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1. Introduction. In recent decades, category theoretical approaches have been actively used
for the specification and investigation of concurrent systems and processes. We will mention
just one example, which is directly related to the concurrency theory. The category theory has
helped us to classify and unify various models for concurrency and has provided an abstract
language for expressing relationships between seemingly very different models. The basic goal is
to formulate the fact that one model is more expressive than another in terms of an ‘embedding’
or coreflection (reflection) — the category theoretical notion defined as an adjunction, in which
the unit (counit) is an isomorphism. In the setting of this approach, models are represented
as categories: each model is equipped with a notion of morphism that shows how one model
instance can be simulated by another. Moreover, the existence of (co)reflection between models
allows us to translate concepts and properties from one model to another.

At present, the concurrency theory has a great variety of formal models that can be clas-
sified based on different principles. For example, concurrent models are split to interleaving
models and true concurrent models. For interleaving models, such as synchronization trees,
causal trees and transition systems, the concurrency is simulated by a sequence of actions.
For true concurrent models, such as event structures, transition systems with independence, la-
belled asynchronous transition systems, causal trees and Petri nets, the concurrency is modelled
implicitly through the relation of independence.

In [3, 5] Winskel, Nielsen and Joyal have applied the category theory to unify the many

models for concurrency and to establish the relationships between them. They have shown that
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the categories of such models as synchronization trees, transition systems, event structures,
transition systems with independence and asynchronous transition systems are related by core-
flections. In particular, they have found out the following facts. Intuitively, synchronization
trees are transition systems with no cyclic behaviour. Moreover, a synchronization tree may
be transferred to a special kind of an event structure with an empty independence relation.
The transition systems may be regarded as transition systems with independence in which the
independence relation is empty. An event structure may be translated to a special type of a
transition system with independence. Finally, transition systems with independence may be
considered as asynchronous transition systems, which have at most one transition with the
same label between two same states. Later Nielsen and Winskel proved that there exists a
coreflection between Petri nets and asynchronous transition systems (see [4]). In [2] Froschle
and Lasota integrated a new model, the causal trees of Darondeau and Degano, into Winskel
and Nielsen’s framework. Also they have shown that there is an adjunction from causal trees
to event structures. Causal trees are some variant of synchronization trees with enriched action
labels that supply information about which transitions causally depend on each other. Thereby;,
they reflect the only one aspect of true concurrency, causality. On the other hand, there is one
aspect in which event structures are less expressive than causal trees: their notion of run is in-
duced abstractly by the consistency and causal dependency relation. In particular, this means
the set of runs of any event structure is closed under the shuffling of concurrent transitions.

More recently, great efforts have been made to develop formal methods for real-time systems.
These are systems whose correctness depends crucially upon real-time considerations. As a
result, time extensions of concurrent models such as timed automata, times synchronization
trees, timed transition systems, timed event structures, and timed Petri nets have appeared and
have been investigated. However, only a few examples of the category theoretical classification
for timed models are described in literature.

The contribution of the paper is to show the applicability of the general categorical frame-
work proposed by Winskel and Nielsen and to clarify connections between real-time models of
concurrency. In particular, we defined categories for such models as timed transition systems,
timed synchronization trees, timed causal trees and timed event structure, and investigated
how they relate with each other. Moreover, using a larger model called timed event trees we
showed the existence of an adjunction from the category of timed causal trees to the category
of timed event structures.

The rest of the paper is organized as follows. The basic notions and notations of the category
theory are introduced in Section 2. In the next section, we define categories for timed extensions
of concurrent models and establish some of their properties. Five subsections of Section 3

describe five different models: timed transition systems, timed synchronization trees, timed
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causal trees, timed event structures and timed event trees. Relations between timed models
for concurrency are introduced in Section 4, which consists of five subsections. In the first
subsection a coreflection between the category of timed causal trees and the category of timed
synchronization trees is exhibited. The existence of a coreflection between the category of
timed causal trees and the category of timed event trees is shown in Subsection 4.2. The next
subsection proves the existence of a reflection between the category of timed event structures
and the category of timed event trees. In the fourth subsection, the construction of a coreflection
between the category of timed event structures and the category of timed synchronization trees
is described. Each of above subsections consists of definitions of two functors between two
certain categories, some useful propositions and the main theorem, which asserts the existence of
(co)reflection between the categories. Subsection 4.5 recapitulates the obtained results. Section
5 is the conclusion of the paper.

2. Basics of the Category Theory. In this section we will briefly recall some basic notions

and notations from the category theory [1]. Let us start with the definition of a category.
Definition 1. A category C consists of the following:
- a class |C|, whose elements will be called “objects of the category”;

- for every pair A, B of objects, a set C(A, B), whose elements will be called “morphisms”

or “arrows” from A to B;

- for every triple A, B, C of objects, a composition law C(A,B) x C(B,C) — C(A,C).
The composite of the pair (f,g) will be written go f or just gf;

- for every object A, a morphism 14 €C(A,A), called the identity on A.
These data are subject to the following axioms.

- Associativity axiom: given morphisms f € C(A,B), g€ C(B,C), h e C(C, D) the following
equality holds: ho (go f)=(hog)o f;

- Identity axiom: given morphisms f € C(A,B), g € C(B,C), the following equalities hold:
lpof=f,golp=y.

