et2c(1E,1L) = (σ1E ,1L) = (1S,1L), where (1S,1L) ∶
et2cET → et2cET is an identity morphism of TCT, and et2c((µ′, λ′) ○ (µ,λ)) = et2c(µ′ ○
µ,λ′ ○ λ) = (σµ′○µ, λ′ ○ λ) = (σµ′ ○ σµ, λ′ ○ λ) = et2c(µ′, λ′) ○ et2c(µ,λ). Hence, we can conclude

that et2c is a functor.

Now we need to show that the functor et2c is faithful. Take an arbitrary pair of objects ET
and ET ′ of TET. Define a function FET ,ET ′ ∶ TET(ET ,ET ′) → TCT(et2c(ET ),et2c(ET ′))
such that FET ,ET ′(µ,λ) = et2c(µ,λ) = (σµ, λ) for all morphisms (µ,λ) ∶ ET → ET ′ of TET.

Clearly, FET ,ET ′ is indeed a function, because et2c is a functor. Check that FET ,ET ′ is injec-

tive. Take arbitrary two morphisms (µ1, λ1) ∶ ET → ET ′ and (µ2, λ2) ∶ ET → ET ′ such that

FET ,ET ′(µ1, λ1) = FET ,ET ′(µ2, λ2). This implies that (σµ1 , λ1) = (σµ2 , λ2). Hence, λ1 = λ2 and σµ1

= σµ2 . Since σµ1 defines the function µ1 in a unique way, we may conclude that µ1 = µ2. Hence,

FET ,ET ′ is injective, i.e. et2c is a faithful functor.

Note, every timed causal tree C determines a timed event tree which is induced by C when

we assume that each transition of C represents a separate event. This means that we take



System Informatics (Системная информатика), No. 2 (2013) 83

the transitions of C as events , and label each arc of C by the corresponding transition. This

operation can be easily extended to a functor c2et ∶ TCT→ TET.

Definition 21. Let C = (S, sin, L, T,<) and C′ = (S′, s′in, L′, T ′,<′) be timed causal trees

and (σ,λ) ∶ C → C′ be a morphism of TCT. Define c2et(C) = (S, sin, T, T ⋆,<, L, l,Eot,Lot),
where T ⋆ = {(s, (s, a, eot, lot, s′), eot, lot, s′) ∣ (s, a, eot, lot, s′) ∈ T}, l(s, a, eot, lot, s′) = a,
Eot(s, a, eot, lot, s′) = eot and Lot(s, a, eot, lot, s′) = lot; and define c2et(σ,λ) = (µ,λ), where
µ ∶ T → T ′ is given by the following equality: µ(s, a, eot, lot, s′) = (σ(s), λ(a), eot′, lot′, σ(s′)) ∈ T ′

for some eot′ ≤ eot and lot ≤ lot′.

Proposition 4. The mapping c2et is a faithful functor.

Доказательство. It is easy to check that c2et(C) = (S, sin, T, T ⋆,<, L, l,Eot,Lot) is a timed

event tree for all timed causal trees C = (S, sin, L, T,<).

Now, we need to prove that c2et(σ,λ) ∶ c2et(C) → c2et(C′) is a morphism of TET

for all morphisms (σ,λ) ∶ C → C′ of TCT. W.l.o.g. assume that C = (S, sin, L, T,<) and
C′ = (S′, s′in, L′, T ′,<′). Then, c2et(C) = (S, sin, T , T ⋆, <, L, l, Eot, Lot) and c2et(C′)
= (S′, s′in, T ′, T ′⋆, <′, L′, l′, Eot′, Lot′), where T ⋆ = {(s, (s, a, eot, lot, s′), eot, lot, s′) ∣
(s, a, eot, lot, s′) ∈ T}, l(s, a, eot, lot, s′) = a, Eot(s, a, eot, lot, s′) = eot, Lot(s, a, eot, lot, s′) = lot,
T ′⋆ = {(u′, (u′, a′, eot′, lot′, u′′), eot′, lot′, u′′) ∣ (u′, a′, eot′, lot′, u′′) ∈ T ′}, l′(u′, a′, eot′, lot′, u′′) =
a′, Eot′(u′, a′, eot′, lot′, u′′) = eot′ and Lot′(u′, a′, eot′, lot′, u′′) = lot′. Moreover, c2et(σ,λ) =
(µ,λ), where µ associates (s, a, eot, lot, s′) ∈ T with some transition (σ(s), λ(a), eot′, lot′, σ(s′))
of c2et(C′) with eot′ ≤ eot and lot ≤ lot′. The existence and unicity of such transition follows

from the item (ii) of Definition 11 and the item (iii) of Definition 12. Hence, µ ∶ T → T ′ and

λ ∶ L→ L′ are functions. Check that (µ,λ) satisfies the requirements of Definition 18.

(i) Let us show that µ(s, a, eot, lot, s′) ↓⊆ µ((s, a, eot, lot, s′) ↓).

Take an arbitrary (s, a, eot, lot, s′) ∈ T . Using the items (i), (iii) of Definition 12, we can

find a unique sequence sin
a1Ð→

eot1, lot1
s1 . . . sk−1

akÐ→
eotk, lotk

sk = s for some k ≥ 0. Since (σ,λ) is

a morphism of TCT, we have σ(sin) = s′in
λ(a1)Ð→

eot′1, lot′1

σ(s1) . . . σ(sk−1)
λ(ak)Ð→

eot′
k
, lot′

k

σ(sk) = σ(s)
λ(a)
Ð→

eot′, lot′
σ(s′) for some eot′1, . . ., eot

′
k, eot

′, lot′1, . . ., lot
′
k, lot

′ ∈ R such that eot′ ≤ eot,
lot ≤ lot′ and eot′j ≤ eotj and lotj ≤ lot′j for all 1 ≤ j ≤ k. Clearly, µ(s, a, eot, lot, s′) = (σ(s),
λ(a), eot′, lot′, σ(s′)). Since c2et(C′) is a timed event tree, we have µ(s, a, eot, lot, s′) ↓
⊆ {(σ(sin) = s′in, λ(a1), eot′1, lot′1, σ(s1)), . . ., (σ(sk−1), λ(ak), eot′k, lot′k, σ(s))} by Lemma

4. Hence, if e′ <′ µ(s, a, eot, lot, s′) then e′ = (σ(sj−1), λ(aj), eot′j, lot′j, σ(sj)) = µ(sj−1,
aj, eotj, lotj, sj) for some 1 ≤ j ≤ k. This implies µ(sj−1, aj, eotj, lotj, sj) <′ µ(s, a,
eot, lot, s′). According to Definition 14, it is easy to see that (sj−1, aj, eotj, lotj, sj)



84 Nataliya S. Gribovskaya Causality versus True Concurrency in the Setting of Real-Time Models

< (s, a, eot, lot, s′). Thus, (sj−1, aj, eotj, lotj, sj) ∈ (s,a, eot, lot, s′) ↓. Furthermore,

µ(s, a, eot, lot, s′) ↓ ⊆ µ((s, a, eot, lot, s′) ↓).

(ii) It is clear that l′ ○ µ(s, a, eot, lot, s′) = l′(σ(s), λ(a), eot′, lot′, σ(s′)) = λ(a) = λ ○ l(s, a,
eot, lot, s′) for all (s, a, eot, lot, s′) ∈ T .

(iii) Let sin
(sin,a1,eot1,lot1,s1)Ð→

eot1, lot1
s1 . . . sk−1

(sk−1,ak,eotk,lotk,sk)Ð→
eotk, lotk

sk (k ≥ 0) in c2et(C). This means that

sin
a1Ð→

eot1, lot1
s1 . . . sk−1

akÐ→
eotk, lotk

sk in C. Since (σ,λ) is a morphism of TCT, we may conclude

that σ(sin) = s′in
λ(a1)Ð→

eot′1, lot′1

σ(s1) . . . σ(sk−1)
λ(ak)Ð→

eot′
k
, lot′

k

σ(sk) in C′ for some eot′1, . . ., eot
′
k, lot

′
1,

. . ., lot′k ∈ R such that eot′j ≤ eotj and lotj ≤ lot′j for all 1 ≤ j ≤ k. Hence, σ(sin) = s′in
(σ(sin),λ(a1),eot′1,lot

′
1,σ(s1))Ð→

eot′1, lot′1

σ(s1) . . . σ(sk−1)
(σ(sk−1),λ(ak),eot′k,lot

′
k,σ(sk))Ð→

eot′
k
, lot′

k

σ(sk) in c2et(C′) and for

all 1 ≤ j ≤ k it holds that µ(sj−1, aj, eotj, lotj, sj) = (σ(sj−1), λ(aj), eot′j, lot′j, σ(sj)).

(iv) Obviously, Eot′(µ(s, a, eot, lot, s′)) = eot′ ≤ eot = Eot(s, a, eot, lot, s′) and Lot(s, a, eot,
lot, s′) = lot ≤ lot′ = Lot′(µ(s, a, eot, lot, s′)) for all (s, a, eot, lot, s′) ∈ T .

This means that (µ,λ) is indeed a morphism of TET from c2et(C) to c2et(C′).