Now we adduce the notion of a functor (or a “homomorphism of categories”) with some of

their properties.
Definition 2. A functor F' from a category C to a category D consists of the following:

- a mapping |C| — |D| between the classes of objects of C and D; the image of A € C is
written F'(A) or just FA;
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- for every pair of objects A, A" of C, a mapping C(A,A’) — D(FA,FA’); the image of
feC(A,A") is written F(f) or just F'f.

These data are subject to the following axioms:
- for every pair of morphisms f € C(A,A"), ge C(A',A") F(go f) = F(g)o F(f);
- for every object AeC F(1a)=1pa.

Definition 3. Consider a functor F : C — D and for every pair of objects A, A’ € C, the mapping
C(A,A") > D(FAFA"), f—Ff.

e The functor F is faithful when the above mentioned mappings are injective for all A, A’;
e The functor F is full when the above mentioned mappings are surjective for all A, A’;

e The functor F' is full and faithful when the above mentioned mappings are bijective for all

A’ A/’.

e The functor F is an isomorphism of categories when it is full and faithful and induces a

bijection |C| — |D| on the classes of objects.

There is a notion of natural transformations in the category theory, which is an adaptation

of the notion of a “homotopy” between two continuous functions from one space to another.

Definition 4. Consider two functors F,G : C — D from a category C to a category D. A
natural transformation a: F' = G from F to G is a class of morphisms (as: FA - GA) acc of
D indexed by the objects of C and such that for every morphism f: A— A" inC, aq o F(f) =
G(f)oaa.

One of the basic conceptions of the category theory is a notion of adjoint functors. There are
various definitions for adjoint functors. Their equivalence is elementary but not at all trivial.

We will use the definitions via reflections and coreflections along functors.

Definition 5. Let F' : C — D be a functor and B an object of D. A reflection of B along F' is a
pair (Rp,ng) where Rp is an object of C, np : B — F(Rp) is a morphism of D, and if A €|C|
is an object of C and b: B — F(A) is a morphism of D, then there exists a unique morphism

a:Rp— A inC such that F(a)ong =b.

Definition 6. Let F':C — D be a functor and B an object of D. A coreflection of B along F is
a pair (Rp,ep) where Rp is an object of C, e : F(Rp) — B is a morphism of D, and if A €|C|
is an object of C and b: F(A) - B is a morphism of D, then there exists a unique morphism

a:A— Rg inC such that eg o F(a) =b.
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Definition 7. A functor R : D — C is left adjoint to the functor F : C - D (and F is right
adjoint to R) when there exists a natural transformation n:1p = F o R, called the unit of the

adjunction, such that for every B € D, a pair (RB,ng) is a reflection of B along F'.

Definition 8. A functor R : D — C is right adjoint to the functor F': C - D (and F is left
adjoint to R) when there exists a natural transformation € : F o R = 1p, called the counit of the

adjunction, such that for every B € D, a pair (RB,eg) is a coreflection of B along F.

We will call an adjunction in which the unit (the counit) is a natural isomorphism as a
coreflection (a reflection).

3. Models for Concurrency. In this section we study the timed extensions of five different
concurrent models. Four of them are well-known interleaving and true concurrency models, and
the fifth one is called event trees and embeds causal trees as well as event structures. Event
trees are like event structures because causality and concurrency are event-based, global notions.
They are like causal trees because their possible runs are specified explicitly by a tree.

We start by introducing of timed variants of the models, and then we define categories for
them.

3.1. Timed Transition Systems. Let R be a set of non-negative reals and L be a finite

alphabet of actions. Consider the definition of timed transition systems.

Definition 9. A timed transition system T over an alphabet L is a tuple (S, s;,, L,T), where
S is a set of states and s, 1s the initial state, T ¢ S x Lx R xR xS is a set of transitions
such that for all (s,0,eot,lot,s") € T we have eot < lot. We will write s 2 s to denote a

eot, lot
transition (s, o, eot,lot,s").

Let us define the behaviour of timed transition systems.

Definition 10. Let T be a timed transition system over L.

A configuration of T is a pair (s,v), where s is a state and v is a current global time
moment.

A run of T is a sequence v = (sg, V) 4 (s1,11) -+ (Sn-1,Vn-1) Z (Sn, V) such that vy <
... <y, and for all 1 <i<n there is a transition s;_y % s; such that eot; <v; <lot;. Here,

eot;, lot; N
S0 = Sin and vy s defined to be 0.

We are now ready to introduce the category of timed transition systems.
Definition 11. Given timed transition systems T = (S, Sin, L, T) and T' = (S’, s, L', T"),
a pair (p, \) is a morphism between T and T, if u: S - S" and A: L - L' are functions such
that pu(sy,) = s, and if (s,0,eot,lot,s") € T, then (u(s),A(o),eot’ lot',u(s")) € T" for some

wmn’

real numbers eot’ and lot’ such that eot’ < eot and lot < lot'.
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Timed transition systems and morphisms between them form a category of timed transition
systems, TTS, in which the composition of two morphisms (u, A) : 7 — T"and (p/, \) : T/ > T"
is defined as (', ) o (1, A) := (1 o i, Ao X), and the identity morphism is a pair of the identity

functions.

On

Lemma 1. Given a morphism (pu,\): T = T' of TTS, if (s0,10) 5 (s1,11) ... {81, V1) 3
) A(o1) Aon) .
(Sn,vn) s a run of T then (u(so),v0) = (u(s1),v1) - ((Sn-1)s V1) = (u(sn),vn) will

be a run of T'.

3.2. Timed Synchronization Trees. Now we contemplate the definition of timed syn-

chronization trees.

Definition 12. A timed synchronization tree S is a timed transition system (.S, Sin, L, T) such

that

. . o1 Ok
(i) for all s € S there exists a sequence Sy, —> Sy ... Sg-1 —>  Sg (k2 0) such that
eot1, loty eoty, loty
S =Sk,
.. o1 Ok . .
(ii) for all sequence sy —> Sy ... Sp1 —> Sk (k>0) it holds if sg = sy then k=0;
eoty, loty eoty, loty

7

. ag g
(iii) if s — s ands”" —> s, then s =s", 0=0', eot=eot’ and lot = lot'.
eot, lot eot’, lot’

Write TST for the full subcategory of timed synchronization trees in T'TS.
3.3. Timed Causal Trees. In this subsection we introduce the timed extension of causal

trees, which are a generalization of synchronization trees.

Definition 13. A timed causal tree C is a tuple (S, S, L, T,<) where (S, sy, L, T) is a
timed synchronization tree and < €T xT', the causal dependency relation, is a strict order such

that for all transitions (s, o, eot, lot, s') and (s", o', eot’, lot’, s"") of C if (s,0,eot,lot,s") <

. g1 Ok
(s",0' eot! lot', s"), then there exists a sequence ' —> Sy ...8,1 —> " for somek >0.
eoty, loty eoty, loty

We will say that two transitions (s, o, eot, lot, s') and (s, 0’ eot’, lot’, s") of C are consistent

(denoted (s,0,eot,lot,s") Con (s" 0’ eot’,lot’ ")) iff either (s, o, eot, lot, s') = (s", o', eot’,
. o1 Ok
lot', s"") or there exists a sequence sy —> §1 ... Sk.1 —> S (k> 0) such that (s" = s
eoty, loty eoty, loty
. o1
=80 A S=8g) A runof C = (S,si, L, T,<) is a sequence v = (sg, V) =
1

A §" = si) or (s

(s1,v1) - (Sn-1,Vn-1) % (Sn, 1) such that (so, ) 2 (s1,21) .. (Snt1, Vp-1) 3 (8n, ) is a run
of (S,8in, L,T) and K; = {j | 1 < j <, (8j-1,05,¢€0tj,lot;,s;) < (81,04 €0t lot;, s;)} for all
1<e<n.

We are ready to equip timed causal trees with a notion of morphism and thus define a

category of timed causal trees.
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Definition 14. Given timed causal trees C = (S, so, L, T,<) and C' = (S’, sy, L', T', <'), a
pair (p, A) is a morphism between C and C', if (u, \) is a morphism between timed synchro-
nization trees (S, so, L, T) and (S’, s, L', T") and for all transitions (s,o,eot,lot,s1) and
(89,01, €eoty,loty,s3) of C, if (s,0,eot,lot,s1) Con (se2,01,eoty,loty,s3) and (u(s), A(o), eot’,
lot', pu(s1)) <" (u(s2), A(o1), eot, lot], p(ss)) for some eot’, lot', eot!, lot} € R such that

eot’ < eot, lot < lot’, eot] < eoty and lot, <loty, then (s,o,eot,lot,s1) < (sa,01,e0ty,loty,s3).
Timed causal trees and their morphisms form a category of timed causal trees, TCT.

Lemma 2. Given a morphism (u,\):C - C' of TCT, if v = (sq, 1) % (s1,01) -+ (Sn-1,Vn1)
1

On . A(o1) Aon)

P (Sn,vn) 18 a Tun of C, then v = (u(so0), Vo) P ((s1),v1) - (p(Sne1), Vno1) b (11(8n), vn)

’
n n

will be a run of C' for some K1, ..., K] such thlat K] c K; forall1<i<n,.

3.4. Timed Event Structures. This subsection is dedicated to the most popular true

concurrency model — timed event structures. Let us first give the definition of this model.

Definition 15. A timed event structure is a tuple € = (E, <, Con, L, I, FEot, Lot), where E
is a set of events; < € E'x E is a strict order (the causality relation ), satisfying the principle of
finite causes: Ve e E o e |={e' € E'| e’ <e} is finite; Con € 2F (the consistency relation) consists
of finite subsets of events which can occur together in a run, satisfying the following principles:
Vee Fo{e}eCon; Y XeCon=Y eCon and X e Conne<e e X = Xu{e}eCon; L
1s a set of actions; | : E— L is a labelling function and Eot, Lot: E - R are functions of the

earliest and the latest occurrence times of events, satisfying the following: Eot(e) < Lot(e) for

allee B,

Let C' c E. Then C' is left-closed iff Ve,e’ e Eseec C A € <e= e e€(; Cis consistent iff
C € Con; C is a configuration of € iff C' is left-closed and consistent. Let C(&) denote the set
of all finite configurations of &£.