Next, we consider an identity morphism (1S,1L) ∶ C → C and a pair of morphisms (σ,λ) ∶
C → C′ and (σ′, λ′) ∶ C′ → C′′ from TCT. Clearly, c2et(1S,1L) = (µ1S ,1L ,1L) = (1T ,1L), where
(1T ,1L) ∶ c2etC → c2etC is an identity morphism of TET, and c2et((σ′, λ′)○(σ,λ)) = c2et(σ′○
σ,λ′○λ) = (µσ′○σ,λ′○λ, λ′○λ) = (µσ′,λ′ ○µσ,λ, λ′○λ) = c2et(σ′, λ′)○c2et(σ,λ). Thus, c2et is indeed
a functor.

In conclusion we prove that the functor c2et is faithful. Take an arbitrary pair of timed

causal trees C and C′. Define a function FC,C′ ∶ TCT(C,C′) → TET(c2et(C),c2et(C′)) such
that FC,C′(σ,λ) = c2et(σ,λ) = (µσ,λ, λ) for all morphisms (σ,λ) ∶ C → C′ of TCT. It is easy

to see that FC,C′ is indeed a function, because c2et is a functor. Verify that FC,C′ is an in-

jective function. Take arbitrary two morphisms (σ1, λ1) ∶ C → C′ and (σ2, λ2) ∶ C → C′ such
that FC,C′(σ1, λ1) = FC,C′(σ2, λ2). This implies (µσ1,λ1 , λ1) = (µσ2,λ2 , λ2). Hence, λ1 = λ2 and

µσ1,λ1 = µσ2,λ2 . Contemplate an arbitrary state s ∈ S. Since C is a timed synchronization tree,

we have some transition (s′, a, eot, lot, s) of C. Clearly, for all i = 1,2 µσi,λi
(s′, a, eot, lot, s) =

(σi(s′), λi(a), eoti, loti, σi(s)) ∈ T ′. Since µσ1,λ1 = µσ2,λ2 , we have (σ1(s′), λ1(a), eot1, lot1, σ1(s))
= (σ2(s′), λ2(a), eot2, lot2, σ2(s)). Hence, σ1(s) = σ2(s). This fact implies σ1 = σ2. Thus, FC,C′

is injective, i.e. c2et is a faithful functor.

Proposition 5. Let C = (S, sin, L, T,<) be a timed causal tree. Then c2et(C) is a timed

event tree, (1S,1L) ∶ C → et2c(c2et(C)) is an isomorphism and the pair (c2et(C), (1S,1L)) is
a reflection of C along et2c.



System Informatics (Системная информатика), No. 2 (2013) 85

Доказательство. Since c2et is a functor, c2et(C) is a timed event tree. Obviously, c2et(C)
= (S, sin, T , T ⋆, <, L, l, Eot, Lot), where T ⋆ = {(s, (s, a, eot, lot, s′), eot, lot, s′) ∣ (s, a,
eot, lot, s′) ∈ T}, l(s, a, eot, lot, s′) = a, Eot(s, a, eot, lot, s′) = eot and Lot(s, a, eot, lot, s′) = lot.
Contemplate a timed causal tree et2c(c2et(C)). Clearly, et2c(c2et(C)) = (S, sin, L, T ∗∗,<∗∗),
where T ∗∗ = {(s, l(e), eot, lot, s′) ∣ e ∈ T and (s, e, eot, lot, s′) ∈ T ⋆} and (s, l(e), eot, lot, s′) <∗∗

(u, l(e′), eot′, lot′, u′) ⇐⇒ e, e′ ∈ T , e < e′ and ∃ s′
(s′,a1,eot1,lot1,s1)Ð→

eot1, lot1
s1 . . . sk−1

(sk−1,ak,eotk,lotk,sk)Ð→
eotk, lotk

sk = u (k ≥ 0) in c2et(C). Hence, T ∗∗ = {(s, l(s, a, eot, lot, s′), eot, lot, s′) ∣ (s, a, eot, lot, s′) ∈ T}
= T . Moreover, it holds that (s, l(e), eot, lot, s′) <∗∗ (u, l(e′) = b, eot′, lot′, u′) ⇐⇒ e =
(s, a, eot, lot, s′), e′ = (u, b, eot′, lot′, u′), (s, a, eot, lot, s′) < (u, b, eot′, lot′, u′) and ∃ s′

a1Ð→
eot1, lot1

s1 . . . sk−1
akÐ→

eotk, lotk
sk = u (k ≥ 0) in C. Because C is a timed causal tree, we have (s,

l((s, a, eot, lot, s′)) = a, eot, lot, s′) <∗∗ (u, l((u, b, eot′, lot′, u′)) = b, eot′, lot′, u′) ⇐⇒ (s, a,
eot, lot, s′) < (u, b, eot′, lot′, u′), i.e. <=<∗∗. Thus, et2c(c2et(C)) = C.

Clearly, (1S,1L) ∶ C → et2c(c2et(C)) = C is a morphism of TCT. Furthermore, it is an

isomorphism.

Now we should prove that (c2et(C), (1S,1L)) is a reflection of C along et2c, i.e. whenever

ET ′ is a timed event tree and (σ,λ) ∶ C → et2c(ET ′) is a morphism of TCT, there exists

a unique morphism (g, λ′) ∶ c2et(C) → ET ′ such that (σ,λ) = et2c(g, λ′) ○ (1S,1L). Since
et2c(g, λ′) = (σg, λ′), we may conclude that λ′ must be equal to λ and g must be defined so

that σg = σ.

W.l.o.g. assume that ET ′ = (S′, s′in,E′, T ′,<′, L′, l′,Eot′, Lot′) and (σ,λ) ∶ C → et2c(ET ′) is a
morphism of TCT. Obviously, et2c(ET ′) = (S′, s′in, L′, T ′∗, <′∗), where T ′∗ = {(u, l′(e), eot, lot,
u′) ∣ (u, e, eot, lot, u′) ∈ T ′} and (u, l′(e), eot, lot, u′) <′∗ (t, l′(e′), eot′, lot′, t′) ⇐⇒ e <′ e′ and
there exists a sequence u′

e1Ð→
eot1, lot1

s1 . . . sk−1
ekÐ→

eotk, lotk
t for some k ≥ 0. Define a mapping g ∶ T → E′

as follows: g(s, a, eot, lot, s′) = e′ such that l′(e′) = λ(a) and (σ(s), e′, eot′, lot′, σ(s′)) ∈ T ′ for
some eot′, lot′ ∈R with eot′ ≤ eot and lot ≤ lot′.

First, check that g is a function. Let (s, a, eot, lot, s′) ∈ T . Since (σ,λ) is a morphism of TCT,

we have that (σ(s), λ(a), eot′, lot′, σ(s′)) ∈ T ′∗ for some eot′, lot′ ∈ R such that eot′ ≤ eot
and lot ≤ lot′. This implies that (σ(s), e′, eot′, lot′, σ(s′)) ∈ T ′ for some e′ ∈ E′ such that

l′(e′) = λ(a). Hence, for all (s, a, eot, lot, s′) ∈ T there is an event e′ such that l′(e′) = λ(a) and
(σ(s), e′, eot′, lot′, σ(s′)) ∈ T ′ for some eot′, lot′ ∈ R with eot′ ≤ eot and lot ≤ lot′. Suppose that

we have e′, e′′ ∈ E′ such that (σ(s), e′, eot′, lot′, σ(s′)), (σ(s), e′′, eot′′, lot′′, σ(s′)) ∈ T ′, eot′ ≤ eot,
lot ≤ lot′, eot′′ ≤ eot, lot ≤ lot′′ and l′(e′) = l′(e′′) = λ(a). Due to the item (iii) of Definition 12,

it holds that e′ = e′′. Thus, g is well defined.

Second, establish that (g, λ) ∶ c2et(C)→ ET ′ is a morphism of TET.

• Check that g(s, a, eot, lot, s′) ↓⊆ g((s, a, eot, lot, s′) ↓).



86 Nataliya S. Gribovskaya Causality versus True Concurrency in the Setting of Real-Time Models

Assume e′′ ∈ g(s, a, eot, lot, s′) ↓. It means that e′′ <′ e′ = g(s, a, eot, lot, s′) with (σ(s),
e′, eot′, lot′, σ(s′)) ∈ T ′ and l′(e′) = λ(a). Due to the items (i), (iii) of Definition 12,

we have a unique sequence sin
a1Ð→

eot1, lot1
s1 . . . sk−1

akÐ→
eotk, lotk

sk = s in C. It means that

sin
(sin,a1,eot1,lot1,s1)Ð→

eot1, lot1
s1 . . . sk−1

(sk−1,ak,eotk,lotk,sk)Ð→
eotk, lotk

sk = s
(s,a,eot,lot,s′)
Ð→

eot, lot
s′ in c2et(C). From

Lemma 4 we get (s, a, eot, lot, s′) ↓⊆ {(sin, a1, eot1, lot1, s1), . . . , (sk−1, ak, eotk, lotk, sk =
s), (s, a, eot, lot, s′)}. Since (σ,λ) is a morphism, it holds that σ(sin) = s′in

λ(a1)Ð→
eot′1, lot′1

σ(s1)