An execution of a timed event structure is a timed configuration which consists of a con-
figuration and a timing function recording global time moments at which events occur and
satisfies some additional requirements. Let & = (E, <, Con, L, |, Fot, Lot) be a timed event
structure, C' € C(€), and T : C - R. Then TC = (C,T) is a timed configuration of & iff
VeeC. Fot(e)<T(e)< Lot(e) and ¥V e,e' e Co e<e’ = T(e) <T(e'). Informally speaking,
the first condition expresses that an event can occur at a time when its timing constraints are
met; and the second condition states that for any two events e and e’ occurred if e causally
precedes ¢/, then e should temporally precede e¢’. We use TC(E) to denote the set of timed

configurations of &£.
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Let £ be a timed event structure and TC' = (C,T),TC" = (C",T") e TC(E). We will write
TC’%TC” iff Cu{e}=C" and T'|c =T and T'(e) = d. A run of £ is a sequence of the form
TCy Z—1> TC, Z—2> . 3"> TC,, where n >0 and TCy = (@, @) is the initial timed configuration.

Now let us recall the notion of morphism between timed event structures.

Definition 16. Let £ = (F, <, Con, L, I, Eot, Lot) and &' = (E', <', Con', L', I', FEot', Lot")
be timed event structures. A pair (p, \), where yu: E - E" and A : L — L' are functions, is called

a morphism, if I’ o= Xol and for all C'e C(E) the following holds:
e 1 CeC(&);
o Vee'eCoifule) = u(e’) thene = €';
e VeeC o Eot'(u(e)) < Eot(e) and Lot(e) < Lot'(u(e)).

Timed event structures and their morphisms form a category of timed event structures,
TES.

Lemma 3. Given a morphism (u,\):E - &' of TES, if TC = (C,T) is a timed configuration
of €, then TC" = (nu C,T"), where T" o u="T will be a timed configuration of E'.

3.5. Timed Event Trees. The main goal of this paper is to expose an adjunction from
the category of timed causal trees to the category of timed event structures. In order to achieve
this aim, we will use a larger model, timed event trees, that embeds timed causal trees as well

as timed event structures.

Definition 17. A timed event tree ET is a tuple (S, sy, E, T, <, L, I, Eot, Lot), where
(S, Sin, E, T) is a timed synchronization tree, <C E x E is a strict order, L is a set of labels,
l:E— L is a labelling function, and Fot, Lot: E — R are functions of the earliest and latest

occurrence times of events, satisfying the following:
(i) for all e € E there exists a transition (s, e,eot,lot,s") e T;

(i) ifs — s ands — ", then eot=eot, lot =lot' and s' = s";

eot, lot eot’, lot’
. e / e P . el €k
(iii) if s — s andu —> ', then there is no sequence sy —> Sy ... Sp.1  —> Sk
eot, lot eot’, lot’ eoty, loty eoty, loty
(k >0) such that (s'=sg A u=sg) or (u' =8y A 8=8g);
. . e’ . el ek
(iv) ife<e and s —> s’ then there is a sequence sy — Sy ... S.1 —> Sp (k>0)
eot, lot eoty, loty eot, loty

such that e1 = e and s = sy;

(v) Eot(e) < Lot(e), for all e e E;
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(vi) Eot(e) < eot <lot < Lot(e), for all (s,e,eot,lot,s1)eT.

We say two events e, e’ of a timed event tree ET are consistent (denoted e Congr e') iff

el €k

e = e’ or there exists a sequence s — 81 ... 8.1 —> s, (k>0) such that (e; = e and
eot1, loty eoty, loty
ep=¢')or (e =¢ and e = e).
. €1 €n
A run of ET is a sequence v = (so, ) = (s1,01) - (Su-1,Vn-1) = (Sn,Vp) such that vy <

. . v . €4
vy <...<v, and for all 1 <7< n there is a transition s;_; - s; such that eot; < v; < lot;.
eot;, lot;

Here, sg = s;, and vy is defined to be 0.

Lemma 4. Let ET = (S, sin, E,T,<,L,l, Eot, Lot) is a timed event tree and s;, €—1l> S1
eoty, loty
€n

Sp-1 —> Sy for somen>1. Then e, |S{e1,...,e,}.
eotn, lotn

Now let us define the category of timed event trees.

Definition 18. Let ET = (S,sin, E,T,<,L,l,Eot,Lot) and ET' = (S, s. , E', T', <', L', I,

Eot', Lot") be timed event trees. A pair (u,\), where p: E - E'" and \: L - L' are functions,

1s called a morphism, ff

(1) p(e) I ple )

(ii) l'op=MNol;

Loy - el ek u(er) u(er)
(iii) if S;n —> s1...8.1 —> s, (k>0), thens,, — s\...s,_, — s} forsome
eot1, loty eoty,, loty, eot], lot| eot;, lot],

si €S" and eot) < eot; and lot; <lot (1<j<k);
(iv) Eot'(u(e)) < Eot(e) and Lot(e) < Lot'(u(e)), for all e € E.

Lemma 5. Given timed event trees ET = (S, sin, E, T, <, L, I, Eot, Lot) and ET' = (5',
st BT, <, L' U, Eot', Lot"), a morphism (u,\): ET - ET' generates the unique function

o, S = S such that (0,,p) is a morphism between (S, s, E,T) and (S',s,,,E',T"), and

in’

preserves concurrency: for all e,e’ € E if e Congy €' and p(e) <" p(e’), then e <e'.

Timed event trees and morphisms between them form the category of timed event trees,

TET.
Lemma 6. Given a morphism (ju, \) : ET - ET' of TET, if we have a run y = (so, o) = (s1,11)

eén (e1)
ASne1,Un1) = (Sn, ) of T then v = (0,(s0), 1) e (0u(s1),11) - {0u(Sn-1), Vn-1

(0u(8n),vn) will be the run of ET.

) u(_fi)n)

4. Relations Between Timed Models for Concurrency. In this section we investigate
how the category of timed causal trees relates to the other timed model categories. In particular,

we show that there is a coreflection from timed synchronization trees to timed causal trees, a



80 Nataliya S. Gribovskaya Causality versus True Concurrency in the Setting of Real-Time Models

coreflection from timed synchronization trees to timed event structures, a coreflection from
timed causal trees to timed event trees, and a reflection from timed event trees to timed event
structures. Thus, we will get the adjunction from timed causal trees to timed event structures
which arises as the composition of a coreflection from timed causal trees to timed event trees
and a reflection from timed event trees to timed event structures.

4.1. A coreflection between the categories TCT and TST. First, we investigate
a relation between the categories TCT and TST. Clearly, any timed causal tree is a timed
synchronization tree. Hence, we have a functor ¢2s : TCT — TST that forgets about the
causality information and keeps morphisms. Moreover, it is easy to see that ¢2s is a faithful
functor.

On the other hand, every timed synchronization tree determines a timed causal tree, in
which the causal dependency relation is given by the order of the transitions in the tree. Now

we can define a functor s2¢: TST - TCT.

Definition 19. Let § = (S, sin, L, T) and 8" = (S, s, L', T") be timed synchronization

trees and (u,\) : S - 8" be a morphism of TST. Define s2¢(S) = (S, Sin, L, T,<*), where
(s,a,eot,lot,s") <* (u, b, eot’, lot’, u") if and only if there exists a sequence of transitions s’
€1 €L

— S ...81 —> Sk for some k>1 such that s, =u; and define s2¢c(p, ) = (1, A).

eoty, loty eoty, loty

Proposition 1. The mapping s2c¢ is a fully faithful functor.

Jlokasameavcmeo. First, we note that s2¢(S) is a timed causal tree for all timed synchroniza-
tion trees S = (5, sin, L, T).

Second, we should check that s2c(p,\) = (i, A) is a morphism of TCT for all mor-
phisms (p,A) : & = & of TST. We only need to prove that p preserves concurrency. Let
(s,a,eot,lot,s"), (u,b,eot’ lot' u") € T, (s, a, eot, lot, s") Con (u, b, eot’, lot’, u') and (u(s),
Aa), eot’, lot', u(s")) < (u(u), A(b), eot’, lot’, u'). This implies the existence of a se-
quence /i(s") eot{%{)ti sho.sh eot%()tk si. = p(u) for some k > 1. Hence, (s,a,eot,lot,s")
% (u,b,eot’ lot’ u"), by the item (ii) of Definition 12. Furthermore, since (s, a, eot, lot, s')
Con (u, b, eot’, lot', u"), we may conclude that either (s,a,eot,lot,s") <* (u,b,eot’ lot’ u") or

(u,b,eot’ lot’ u') <* (s,a,eot,lot,s"). Assume (u, b, eot’, lot’, u') <* (s, a, eot, lot, s"). This

€1 €]

means that there exists a sequence v/ — s; ... 8.1 — s, = s for some [ > 1. This
eoty, loty eot;, lot;
A A
implies that p(u') Mew p(sy) ... p(si-1) M) p(s;) = p(s). This contradicts the item (ii)
eoty, loty eot/, lot}

of Definition 12. Thus, (s,a,eot,lot,s") <* (u,b,eot’ lot’ u').

Third, consider an identity morphism (1g,1.) : & = S and a pair of morphisms (o, \) :
§ - & and (¢/,\) : &' - §” from TST. It is obvious that s2c(ls, 1.) = (1, 1.) and
s2c((a’,N) o (0,A)) =s2¢c(o’oa,N o)) =(d"0o0,\N o) =s2c(c’,\)os2c(o,\). Thus, s2c is

indeed a functor.
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Finally, we need to clarify that s2c is a fully faithful functor. Take arbitrary objects & and
S’ of TST. Define a function Fs s : TST(S,S") - TCT(s2¢(S),s2¢(S’)) such that Fs s (o, \)
= s2¢c(0,\) = (o, A) for all morphisms (o,\) : § - & of TST. Since s2c is a functor, Fs s
is a function. Moreover, it is easy to check that Fs s is injective, because Fs s /(o,\) = (0, ).
Hence, s2c is a faithful functor. Next, take an arbitrary morphism (o, \) : s2¢(S) — s2¢(S’) of
TCT. Clearly, (0,)) is a morphism of TST from S to &’ and Fss/(o,\) = (o,\). Thus, s2c

is a full functor. O

Proposition 2. Let S = (S, sin, L, T) be a timed synchronization tree. Then s2¢(S) is a timed
causal tree, (1g,15) : S - ¢2s(s2¢(S)) is an isomorphism and the pair (s2¢(S),(1s,11)) is a
reflection of S along c2s.

Jlokazamenvcmeo. 1t is clear that c¢2s(s2c¢(S)) = S. Hence, (1g,11) : S - ¢2s(s2¢(S)) = S is
a morphism of TST. Moreover, it is an isomorphism.