. . . σ(sk−1)
λ(ak)Ð→

eot′
k
, lot′

k

σ(sk) = σ(s)
λ(a)
Ð→

eot′, lot′
σ(s′) in et2c(ET ′) for some eot′, eot′1, . . ., eot

′
k,

lot′, lot′1, . . ., lot
′
k ∈ R such that eot′ ≤ eot, lot ≤ lot′, and eot′j ≤ eotj and lotj ≤ lot′j

for all 1 ≤ j ≤ k. Hence, σ(sin) = s′in
e′1Ð→

eot′1, lot′1

σ(s1) . . . σ(sk−1)
e′kÐ→

eot′
k
, lot′

k

σ(sk) = σ(s)
e′Ð→

eot′, lot′
σ(s′) in ET ′ for some e′, e′1, . . . , e

′
k ∈ E′ such that l′(e′) = λ(a), l′(e′j) = λ(aj)

for all 1 ≤ j ≤ k. Moreover, it is easy to see that g(s, a, eot, lot, s′) = e′, g(sj−1, aj,
eotj, lotj, sj) = e′j (1 ≤ j ≤ k). Since ET ′ is a timed event tree, we may conclude that

g(s, a, eot, lot, s′) ↓⊆ {g(sin, a1, eot1, lot1, s1), . . ., g(sk−1, ak, eotk, lotk, sk = s)} by Lemma

4. Assume e′′ ∈ g(s, a, eot, lot, s′) ↓. It means that e′′ = g(sj−1, aj, eotj, lotj, sj) = e′j for

some 1 ≤ j ≤ k. This implies that (σ(sj−1), e′j, eot′j, lot′j, σ(sj)) <′∗ (σ(s), e′, eot′, lot′, σ(s′)).
According to Definition 14, it holds that (sj−1, ej, eotj, lotj, sj) < (s, e, eot, lot, s′). Thus,
e′′ ∈ g((s, a, eot, lot, s′) ↓).

• Obviously, l′ ○ g(s, a, eot, lot, s′) = l′(e′) = λ(a) = λ ○ l(s, a, eot, lot, s′).

• Let sin
(sin,a1,eot1,lot1,s1)Ð→

eot1, lot1
s1 . . . sk−1

(sk−1,ak,eotk,lotk,sk)Ð→
eotk, lotk

sk (k ≥ 0) in c2et(C). This means that

sin
a1Ð→

eot1, lot1
s1 . . . sk−1

akÐ→
eotk, lotk

sk in C. Since (σ,λ) is a morphism, we may conclude that

σ(sin) = s′in
λ(a1)Ð→

eot′1, lot′1

σ(s1) . . . σ(sk−1)
λ(ak)Ð→

eot′
k
, lot′

k

σ(sk) in et2c(ET ′) for some eot′1, . . ., eot
′
k,

lot′1, . . ., lot
′
k ∈ R such that eot′j ≤ eotj and lotj ≤ lot′j for all 1 ≤ j ≤ k. This implies that

σ(sin) = s′in
e′1Ð→

eot′1, lot′1

σ(s1) . . . σ(sk−1)
e′kÐ→

eot′
k
, lot′

k

σ(sk) in ET ′ for some e′1, . . . , e
′
k ∈ E′ such

that l′(e′j) = λ(aj) for all 1 ≤ j ≤ k. Moreover, it is easy to see that g(sj−1, aj, eotj, lotj,
sj) = e′j (1 ≤ j ≤ k).

• Note that Eot′(g(s, a, eot, lot, s′)) ≤ eot′ ≤ eot = Eot(s, a, eot, lot, s′) and Lot(s, a, eot,
lot, s′) = lot ≤ lot′ ≤ Lot′(g(s, a, eot, lot, s′)).

Thus, (g, λ) is indeed a morphism of TET from c2et(C) to ET ′.
It is easy to see that (σ,λ) = (σg, λ) and g is a unique function such that σg = σ. Furthermore,

(c2et(C), (1S,1L)) is a reflection of C along et2c.

Now we can summarize the obtained results in order to introduce an adjunction between

TET and TCT.



System Informatics (Системная информатика), No. 2 (2013) 87

Theorem 2. The functor et2c is right adjoint to c2et and this adjunction is a coreflection.

Доказательство. The first statement follows from Proposition 5 and from the fact that for

all morphisms (σ,λ) ∶ C = (S, sin, L, T,<) → C′ = (S′, s′in, L′, T ′,<′) it is true that (1S′ ,1L′) ○
(σ,λ) = (σ,λ) = et2c(c2et(σ,λ)) = et2c(c2et(σ,λ)) ○ (1S,1L). Next, due to Proposition 5 we

may conclude that the unit ψ associates each timed causal tree C = (S, sin, L, T,<) with the

isomorphism (1S,1L) ∶ C → et2c(c2et(C)). Hence, ψ is a natural isomorphism.

Thus, TCT embeds fully and faithfully into TET and is equivalent to the full subcategory

of TET consisting of those timed event trees ET that are isomorphic to c2et(et2c(ET )).

4.3. A reflection between the categories TES and TET. This subsection is dedicated

to investigation of the categories TES and TET and a relation between them. The runs of a

timed event structure can be ordered in a tree. Hence, any timed event structure forms a timed

event tree whose states are the runs of the timed event structure. This gives rise to a functor

e2et ∶ TES→ TET.

Definition 22. Let E = (E, <, Con, L, l, Eot, Lot) and E ′ = (E′, <′, Con′, L′, l′, Eot′, Lot′)
be timed event structures and (µ,λ) ∶ E → E ′ be a morphism from TES. Define e2et(E) = (S,
ϵ, E, Tran, <, L, l, Eot, Lot), where S = {e1 . . . en ∈ E∗ ∣ n ≥ 0,{e1, . . . , en} ∈ C(E) and for all

1 ≤ i, j ≤ n if ei < ej then i < j} and Tran = {(e1 . . . en, en+1,Eot(en+1), Lot(en+1), e1 . . . enen+1) ∣
e1 . . . en, e1 . . . enen+1 ∈ S}; and define e2et(µ,λ) = (µ,λ).

Proposition 6. The mapping e2et is a fully faithful functor.

Доказательство. First, we need to show that e2et(E) is a timed event tree for all timed event

structures E . Using the definition of the sets S and Tran, we may easy check that (S, ϵ, E,
Tran) is a timed synchronization tree. Note that <⊆ E×E is a strict order, because E is a timed

event structure. Next, we should prove that e2et(E) satisfies the requirements of Definition 17:

(i) for all e ∈ E there exists a transition (s, e, eot, lot, s′) ∈ Tran.

Clearly, C = e ↓ ∪{e} ∈ C(E). W.l.o.g. assume that C = {e1, . . . , en} for some n ≥ 0 such

that en = e and for all 1 ≤ i, j ≤ n if (ei < ej) then i < j. Define si = e1 . . . ei for all 1 ≤ i ≤ n
and s0 = sin = ϵ. Obviously, for all 1 ≤ i ≤ n, si ∈ S and (si−1, ei,Eot(ei), Lot(ei), si) ∈ Tran.

(ii) if (s, e, eot, lot, s′), (s, e, eot′, lot′, s′′) ∈ Tran, then (s, e, eot, lot, s′) = (s, e, eot′, lot′, s′′).

Due to the definition of the set Tran, we have that s = e∗1 . . . e
∗
m for some m ≥ 0,

s′ = e∗1 . . . e∗me, s′′ = e∗1 . . . e∗me and eot = eot′ = Eot(e) and lot = lot′ = Lot(e). Hence,
(s, e, eot, lot, s′) = (s, e, eot′, lot′, s′′).



88 Nataliya S. Gribovskaya Causality versus True Concurrency in the Setting of Real-Time Models

(iii) if (s, e, eot, lot, s′), (u, e, eot′, lot′, u′) ∈ Tran, then there is no sequence s0
e1Ð→

eot1, lot1
s1 . . .

sk−1
ekÐ→

eotk, lotk
sk (k ≥ 0) such that (s′ = s0 ∧ u = sk) or (u′ = s0 ∧ s = sk).

Suppose that (s, e, eot, lot, s′), (u, e, eot′, lot′, u′) ∈ Tran. By the construction of the set

Tran, we have that s = e∗1 . . . e∗m for some m ≥ 0, s′ = e∗1 . . . e∗me, u = e′1 . . . e′k for some k ≥ 0
and u′ = e′1 . . . e′ke. This means that e ∈ s′, e ∈ u′, e /∈ s and e /∈ u. It is easy to see that if s0

e1Ð→
eot1, lot1

s1 . . . sk−1
ekÐ→

eotk, lotk
sk (k ≥ 0) then s0 is a prefix of sk. Hence, if s′ = s0 then u ≠ sk

and if u′ = s0 then s ≠ sk.

(iv) if e < e′ and (s, e′, eot, lot, s′) ∈ Tran, then there is a sequence s0
e1Ð→

eot1, lot1
s1 . . . sk−1

ekÐ→
eotk, lotk

sk (k ≥ 0) such that e1 = e and s = sk.

Since (s, e′, eot, lot, s′) ∈ Tran we have that s = e∗1 . . . e∗m for some m ≥ 0, s′ = e∗1 . . . e∗me′

and {e∗1 , . . . , e∗m}, {e∗1, . . . , e∗m, e′} ∈ C(E). Hence, e ∈ {e∗1, . . . , e∗m}. W.l.o.g. assume e = e∗j
for some 1 ≤ j ≤ m. Define s∗i = e∗1 . . . e∗i for all 1 ≤ i ≤ m and s∗m+1 = e∗1 . . . e∗me′. Clearly,
s∗j−1

ej=eÐ→
Eot(ej), Lot(ej)

s∗j . . . s
∗
m−1

emÐ→
Eot(em), Lot(em)

s∗m
e′Ð→

Eot(e′), Lot(e′)
s∗m+1(m ≥ 0).