Now we should prove that (s2c(S),(1s,1.)) is a reflection of S along ¢2s, i.e. whenever
C' is a timed causal tree and (o,\) : § - ¢2s(C’) is a morphism of TST, then there exists a
unique morphism (g, \') : s2¢(S) — €’ such that (o,\) = c2s(g,\') o (1g,11). Since c2s(g, \')
= (g, \'), we may conclude that A’ must be equal to A and g must match . Hence, we should
only show that (o,\) : s2¢(S) — C’ is a morphism of TCT. Since (o,)) : § - ¢2s(C’) is
a morphism of TST, we only need to check that o preserves concurrency. Take an arbitrary
(s,a,eot,lot,s"), (u,b,eot*, lot* u") € T such that (s,a,eot,lot,s") Con (u,b,eot* lot* u") and
(0(s),\(a),eot’ lot' a(s")) <" (o(u),A(b),eot’™ lot™ o(u')). Since C’ is a timed causal tree, we
may conclude that there exists a sequence o (s’) eot':%ot'l 51 ... 5851 eot?;“;ot; o(u) for some k > 1.

Since (s, a,eot,lot,s") Con (u,b,eot*,lot* u'), we have three admissible cases: (s, a, eot, lot,
s') = (u, b, eot*, lot*, u'), (s, a, eot, lot, s") <* (u, b, eot*, lot*, u") and (u, b, eot*, lot*, u') <*
(s, a, eot, lot, s). If (s, a, eot, lot, s') = (u, b, eot*, lot*, u") then (a(s), A(a), eot’, lot', o(s"))

= (o(u), A(b), eot’™ lot™, o(u')), that contradicts our conditions. If (u, b, eot*, lot*, u') <* (s,

€1 ~ ~ e
a, eot, lot, s'), we have a sequence v/ — &1 ... 8,1 —> s forsome m > 1. Hence, o(u')
eoty, loty eotm, lotm

e A €m . . . .. .

t—>”( 1l)t” o(51) ... 0(8m-1) t—>( l)t o(s). This contradicts the item (ii) of Definition 12. Hence,
eoty, loty eot!” , lot!
(s,a,eot,lot,s") <* (u,b,eot*, lot* u").

Thus we can conclude that (s2c(S), (1s,17)) is a reflection of S along ¢2s. O
The above results enable us to exhibit an adjunction between the categories TST and TCT.
Theorem 1. The functor c2s is right adjoint to s2c and this adjunction is a coreflection.

oxasameavcmeo. The first assertion follows from Proposition 2 and from the fact that for all

morphisms (o,A) : C = (S, sim, L, T,<) - C' = (5", s, L', T'",<") it is true that (1g,1./) 0

in’
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(0,A) = (0,)\) =s2c(c2s(0,\)) = s2¢(c2s(0,A))o(1g, 11). Moreover, it follows from Proposition
2 that the unit ) associates each timed synchronization tree S = (S, s;,, L, T) with the

isomorphism (1g,17) : S = ¢2s(s2¢(S)). Hence, ® is a natural isomorphism. O

Thus, TST embeds fully and faithfully into TCT and is equivalent to the full subcategory
of TCT consisting of those timed causal trees C that are isomorphic to s2c(c2s(C)).

4.2. A coreflection between the categories TCT and TET. In this subsection we
establish that there is a coreflection from timed causal trees to timed event trees. Note that

any timed event tree gives rise to a timed causal tree by forgetting about events. Hence, we can

specify a functor et2c: TET - TCT.

Definition 20. Let ET = (S, s, E,T,<,L,l, Eot,Lot) and ET' = (S', s, E', T', <, L/,

I', Eot', Lot") be timed event trees and (u,\) : ET — ET' be a morphism of TET. De-

fine et2c(ET) = (S, Sin, L, T*,<*), where T* = {(s,l(e),eot,lot,s") | (s, e, eot,lot,s") € T},

(s,l(e),eot,lot,s") <* (u, l(e"), eot’, lot', u'") if and only if e < e’ and there exists a sequence s'
el e

— 81 ... 851 —> u for some k>0; and define et2c(p,\) = (0,,\), where o, : S - S’
eoty, loty eoty, loty

1s defined by p as in Lemma 5.
Proposition 3. The mapping et2c is a faithful functor.

Jlokasamenvcmeo. 1t is clear that et2c(E7) is indeed a timed causal tree for all timed event
trees £T. The fact that et2c(u, A) = (04, A) is a morphism of TCT for all morphisms (u, ) :
ET — ET' of TET follows from Lemma 5 and the equation Aol = [’ o . Next, we consider
an identity morphism (1g,17) : ET - ET and a pair of morphisms (u,\) : ET - ET" and
(W N):ET' — ET" from TET. Obviously, et2¢(1g,11) = (01,,11) = (1s,11), where (1g,17) :
et2c€T — et2cET is an identity morphism of TCT, and et2c((u/,\') o (i, \)) = et2c(p’ o
p N o) = (0uop, N o) = (000, N o) =et2ec(p,\)oet2c(u,N). Hence, we can conclude
that et2c is a functor.