(v) Eot(e) ≤ Lot(e) for all e ∈ E.

This follows from the fact that E is a timed event structure.

(vi) for all (s, e, eot, lot, s1) ∈ Tran Eot(e) ≤ eot ≤ lot ≤ Lot(e).

Clearly, for all (s, e, eot, lot, s1) ∈ Tran Eot(e) = eot ≤ lot = Lot(e).

Thus, e2et(E) is a timed event tree.

Second, we need to prove that e2et(µ,λ) ∶ e2et(E) → e2et(E ′) is a morphism of TET for

all morphisms (µ,λ) ∶ E → E ′ of TES. W.l.o.g. assume that E = (E, <, Con, L, l, Eot, Lot) and
E ′ = (E′, <′, Con′, L′, l′, Eot′, Lot′). Then, e2et(E) = (S, ϵ, E, Tran, <, L, l, Eot, Lot) and
e2et(E ′) = (S′, ϵ, E′, Tran′, <′, L′, l′, Eot′, Lot′). Since (µ,λ) ∶ E → E ′ is a morphism of TES,

we get µ ∶ E → E′ and λ ∶ L → L′ are functions and l′ ○ µ = λ ○ l. Check that (µ,λ) satisfies the
requirements of Definition 18.

• Let us show that µ(e) ↓⊆ µ(e ↓).

Take an arbitrary e ∈ E. Obviously, C = e ↓ ∪{e} ∈ C(E). Hence, µ C ∈ C(E ′). Since
µ(e) ∈ µ C, we have that µ(e) ↓⊆ µ C = µ(e ↓) ∪ {µ(e)}. Because (µ,λ) is a morphism of

TES, we have µ(e) ↓ ∩{µ(e)} = ∅. Thus, µ(e) ↓⊆ µ(e ↓).

• Let sin
e1Ð→

eot1, lot1
s1 . . . sn−1

enÐ→
eotn, lotn

sn for some n ≥ 0. Due to the definition of the set

Tran, we have that sin = ϵ, and for all 1 ≤ i ≤ n si = e1 . . . ei ∈ S, eoti = Eot(ei) and loti =
Lot(ei). Since si ∈ S (1 ≤ i ≤ n), we get {e1, . . . , ei} ∈C(E) for all 1 ≤ i ≤ n. Because (µ,λ)
is a morphism of TES, it holds that {µ(e1), . . . , µ(ei)} ∈ C(E ′) for all 1 ≤ i ≤ k. Define



System Informatics (Системная информатика), No. 2 (2013) 89

s′i = µ(e1) . . . µ(ei) for all 1 ≤ i ≤ n. Clearly, s′i ∈ S′ (1 ≤ i ≤ k) and s′in
µ(e1)Ð→

Eot′(µ(e1)), Lot′(µ(e1))

s′1 . . . s
′
n−1

µ(en)Ð→
Eot′(µ(en)), Lot′(µ(en))

s′n, Eot
′(µ(ej)) ≤ Eot(ej) and Lot(ej) ≤ Lot′(µ(ej)) for

all 1 ≤ j ≤ k.

• Clearly, Eot′(µ(e)) ≤ Eot(e) and Lot(e) ≤ Lot′(µ(e)) for all e ∈ E, since (µ,λ) is a

morphism of TES.

This means that (µ,λ) is indeed a morphism of TET from e2et(E) to e2et(E ′).

Third, consider an identity morphism (1E,1L) ∶ E → E and a pair of morphisms (µ,λ) ∶ E → E ′

and (µ′, λ′) ∶ E ′ → E ′′ from TES. Clearly, e2et(1E,1L) = (1E,1L), and e2et((µ′, λ′) ○ (µ,λ))
= e2et(µ′ ○ µ,λ′ ○ λ) = (µ′ ○ µ,λ′ ○ λ) = (µ′, λ′) ○ (µ,λ) = e2et((µ′, λ′)) ○ e2et(µ,λ). Thus, we
have that e2et is indeed a functor.

Finally, we need to show that e2et is a fully faithful functor. Take an arbitrary objects

E and E ′ of TES. Define a function FE,E ′ ∶ TES(E ,E ′) → TET(e2et(E),e2et(E ′)) such that

FE,E ′(µ,λ) = e2et(µ,λ) = (µ,λ) for all morphisms (µ,λ) ∶ E → E ′ of TES. It is obvious that

FE,E ′ is a function, because e2et is a functor. It is easy to see that FE,E ′ is injective, because

FE,E ′(µ,λ) = (µ,λ). Hence, e2et is a faithful functor. Check that FE,E ′ is a surjective function.

Take an arbitrary morphism (µ,λ) ∶ e2et(E) → e2et(E ′) of TET. Since (µ,λ) is a morphism

of TET, we may conclude that µ ∶ E → E′ and λ ∶ L → L′ are functions, l′ ○ µ = λ ○ l and
Eot′(µ(e)) ≤ Eot(e) and Lot(e) ≤ Lot′(µ(e)) for all e ∈ E. Let C be a configuration of E . By
the definition of the sets of states of e2et(E) and e2et(E ′), we get that µ C ∈ C(E ′) and for

all e, e′ ∈ C if µ(e) = µ(e′) then e = e′. This implies that (µ,λ) is a morphism of TES and

FE,E ′(µ,λ) = (µ,λ). Therefore, e2et is a full functor.

Note that we can transform any timed event tree into a timed event structure, defining the

set of consistent events as a set of events that appear together on some branch and ignoring

the tree structure. Thus we obtain a functor et2e ∶ TET→ TES.

Definition 23. Let ET = (S, sin, E, T , <, L, l, Eot, Lot) and ET ′ = (S′, s′in, E′, T ′, <′, L′,
l′, Eot′, Lot′) be timed event trees. Define et2e(ET ) as (E, <, Con, L, l, Eot, Lot), where
Con exactly contains all subsets A of the sets {e1, . . . , ek} ⊆ E (k ≥ 0) such that there are states

s1, . . ., sk ∈ S with sin
e1Ð→

eot1, lot1
s1 . . . sk−1

ekÐ→
eotk, lotk

sk for some eot1, . . . , eotk, lot1, . . . , lotk ∈ R.

Moreover, et2e(µ,λ) = (µ,λ).

Proposition 7. The mapping et2e is a faithful functor.

Доказательство. First, we need to show that et2e(ET ) is a timed event structure for all

timed event trees ET . It follows from Definition 17 and Lemma 4.



90 Nataliya S. Gribovskaya Causality versus True Concurrency in the Setting of Real-Time Models

Second, we have to prove that et2e(µ,λ) ∶ et2e(ET ) → et2e(ET ′) is a morphism of TES

for all morphisms (µ,λ) ∶ ET → ET ′ of TET. Since (µ,λ) ∶ ET → ET ′ is a morphism of TET,

we may conclude that µ ∶ E → E′ and λ ∶ L→ L′ are functions and l′ ○ µ = λ ○ l.
Take an arbitrary configuration C in the timed event structure et2e(ET ). Check that

µ C ∈C(et2e(ET ′)).
Since C is a configuration, it holds that C ∈ Con and if e < e′ ∈ C then e ∈ C. Hence,

there exist events e1, . . . , ek ∈ E such that sin
e1Ð→

eot1, lot1
s1 . . . sk−1

ekÐ→
eotk, lotk

sk (k ≥ 0) in ET for

some s1, . . ., sk ∈ S and C ⊆ {e1, . . . , ek}. According to the item (iii) of Definition 18, we get

that s′in
µ(e1)Ð→

eot′1, lot′1

s′1 . . . s
′
k−1

µ(ek)Ð→
eot′

k
, lot′

k

s′k (k ≥ 0) in ET ′ for some s′1, . . . , s
′
k ∈ S′ and for some

eot′1, . . . , eot
′
k, lot

′
1, . . . , lot

′
k ∈ R such that eot′j ≤ eotj and lotj ≤ lot′j for all 1 ≤ j ≤ k. Thus

{µ(e1), . . . , µ(ek)} ∈ Con′ and µ C ⊆ {µ(e1), . . . , µ(ek)}. Hence, µ C ∈ Con′.
Let e′ ∈ µ C and e′′ <′ e′. This means that e′ = µ(ej) for some 1 ≤ j ≤ k such that ej ∈ C.

Thus, e′′ ∈ µ(ej) ↓. According to item (i) of definition 18 we have that µ(ej) ↓⊆ µ(ej ↓). Using
the fact that C is a configuration, we may conclude that e′′ ∈ µ(ej) ↓⊆ µ(ej ↓) ⊆ µ C. Thus, µ C
is a configuration.

Now we need to show that ∀e, e′ ∈ C ◇ if µ(e) = µ(e′) then e = e′. Assume that it is not

true. Then we have e, e′ ∈ C such that µ(e) = µ(e′) and e ≠ e′. This implies that e = ej and

e′ = el for some 1 ≤ j, l ≤ k. W.l.o.g. assume that j ≤ l. Then there is a sequence s′j−1
µ(ej)Ð→

eot′j , lot′j

s′j

. . . s′l−1
µ(el)=µ(ej)Ð→
eot′

l
, lot′

l

s′l. This contradicts the item (iii) of Definition 17.