Now we need to show that the functor et2c is faithful. Take an arbitrary pair of objects £T
and T of TET. Define a function Fer ey : TET(ET,ET') - TCT(et2c(ET),et2¢(ET"))
such that Fer e (p,\) = et2¢c(p,A) = (0,,A) for all morphisms (p,A) : ET - ET' of TET.
Clearly, Fer ¢ is indeed a function, because et2c is a functor. Check that Fer g7 is injec-
tive. Take arbitrary two morphisms (u1, A1) : ET —» ET" and (uz,A2) : ET — ET' such that
Ferer (1, M) = Fer g7 (2, A2). This implies that (o,,, A1) = (0,,,A2). Hence, Ay = Ay and o,
= 0,,. Since 0, defines the function f; in a unique way, we may conclude that 1 = po. Hence,

Fer g7 is injective, i.e. et2c is a faithful functor. O

Note, every timed causal tree C determines a timed event tree which is induced by C when

we assume that each transition of C represents a separate event. This means that we take
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the transitions of C as events , and label each arc of C by the corresponding transition. This

operation can be easily extended to a functor c2et : TCT -— TET.

Definition 21. Let C = (S, sin, L, T,<) and C' = (', s.,, L', T',<") be timed causal trees
and (o,\) : C > C" be a morphism of TCT. Define c2et(C) = (S, sin, T, T*,<,L,l, Eot, Lot),
where T* = {(s,(s,a,eot,lot,s"),eot,lot,s") | (s, a, eot, lot, s') € T}, I(s,a,eot,lot,s") = a,
Eot(s,a,eot,lot,s") = eot and Lot(s,a,eot,lot,s") = lot; and define c2et(o,\) = (u, \), where
p:T — T is given by the following equality: p(s, a,eot,lot,s") = (a(s),A\(a),eot’ lot’ a(s")) e T"

for some eot’ < eot and lot < lot'.
Proposition 4. The mapping c2et is a faithful functor.

Jlokazamenvcmso. Tt is easy to check that c2et(C) = (S, i, T, T*,<, L,1, Eot, Lot) is a timed
event tree for all timed causal trees C = (S, si, L, T,<).

Now, we need to prove that c2et(o,\) : c2et(C) - c2et(C’) is a morphism of TET
for all morphisms (o,\) : C - C’ of TCT. W.lo.g. assume that C = (S, s;,, L, T,<) and
C'= (9, s, L', T'.<"). Then, c2et(C) = (S, sim, T, T*, <, L, |, Eot, Lot) and c2et(C’)
= (S, s, T, T, < L' I, Eot', Lot"), where T* = {(s, (s,a,eot,lot,s"), eot, lot, s'") |
(s,a,eot,lot,s") €T}, I(s,a,eot,lot,s") =a, Eot(s,a,eot,lot,s") =eot, Lot(s,a,eot,lot,s") = lot,
T ={(u', (u',a,eot’ lot' u"), eot’, lot', u") | (w',a’,eot’ lot' ,u") e T}, U'(u',a' eot!, lot’ u") =
a', Eot'(u',a’ eot’ lot’' u'") = eot’ and Lot'(u', a’, eot’, lot’, u") = lot’. Moreover, c2et(o,\) =
(i, \), where 1 associates (s, a, eot, lot, s") € T' with some transition (o(s), A(a),eot’, lot’ o(s"))
of c2et(C’) with eot’ < eot and lot < lot’. The existence and unicity of such transition follows

from the item (ii) of Definition 11 and the item (iii) of Definition 12. Hence, pu: T - T" and
A: L — L' are functions. Check that (u, \) satisfies the requirements of Definition 18.

(i) Let us show that u(s,a,eot,lot,s") < u((s,a,eot,lot,s") |).

Take an arbitrary (s,a,eot,lot,s") € T. Using the items (i), (iii) of Definition 12, we can

. ai ag . .
find a unique sequence s;, —> Sy ...Sk1 —> S =s for some k> 0. Since (o, ) is
eoty, loty eoty, loty
Aag)

a morphism of TCT, we have o(s;,) =5, —  o(s1) ... 0(sk-1) o o(sk) =0(s)
eoty, loty

1 1
A
(—alz o(s") for some eot], ..., eot;, eot’, lot}, ..., lot;, lot’ € R such that eot’ < eot,
eot’, lot’

lot <lot" and eot’; < eot; and lot; < lot} for all 1 < j < k. Clearly, wu(s,a,eot,lot,s") = (a(s),
Aa), eot’, lot’, o(s")). Since c2et(C’) is a timed event tree, we have u(s,a,eot,lot,s") |
¢ {(o(sin) = s, AMar), eot, lot],0(s1)), ..., (0(sk-1), A(ax), eot;, lot;,o(s))} by Lemma
4. Hence, if ¢’ <" u(s, a, eot, lot, ") then e’ = (a(s;-1), A(ay), eot}, lot}, o(s;)) = pu(s;-1,
aj, eotj, lot;, s;) for some 1 < j < k. This implies u(s;_1, a;, eot;, lot;, s;) <" u(s, a,

eot, lot, s'). According to Definition 14, it is easy to see that (s;_1, a;, eot;, lot;, s;)
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< (s, a, eot, lot, s"). Thus, (s;_1, a;, eot;, lot;, s;) € (s,a, eot, lot, s") |. Furthermore,

w(s,a,eot lot,s") | € u((s,a,eot,lot,s") |).

(i) It is clear that I’ o u(s,a,eot,lot,s") = U'(c(s), A(a), eot’, lot’, a(s')) = AM(a) = Aol(s, a,
eot, lot, s') for all (s,a,eot,lot,s")eT.