Note that Eot′(µ(e)) ≤ Eot(e) and Lot(e) ≤ Lot′(µ(e)) for all e ∈ E due to the item (iv) of

Definition 18.

Thus, (µ,λ) is a morphism of TES between et2e(ET ) and et2e(ET ′) by Definition 16.

Third, consider an identity morphism (1E,1L) ∶ ET → ET and a pair of morphisms (µ,λ) ∶
ET → ET ′ and (µ′, λ′) ∶ ET ′ → ET ′′ from TET. Obviously, et2e(1E,1L) = (1E,1L), and

et2e((µ′, λ′) ○ (µ,λ)) = et2e(µ′ ○ µ,λ′ ○ λ) = (µ′ ○ µ,λ′ ○ λ) = (µ′, λ′) ○ (µ,λ) = et2e(µ′, λ′) ○
et2e(µ,λ). Thus, we have that et2e is indeed a functor.

Finally, we should prove that et2e is a faithful functor. Take arbitrary objects ET and ET ′

of TET. Define a function FET ,ET ′ ∶ TET(ET ,ET ′) → TES(et2e(ET ),et2e(ET ′)) such that

FET ,ET ′(µ,λ) = et2e(µ,λ) = (µ,λ) for all morphisms (µ,λ) ∶ ET → ET ′ of TET. It is obvious

that FET ,ET ′ is a function, because et2e is a functor. Clearly, FET ,ET ′ is injective, because

FET ,ET ′(µ,λ) = (µ,λ). Hence, et2e is a faithful functor.

Proposition 8. Let E = (E, <, Con, L, l, Eot, Lot) be a timed event structure. Then

e2et(E) is a timed event tree, (1E,1L) ∶ et2e(e2et(E)) → E is an isomorphism and the pair

(e2et(E), (1E,1L)) is a coreflection of E along et2e.

Доказательство. Obviously, e2et(E) = (S, ϵ, E, Tran, <, L, l, Eot, Lot), where S = {e1 . . . en



System Informatics (Системная информатика), No. 2 (2013) 91

∈ E∗ ∣ n ≥ 0, {e1, . . . , en} ∈ C(E) and for all 1 ≤ i, j ≤ n if (ei < ej) then (i < j)} and Tran =
{(e1 . . . en, en+1, Eot(en+1), Lot(en+1), e1 . . . enen+1) ∣ e1 . . . en, e1 . . . enen+1 ∈ S}. Moreover, we

can easily see that et2e(e2et(E)) = (E, <, Con∗, L, l, Eot, Lot), where Con∗ exactly contains

all subsets A of events from E such that A ⊆ {e1, . . . , ek} and sin
e1Ð→

eot1, lot1
s1 . . . sk−1

ekÐ→
eotk, lotk

sk

(k ≥ 0) for some s1, . . . , sk ∈ S and e1, . . . , ek ∈ E. It is easy to check that Con = Con∗. This
implies that et2e(e2et(E)) = E . Hence, we have that (1E,1L) ∶ et2e(e2et(E)) = E → E is a

morphism of TES and, moreover, it is an isomorphism.

Finally, show that (e2et(E), (1E,1L)) is a coreflection of E along et2e. Consider a timed

event tree ET ′ = (S′, s′in,E′, T ′,<′, L′, l′,Eot′, Lot′) and a morphism (µ,λ) ∶ et2e(ET ′) →
E and show that there is a unique morphism (f, ς) ∶ ET ′ → e2et(E) such that (µ,λ) =
(1E,1L) ○ et2e(f, ς). From this equation, it follows that (f, ς) must match (µ,λ), because

et2e(f, ς) = (f, ς). Hence, we only need to show that (µ,λ) is a morphism of TET between

ET ′ and e2et(E).

Clearly, et2e(ET ′) = (E′, <′, Con′, L′, l′, Eot′, Lot′), where Con′ exactly contains all

subsets A of events from E such that A ⊆ {e1, . . . , ek} and there are states s1, . . . , sk ∈ S′

(k ≥ 0) such that sin
e1Ð→

eot1, lot1
s1 . . . sk−1

ekÐ→
eotk, lotk

sk (k ≥ 0) for some real numbers eot1, . . . , eotk,

lot1, . . . , lotk. Because (µ,λ) ∶ et2e(ET ′) → E is a morphism of TES, we have that µ ∶ E′ → E

and λ ∶ L′ → L are functions, l ○µ = λ○ l′ and for all e ∈ E it holds that Eot(µ(e)) ≤ Eot′(e) and
Lot′(e) ≤ Lot(µ(e)). Prove that (µ,λ) satisfies the other requirements from Definition 18. First,

check that µ(e) ↓⊆ µ(e ↓). Let e ∈ E′. Since et2e(ET ′) is a timed event structure, e ↓ ∪{e} is a
configuration. Because (µ,λ) ∶ et2e(ET ′)→ E is a morphism of TES, we have that µ(e ↓ ∪{e})
is a configuration too. Hence, µ(e) ↓⊆ µ(e ↓ ∪{e}) = µ(e ↓) ∪ {µ(e)}. Clearly, if e′ ∈ µ(e) ↓ then
e′ ≠ µ(e). Thus, µ(e) ↓⊆ µ(e ↓).

Next, assume that sin
e1Ð→

eot1, lot1
s1 . . . sk−1

ekÐ→
eotk, lotk

sk for some k ≥ 0. Hence, {e1, . . . , ej} ∈ Con′

for all 1 ≤ j ≤ k. Moreover, for all 1 ≤ j ≤ k {e1, . . . , ej} is left-closed by Lemma 4. Thus,

we get that {e1, . . . , ej} ∈ C(et2e(ET ′)) for all 1 ≤ j ≤ k. Since (µ,λ) ∶ et2e(ET ′) → E is a

morphism of TES it holds that {µ(e1), . . . , µ(ej)} ∈ C(E) for all 1 ≤ j ≤ k. Hence, for all

1 ≤ j, l ≤ k it holds that µ(ej) < µ(el) ⇒ j < l. Let s′j = µ(e1), . . . , µ(ej) for all 1 ≤ j ≤ k.
According to the definition of e2et, we have s′1, . . . , s

′
k ∈ S and ϵ

µ(e1)Ð→
Eot(µ(e1)), Lot(µ(e1))

s′1 . . . s
′
k−1

µ(ek)Ð→
Eot(µ(ek)), Lot(µ(ek))

s′k. Moreover, according to Definition 17 and Definition 18, we have that

Eot(µ(ej)) ≤ Eot′(ej) ≤ eotj and lotj ≤ Lot′(ej) ≤ Lot(µ(ej)) for all 1 ≤ j ≤ k.

Using the results mentioned above, we can formulate the following theorem.

Theorem 3. The functor et2e is left adjoint to the functor e2et and this adjunction is a

reflection.



92 Nataliya S. Gribovskaya Causality versus True Concurrency in the Setting of Real-Time Models

Доказательство. The first part of this theorem follows from Proposition 8 and from the fact

that for all morphisms (µ,λ) ∶ E → E ′ it is true that (1E′ ,1L′) ○ et2e(e2et(µ,λ)) = (1E′ ,1L′) ○
et2e(µ,λ) = (1E′ ,1L′) ○ (µ,λ) = (µ,λ) = (µ,λ) ○ (1E,1L). Moreover, due to Proposition 8, we

have that the counit η associates each timed event structure E = (E, <, Con, L, l, Eot, Lot)
with the isomorphism (1E,1L) ∶ et2e(e2et(E))→ E . Hence, η is a natural isomorphism.

Thus, TES embeds fully and faithfully into TET and is equivalent to the full subcategory

of TET consisting of those timed event trees ET that are isomorphic to e2et(et2e(ET )).
4.4. A coreflection between the categories TES and TST. It is a well-known fact

that there exists a coreflection from the category of synchronization trees to the category of

event structures. In this subsection, we try to extend this result to timed variants of the models

mentioned above. Clearly, the configurations of a timed event structure can be translated to a

tree. Hence, we can specify the following functor e2s ∶ TES→ TST.

Definition 24. Let E = (E, <, Con, L, l, Eot, Lot) and E ′ = (E′, <′, Con′, L′, l′, Eot′, Lot′)
be timed event structures and (µ,λ) ∶ E → E ′ be a morphism of TES. Define e2s(E) = (S, ϵ, L,
Tran), where S = {e1 . . . en ∣ n ≥ 0,{e1, . . . , en} ∈C(E) and for all 1 ≤ i, j ≤ n (ei < ej) ⇒ (i < j)}
and Tran = {(e1 . . . en, l(en+1), Eot(en+1), Lot(en+1), e1 . . . enen+1) ∣ e1 . . . en, e1 . . . enen+1 ∈ S},
and e2s(µ,λ) = (µ,λ), where µ ∶ S → S′ is defined as: µ(e1 . . . en) = µ(e1) . . . µ(en) for all

e1 . . . en ∈ S.

Proposition 9. The mapping e2s is a faithful functor.

Доказательство. First, by the definition of the sets S and Tran, we get that e2s(E) is a

timed synchronization tree for all timed event structures E .
Second, we need to prove that e2s(µ,λ) ∶ e2s(E) → e2s(E ′) is a morphism of TST for all

morphisms (µ,λ) ∶ E → E ′ of TES, where e2s(µ,λ) = (µ,λ) and µ(e1 . . . en) = µ(e1) . . . µ(en).
Since (µ,λ) ∶ E → E ′ is a morphism of TES, it is easy to see that µ ∶ E → E′ and µ ∶ S → S′ are

functions. Check that the pair (µ,λ) satisfies the requirements of Definition 18. It is obvious

that µ(ϵ) = ϵ. Assume that (e1 . . . ek−1, l(ek), Eot(ek), Lot(ek), e1 . . . ek−1ek) ∈ Tran. This means

that s′, s′′ ∈ S′, where s′ = µ(e1 . . . ek−1) and s′′ = µ(e1 . . . ek−1ek) = s′µ(ek). By construction of

Tran′, we have µ(e1 . . . ek−1)
l′(µ(ek))Ð→

Eot′(µ(ek)), Lot′(µ(ek))
µ(e1 . . . ek−1ek)). Moreover, l′ ○µ(ek) = λ○ l(ek)

and Eot′(µ(ek)) ≤ Eot(ek) and Lot(ek) ≤ Lot′(µ(ek)), since (µ,λ) is a morphism of TES.

Thus, (µ,λ) is indeed a morphism of TST from e2s(E) to e2s(E ′).
Third, we should contemplate an identity morphism (1E,1L) ∶ E → E and two morphisms

(µ,λ) ∶ E → E ′ and (µ′, λ′) ∶ E ′ → E ′′ fromTES. Obviously, e2s(1E,1L) = (1E,1L) = (1S,1L), and
e2s((µ′, λ′)○(µ,λ)) = e2s(µ′○µ,λ′○λ) = (µ′ ○ µ,λ′○λ) = (µ′, λ′)○(µ,λ) = e2s(µ′, λ′)○e2s(µ,λ).
Thus, we have that e2s is indeed a functor.



System Informatics (Системная информатика), No. 2 (2013) 93

Finally, we need to clarify that e2s is a faithful functor. Take an arbitrary timed event

structures E and E ′ from TES. Specify a function FE,E ′ ∶ TES(E ,E ′) → TST(e2s(E),e2s(E ′))
such that FE,E ′(µ,λ) = e2s(µ,λ) = (µ,λ) for all morphisms (µ,λ) ∶ E → E ′ of TES. Because

e2s is a functor, we have that FE,E ′ is a function.

Next, we need to verify that FE,E ′ is an injective function. Take two arbitrary morphisms

(µ1, λ1) ∶ E → E ′ and (µ2, λ2) ∶ E → E ′ such that FE,E ′(µ1, λ1) = FE,E ′(µ2, λ2). This implies that

(µ1, λ1) = (µ2, λ2). Hence, λ1 = λ2 and µ1 = µ2. Take an arbitrary event e ∈ E. Since E is a

timed event structure, we have a configuration {e1, . . . , en} = e ↓ ∪{e} of E such that en = e and
for all 1 ≤ i, j ≤ n if ei < ej then i < j. This implies that si = e1 . . . ei ∈ S for all 1 ≤ i ≤ n. Since
µ1 = µ2, we have that µ1(ei) = µ2(ei) for all 1 ≤ i ≤ n. Hence, µ1 = µ2. Thus, FE,E ′ is injective,

i.e. e2s is a faithful functor.

Next, we try to transform a timed synchronization tree S into some timed event structure E ,
assuming that each transition of S represents a separate event with the same timed limits as

this transition, defining the set of consistent events as a set of transitions that appear together

on some branch and specifying the causal dependency relation as the hierarchy of transitions

in the tree structure. Thus, we can specify a functor s2e ∶ TST→ TES.

Definition 25. Let S = (S, sin, L, T ) and S ′ = (S′, s′in, L′, T ′) be timed synchronization trees

and (σ,λ) ∶ S → S ′ be a morphism of TST. Define s2e(S) = (T , <∗, Con∗, L, l∗, Eot∗, Lot∗),
where (s, a, eot, lot, s′) <∗ (u, b, eot′, lot′, u′) ⇐⇒ there is a sequence s′

a1Ð→
eot1, lot1

s1 . . . sk−1
akÐ→

eotk, lotk
sk = u for some k ≥ 1, Con∗ = {A ⊆ {t1, . . . , trk} ∣ tr1 = (sin, a1, eot1, lot1, s1), . . .,

trk = (sk−1, ak, eotk, lotk, sk) ∈ T , (k ≥ 0)}, l∗(s, a, eot, lot, s′) = a, Eot∗(s, a, eot, lot, s′) = eot
and Lot∗(s, a, eot, lot, s′) = lot. Moreover, define s2e(σ,λ) = (µ,λ), where µ(s, a, eot, lot, s′) =
(σ(s), λ(a), eot′, lot′, σ(s′)) for some eot′, lot′ ∈R.

Lemma 7. For any timed synchronization tree S, if C ∈ C(s2e(S)) then C = {(sin, a1, eot1,
lot1, s1), . . ., (sn−1, an, eotn, lotn, sn) ∣ sin

a1Ð→
eot1, lot1

s1 . . . sn−1
anÐ→

eotn, lotn
sn} for some n ≥ 0.

Proposition 10. The mapping s2e is a faithful functor.

Доказательство. First, we need to show that s2e(S) is a timed event structure for all timed

synchronization trees S. It is easy to check that <∗ is a strict order and, for all (s, a, eot, lot, s′) ∈
T , Eot∗(s, a, eot, lot, s′) ≤ Lot∗(s, a, eot, lot, s′). Take an arbitrary (s, a, eot, lot, s′) ∈ T . Now we

need to verify that (s, a, eot, lot, s′) ↓ = {(u, b, eot′, lot′, u′) ∈ T ∣ (u, b, eot′, lot′, u′) <∗ (s, a, eot,
lot, s′)} is a finite set. Since S is a timed synchronization tree, we can find a unique sequence

sin
a1Ð→

eot1, lot1
s1 . . . sk−1

akÐ→
eotk, lotk

sk = s (k ≥ 0). Using the definition of a timed synchronization

tree, we get that (s, a, eot, lot, s′) ↓ ⊆ {(sin, a1, eot1, lot1, s1), . . ., (sk−1, ak, eotk, lotk, sk)}.
Hence, (s, a, eot, lot, s′) ↓ is a finite set. Moreover, it immediately follows from the definition of



94 Nataliya S. Gribovskaya Causality versus True Concurrency in the Setting of Real-Time Models

Con∗ that ∀(s, a, eot, lot, s′) ∈ T ◇ {(s, a, eot, lot, s′)} ∈ Con∗ and Y ⊆ X ∈ Con∗ ⇒ Y ∈ Con∗.
By the definition of the relation <∗, we get that for all X ∈ Con∗, if (u, b, eot′, lot′, u′) <∗

(s, a, eot, lot, s′) ∈X then X ∪ {(u, b, eot′, lot′, u′)} ∈ Con∗.

Second, we have to prove that s2e(σ,λ) is a morphism of TES. Assume that s2e(S) = (T ,
<∗, Con∗, L, l∗, Eot∗, Lot∗) and s2e(S ′) = (T ′, <′∗, Con′∗, L′, l′∗, Eot′∗, Lot′∗). Since (σ,λ) ∶ S →
S ′ is a morphism of TST, we may conclude that λ ∶ L→ L′ and σ ∶ S → S′ are functions, σ(sin) =
s′in and for each (s, a, eot, lot, s′) ∈ T there is the only (σ(s), λ(a), eot′, lot′, σ(s′)) ∈ T ′, where
eot′ ≤ eot and lot ≤ lot′. Hence, µ, defined as µ(s, a, eot, lot, s′) = (σ(s), λ(a), eot′, lot′, σ(s′)), is
a function. Take an arbitrary configuration C of s2e(S) and check that µ C ∈C(s2e(S ′)). Since
C is a configuration, it holds that C ∈ Con∗ and if e <∗ e′ ∈ C then e ∈ C. Hence, there exist states
s1, . . ., sk ∈ S (k ≥ 0) such that sin

a1Ð→
eot1, lot1

s1 . . . sk−1
akÐ→

eotk, lotk
sk and C ⊆ {(s0, a1, eot1, lot1, s1),

. . ., (sk−1, ak, eotk, lotk, sk)}. W.l.o.g. suppose ei = (si−1, ai, eoti, loti, si) (i = 1, . . . , k), where

s0 = sin. Because (σ,λ) is a morphism of TST, we get that σ(sin)
λ(a1)Ð→

eot′1, lot′1

σ(s1) . . . σ(sk−1)
λ(ak)Ð→

eot′
k
, lot′

k

σ(sk) in S ′. Moreover, it is easy to see that µ(ei) = (σ(si−1), λ(ai), eot′i, lot′i, σ(si)) for

all 1 ≤ i ≤ k. Thus, µ C ⊆ {µ(e1), . . ., µ(ek)} and {µ(e1), . . ., µ(ek)} ∈ Con′∗. Clearly, for all
ei ∈ C, µ(ei) ↓ = {µ(e1), . . ., µ(ei−1)}. Hence, µ C is a configuration. Note that ∀ei, ej ∈ C ◇ if

µ(ei) = µ(ej) then i = j. Moreover, it is obvious that Eot′∗(µ(s, a, eot, lot, s′)) ≤ Eot∗(s, a,
eot, lot, s′) and Lot∗(s, a, eot, lot, s′) ≤ Lot′∗(µ(s, a, eot, lot, s′)) for all (s, a, eot, lot, s′) ∈ T ,
since µ(s, a, eot, lot, s′) = (σ(s), λ(a), eot′, lot′, σ(s′)) with eot′ ≤ eot and lot ≤ lot′. Thus, (µ,λ)
is indeed a morphism of TES.

Third, we should contemplate an identity morphism (1S,1L) ∶ S → S and two morphisms

(σ,λ) ∶ S → S ′ and (σ′, λ′) ∶ S ′ → S ′′ from TST. Obviously, s2e(1S,1L) = (µ1E ,1L ,1L) =
(1E,1L), and s2e((σ′, λ′) ○ (σ,λ)) = s2e(σ′ ○σ,λ′ ○λ) = (µσ′○σ,λ′○λ, λ′ ○λ) = (µσ′,λ′ , λ′) ○ (µσ,λ, λ)
= s2e(σ′, λ′) ○ s2e(σ,λ). Hence, s2e is a functor.

Finally, show that s2e is a fully faithful functor. Take arbitrary timed synchronization trees

S and S ′ from TST. Define a mapping FS,S′ ∶ TST(S,S ′) → TES(s2e(S), s2e(S ′)) such that

FS,S′(σ,λ) = s2e(σ,λ) = (µσ,λ, λ) for all morphisms (σ,λ) ∶ S → S ′ of TST. Because s2e is a

functor, we have that FS,S′ is a function.

Check that FS,S′ is a bijective function. Take arbitrary morphisms (σ1, λ1) ∶ S → S ′ and
(σ2, λ2) ∶ S → S ′ such that FS,S′(σ1, λ1) = FS,S′(σ2, λ2). This means that (µσ1,λ1 , λ1) = (µσ2,λ2 , λ2).
Hence, λ1 = λ2 and µσ1,λ1 = µσ2,λ2 . Take an arbitrary state s ∈ S. Because S is a timed syn-

chronization tree, we can find the only transition (s′, a, eot, lot, s) ∈ T . Since µσ1,λ1 = µσ2,λ2 , we

have (σ1(s′), λ1(a), eot′, lot′, σ1(s)) = (σ2(s′), λ2(a) = λ1(a), eot′′, lot′′, σ2(s)). This implies that

σ1(s) = σ2(s). Hence, FS,S′ is injective, i.e. s2e is a faithful functor. Next, take an arbitrary

morphism (µ,λ) ∶ s2e(S)→ s2e(S ′) of TES. Define a function g ∶ S → S′ as follows: g(sin) = s′in



System Informatics (Системная информатика), No. 2 (2013) 95

and for all s ∈ S such that s ≠ sin, g(s) = last(µ(trs)), where trs ∈ T such that last(trs) = s and
last is a function which maps each transition to it’s last state, i.e. last(u, b, eot′, lot′, u′) = u′ for
all transitions (u, b, eot′, lot′, u′). Since S is a timed synchronization tree, there is the only transi-

tion trs ∈ T with last(trs) = s. This means that g is indeed a function. Since µ(tr) ↓ = µ(tr ↓) for
all tr ∈ T and l′∗ ○ µ = l∗, we get that (last(µ(trs)), λ(a), eot′, lot′, last(µ(trs′))) = µ(trs′) ∈ T ′,
where trs′ = (s, a, eot, lot, s′). This implies that (g, λ) is a morphism of TST from S to S ′ and
FS,S′(g, λ) = (µ,λ). Thus, s2e is a full functor.

Proposition 11. Let S = (S, sin, L, T ) be a timed synchronization tree. Then there is an

isomorphism (η∗S,1L) ∶ S → e2s(s2e(S)) such that the pair (s2e(S), (η∗,1L)) is a reflection of

S along e2s.

Доказательство. Note, that s2e(S) = (T , <∗, Con∗, L, l∗, Eot∗, Lot∗), where <∗, Con∗, l∗,
Eot∗ and Lot∗ are defined as in Definition 25. Furthermore, e2s(s2e(S)) = (S∗, ϵ, L, Tran),
where S∗ = {(s0, a1, eot1, lot1, s1) . . . (sn−1, an, eotn, lotn, sn) ∣ n ≥ 0, {(s0, a1, eot1, lot1, s1),
. . ., (sn−1, an, eotn, lotn, sn)} ∈ C(s2e(S)) and for all 1 ≤ i, j ≤ n (si−1, ai, eoti, loti, si) <∗ (sj−1,
aj, eotj, lotj, sj) ⇒ (i < j)} and Tran = {((s0, a1, eot1, lot1, s1) . . . (sn−1, an, eotn, lotn, sn),
l∗((sn, an+1, eotn+1, lotn+1, sn+1)), Eot∗((sn, an+1, eotn+1, lotn+1, sn+1)), Lot∗((sn, an+1, eotn+1,
lotn+1, sn+1)), (s0, a1, eot1, lot1, s1) . . . (sn−1, an, eotn, lotn, sn) (sn, an+1, eotn+1, lotn+1, sn+1))
∣ (s0, a1, eot1, lot1, s1) . . . (sn−1, an, eotn, lotn, sn), (s0, a1, eot1, lot1, s1) . . . (sn−1, an, eotn,
lotn, sn) (sn, an+1, eotn+1, lotn+1, sn+1) ∈ S∗}.

By Lemma 7 we may conclude that S∗ = {(sin, a1, eot1, lot1, s1) . . . (sn−1, an, eotn, lotn,
sn) ∣ n ≥ 0 and (si−1, ai, eoti, loti, si) ∈ T for all 1 ≤ i ≤ n} and Tran = {((sin, a1, eot1, lot1, s1)
. . . (sn−1, an, eotn, lotn, sn), an+1, eotn+1, lotn+1, (sin, a1, eot1, lot1, s1) . . . (sn−1, an, eotn, lotn,
sn) (sn, an+1, eotn+1, lotn+1, sn+1)) ∣ (si−1, ai, eoti, loti, si) ∈ T for all 1 ≤ i ≤ n + 1}.

Define a mapping η∗S ∶ S → S∗ as follows: for all s ∈ S ◇ η∗S(s) = (sin, a1, eot1, lot1, s1) . . .
(sk−1, ak, eotk, lotk, sk)), where sk = s. It is easy to see that for all s ∈ S there is a unique

sequence sin
a1Ð→

eot1, lot1
s1 . . . sk−1

akÐ→
eotk, lotk

sk = s with k ≥ 0 by Definition 12. Hence, η∗S is a function

and η∗S(sin) = ϵ.

Define a mapping η∗∗S ∶ S∗ → S as follows: for all s∗ ∈ S∗ ◇ η∗∗S (s∗) = η∗∗S ((sin, a1, eot1, lot1,
s1) . . . (sk−1, ak, eotk, lotk, sk)) = sk and η∗∗S (ϵ) = sin. Clearly, η∗∗S is a function and η∗∗S ○η∗S = 1S
and η∗S ○ η∗∗S = 1S∗ .

Now, we need to prove that (η∗S,1L) ∶ S → e2s(s2e(S)) is a morphism of TST. Obviously,

η∗S and 1L are functions and η∗S(sin) = ϵ. Take an arbitrary (s, a, eot, lot, s′) ∈ T . According
to Definition 12, we have a unique sequence sin

a1Ð→
eot1, lot1

s1 . . . sk−1
akÐ→

eotk, lotk
sk = s. Hence,

η∗S(s) = (sin, a1, eot1, lot1, s1) . . . (sk−1, ak, eotk, lotk, sk), η∗S(s′) = (sin, a1, eot1, lot1, s1)
. . . (sk−1, ak, eotk, lotk, sk) (s, a, eot, lot, s′) and (η∗S(s), a, eot, lot, η∗S(s′)) ∈ Tran. Thus,



96 Nataliya S. Gribovskaya Causality versus True Concurrency in the Setting of Real-Time Models

(η∗S,1L) ∶ S → e2s(s2e(S)) is really a morphism of TST.

Next, we need to show that (η∗∗S ,1L) ∶ e2s(e2c(S))→ S is a morphism of TST. Obviously,

η∗∗S is a function and η∗∗S (ϵ) = sin. Suppose that (t, a, eot, lot, t′) ∈ Tran for some t, t′ ∈ S∗. This
means that t = (sin, a1, eot1, lot1, s1) . . . (sk−1, ak, eotk, lotk, sk), t′ = (sin, a1, eot1, lot1, s1)
. . . (sk−1, ak, eotk, lotk, sk) (sk, a, eot, lot, sk+1) and (sk, a, eot, lot, sk+1) ∈ T . Since η∗∗S (t) = sk
and η∗∗S (t′) = sk+1, we may conclude that (η∗∗S ,1L) ∶ e2s(s2e(S)) → S is indeed a morphism of

TST.

Hence, (η∗S,1L) and (η∗∗S ,1L) are morphisms of TST and (η∗∗S ,1L) ○ (η∗S,1L) = (1S,1L) and
(η∗S,1L) ○ (η∗∗S ,1L) = (1S∗ ,1L). Thus, (η∗S,1L) is an isomorphism.

Finally, check that (s2c(S), (η∗S,1L)) is a reflection of S along e2s, i.e. whenever E ′ is a

timed event structure and (σ,λ) ∶ S → e2s(E ′) is a morphism of TST, there exists a unique

morphism (g, λ′) ∶ s2e(S)→ E ′ such that (σ,λ) = e2s(g, λ′)○(η∗S,1L). Since e2s(g, λ′) = (g, λ′),
we may conclude that λ′ must be equal to λ and g ○ η∗S must match σ.

Take an arbitrary timed event structure E ′ = (E′,<′,Con′, L′, l′,Eot′, Lot′) and an arbitrary

morphism (σ,λ) ∶ S → e2s(E ′) of TST. It is obvious that e2s(E ′) = (S′, ϵ,L′, T ran′), where
S′ = {e1 . . . en ∣ n ≥ 0, {e1, . . . , en} ∈ C(E) and for all 1 ≤ i, j ≤ n (ei < ej) ⇒ (i < j)} and

Tran′ = {(e1 . . . en, l′(en+1), Eot′(en+1), Lot′(en+1), e1 . . . enen+1) ∣ e1 . . . en, e1 . . . enen+1 ∈ S′}.
By definition of morphism of TST, it holds that σ ∶ S → S′ and λ ∶ L → L′ are functions,

σ(sin) = ϵ and for all (s, a, eot, lot, s′) ∈ T there exist eot′, lot′ ∈R such that eot′ ≤ eot, lot ≤ lot′

and (σ(s), λ(a), eot′, lot′, σ(s′)) ∈ Tran′.

Clearly, g ○ η∗S = σ ⇐⇒ for all (s, e, eot, lot, s′) ∈ T g(s, e, eot, lot, s′) = ek, where σ(s′) =
e1 . . . ek for some k ≥ 0. We should only show that (g, λ) ∶ s2e(S) → E ′ is a morphism of TES,

where g(s, e, eot, lot, s′) = ek with σ(s′) = e1 . . . ek for some k ≥ 0. Note that g is a function,

because σ is a function. Moreover, for all (s, a, eot, lot, s′) ∈ T there exist eot′, lot′ ∈R such that

eot′ ≤ eot, lot ≤ lot′ and (σ(s), λ(a), eot′, lot′, σ(s′)) ∈ Tran′. By the definition of e2s(E ′), we
have σ(s′) = σ(s) ek and l′(ek) = λ(a). This implies that l′ ○ g(s, a, eot, lot, s′) = l′(ek) = λ(a) =
λ ○ l∗(s, a, eot, lot, s′) for all (s, a, eot, lot, s′) ∈ T .

Assume that C ∈ C(s2e(S)). By Lemma 7 we have that C = {(sin = s0, a1, eot1, lot1, s1),
. . ., (sn−1, an, eotn, lotn, sn) ∣ (sj−1, aj, eotj, lotj, sj) ∈ T for all 1 ≤ j ≤ n}. It is easy to see that

σ(s0) = ϵ, σ(s1) = e′1, . . ., σ(sn) = e′1 . . . e′n for some e′1, . . . , e
′
n ∈ E′. Hence, g C = {g(sin = s0,

a1, eot1, lot1, s1), . . ., g(sn−1, an, eotn, lotn, sn) ∣ (sj−1, aj, eotj, lotj, sj) ∈ T for all 1 ≤ j ≤ n}
= {e′1, . . . , e′n ∣ σ(sn) = e′1 . . . e′n}. Thus, g C ∈ C(E ′). Next, consider two transitions (sj−1, aj,
eotj, lotj, sj) and (si−1, ai, eoti, loti, si) from C. If g(sj−1, aj, eotj, lotj, sj) = g(si−1, ai, eoti,
loti, si) then e′i = e′j. Hence, i = j.

Furthermore, for all (si−1, ai, eoti, loti, si) ∈ C it holds that Eot′(g(si−1, ai, eoti, loti, si)) =
Eot′(e′i) ≤ eoti = Eot∗(si−1, ai, eoti, loti, si) and Lot∗(si−1, ai, eoti, loti, si) = loti ≤ Lot′(e′i) =



System Informatics (Системная информатика), No. 2 (2013) 97

Lot′(g(si−1, ai, eoti, loti, si)). Thus, (g, λ) is indeed a morphism of TES between s2e(S) and
E ′. Therefore, (s2e(S), (η∗,1L)) is a reflection of S along e2s.

As a result, the following statement is true.

Theorem 4. The functor e2s is right adjoint to s2e and the adjunction is a coreflection.

Доказательство. The first statement follows from Proposition 11 and from the fact that for all

morphisms (σ,λ) ∶ S = (S, sin, L, T ) → S ′ = (S′, s′in, L′, T ′) it is true that (η∗S′ ,1L′) ○ (σ,λ) =
e2s(s2e(σ,λ)) ○ (η∗S,1L). Next, due to Lemma 11 we may conclude that the unit ψ associates

each timed synchronization tree S = (S, sin, L, T ) with the isomorphism (η∗S,1L) ∶ S →
e2s(s2e(S)). Hence, ψ is a natural isomorphism.

Thus, TST embeds fully and faithfully into TES and is equivalent to the full subcategory

of TES consisting of those timed event structures E that are isomorphic to s2e(e2s(E)).

4.5. Summary. The following diagram summarizes the functors which relate the models

under consideration. Here the hooks represent embeddings and the small triangles between

arrows indicate the direction of left adjoints.

TCT ↪
← TET▹

9 ↓ 9 ↓▵ ▿
TST ↪

← TES▹

The diagram can be seen as a decomposition of the coreflection from TST to TES into three

consecutive adjunctions. Moreover, it is clear that the embeddings and left adjoints commute.

Thus we have derived a composed adjunction between timed causal trees and timed event

structures. It is not a coreflection, but it is induced by a coreflection and a reflection via a

larger category, TET. The object component of the right adjoint of this adjunction amounts

to the following transformation: it ‘linearizes’ a timed event structure into a timed causal tree

by forgetting about events.

5. Conclusion. In this paper we established some relations between the timed extension

of the well-known concurrent models. In particular, we showed that:

• The category of timed synchronization trees embeds fully and faithfully into the category

of timed event structures and into the category of timed causal trees.

• There is an adjunction between the category of timed causal trees and the category of

timed event structures. This adjunction is represented as the composition of a coreflection

from the category of timed causal trees to the category of timed event trees and a reflection

from the category of timed event trees to the category of timed event structures.



98 Nataliya S. Gribovskaya Causality versus True Concurrency in the Setting of Real-Time Models

Thus, as in the case of timeless models, timed causal trees are more trivial than timed event

structures because they apply causality without the notion of an event and, at the same time,

are more expressive than the latter, because their possible runs can be defined in terms of a

tree without restrictions, but the set of possible runs of any event structure must be closed

under the shuffling of concurrent transitions.

References

1. Borceux F. Handbook of Categorical Algebra. Vol. 2, 3. Encyclopedia of Mathematics and

its Applications. Vol. 51, 52. Cambridge University Press. 1994.

2. Fröschle S., Lasota S. Causality versus true-concurrency // Theoretical Computer Science.

2007. Vol. 386 (3) P. 169–187.

3. Joyal A., Nielsen M., Winskel G. Bisimulation from open maps // Information and Com-

putation. 1996. Vol. 127(2). P. 164–185.

4. Nielsen M., Winskel G. Petri nets and bisimulation // Theoretical Computer Science. 1996.

Vol. 153 (1-2). P. 211—244.

5. Winskel G., Nielsen M. Models for concurrency. Handbook of logic in computer science.

Vol. 4. Oxford Univ. Press. New York. 1995. P. 1–148.

УДК: 519.681.3, 519.681.2

Название: Сравнение причинной зависимости и семантики истинного параллелизма

в контексте временных моделей

Автор(ы):

Грибовская Н.С. (Институт систем информатики СО РАН)

Аннотация: Цель данной работы — установить взаимосвязи между различными па-

раллельными моделями реального времени. Для достижения данной цели мы определили

категорию временных причинных деревьев и исследовали, какое место занимает эта ка-

тегория среди других категорий временных моделей. В частности, мы установили суще-

ствование сопряженных функторов между категорией временных причинных деревьев и

категорией временных структур событий, используя для этого более выразительную мо-

дель временных деревьев событий. Тем самым мы показали, что временные причинные

деревья проще временных структур событий в том, что они отражают только один аспект

семантики истинного параллелизма, а именно причинную зависимость, и не используют

понятие события для задания отношения причинной зависимости. С другой стороны, мо-

дель временных причинных деревьев более выразительна, чем модель временных структур

событий по следующей причине: для нее множество всех возможных последовательно-

стей выполнения может быть определено в терминах дерева без каких-либо ограничений,



System Informatics (Системная информатика), No. 2 (2013) 99

а множество всевозможных последовательностей выполнения для временной структуры

событий должно быть замкнутыми относительно операции перестановки параллельных

переходов.

Ключевые слова: модели реального времени, истинный параллелизм, причинная за-

висимость, отношения, унификация, теория категорий



100 Nataliya S. Gribovskaya Causality versus True Concurrency in the Setting of Real-Time Models