(Sin,a1,eot1,lot1,s1) (8k-1,ak,€0ty,loty,s)) . .
(iii) Let sqp — S1 ... Sk_1 — sk (k>0) in c2et(C). This means that
eoty, loty eoty, loty
ai ag . . . .
Sin —> S1...8k.1 —> Sk inC. Since (o, ) is a morphism of TCT, we may conclude
eoty, loty eoty, loty
Aar) A(ag)
— ! 3 14 A A 4
that o(sin) =5}, — o(s1)...0(sk-1) —> 0o(sg)inC’ for some eot}, ..., eoty, lot],
eot], lot] eot; , lot,

..., lot; € R such that eot) < eot; and lot; < lot); for all 1 < j < k. Hence, o(sin) = sj,

(U(Sin)7>\(a1)760t,17lOt,170-(51)) (U(Sk—1)1>\(ak)760tr ,lOt;C,O'(Sk))
- —

o(s1)...0(Sk-1) o(sg) in c2et(C’) and for

eot), lot] eot) , lot],

all 1 S] < k it holds that u(sj,l,aj,eotj,lotj,sj) = (O'(Sj,l), )\(aj), €Ot;, lOt;, O'(Sj)).

(iv) Obviously, Eot'(u(s,a,eot,lot,s")) = eot’ < eot = Eot(s,a,eot,lot,s") and Lot(s, a, eot,
lot, s") = lot < lot’ = Lot'(u(s,a,eot,lot,s")) for all (s, a, eot, lot, s') eT.

This means that (u, \) is indeed a morphism of TET from c2et(C) to c2et(C’).

Next, we consider an identity morphism (1g,17) : C - C and a pair of morphisms (o, \) :
C - C"and (o’,\):C" - C" from TCT. Clearly, c2et(1s,1.) = (p151,,1) = (1r,11), where
(17,11) : c2etC — c2etC is an identity morphism of TET, and c2et((o’, \)o (0, A)) = c2et(o’0
T, N o) = (foroo yor, NOX) = (for 0 fiox, Ao X) = c2et(o’, \)oc2et (o, A). Thus, c2et is indeed
a functor.

In conclusion we prove that the functor c2et is faithful. Take an arbitrary pair of timed
causal trees C and C’. Define a function Fee : TCT(C,C") » TET(c2et(C),c2et(C’)) such
that Fee(o,N) = c2et(o,A) = (fon, A) for all morphisms (o,A) : C - C’ of TCT. It is easy
to see that F¢ ¢ is indeed a function, because c2et is a functor. Verify that F¢ e is an in-
jective function. Take arbitrary two morphisms (oq,A;) : C = C" and (02, \2) : C - C’ such
that Fee(o1,A1) = Feer(02,A2). This implies (fto; 0, A1) = (flopngs A2). Hence, Ay = Ay and
Loy a = Mogn,- Contemplate an arbitrary state s € S. Since C is a timed synchronization tree,
we have some transition (s',a,eot,lot,s) of C. Clearly, for all i = 1,2 p,, ,(s",a,eot,lot,s) =
(0i(s"), Ai(a), eot;, lot;, o;(s)) € T". SInce iy, 2y = toyng, We have (o1(s"), A1(a), eoty, loty, o1(s))
= (02(5"), Aa(a), eoty, loty, 09(s)). Hence, o1(s) = oa(s). This fact implies oy = o5. Thus, F¢ e

is injective, i.e. c2et is a faithful functor. m

Proposition 5. Let C = (S, s, L, T,<) be a timed causal tree. Then c2et(C) is a timed
event tree, (15,11) : C - et2c(c2et(C)) is an isomorphism and the pair (c2et(C), (1g,1.)) is
a reflection of C along et2c.
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Jlokazamesvcmeo. Since c2et is a functor, c2et(C) is a timed event tree. Obviously, c2et(C)
= (S, sin, T, T*, <, L, I, Fot, Lot), where T* = {(s, (s, a, eot, lot, s"), eot, lot, s') | (s, a,
eot, lot, s') € T}, I(s,a,eot,lot,s") = a, Eot(s,a,eot,lot,s") =eot and Lot(s,a,eot,lot,s") = lot.
Contemplate a timed causal tree et2c(c2et(C)). Clearly, et2c(c2et(C)) = (S, sin, L, T**,<**),
where T* = {(s, l(e), eot, lot, s") | e € T and (s, e, eot, lot, s") € T*} and (s, [(e), eot, lot, s") <**

(8",a1,e0t1,lot1,51) (8k-1,ak,e0ty,lotg,5)
(u, l(e"), eot’, lot’, u') < e,e'eT, e<e and I s — S1 ... Sk-1 —
eoty, loty eoty, loty

sy =u (k>0) in c2et(C). Hence, T** = {(s,l(s,a,eot,lot,s"),eot,lot,s") | (s,a,eot,lot,s") e T}
= T. Moreover, it holds that (s, l(e), eot, lot, s') <** (u, l(e") = b, eot’, lot’, u') <= e =
(s, a, eot, lot, s'), e = (u, b, eot’, lot', u'), (s, a, eot, lot, s') < (u, b, eot’, lot’, ') and I &’
eot%fotl S ... Sp_1 eot%mk s =u (k >0) in C. Because C is a timed causal tree, we have (s,
I((s,a,eot,lot,s")) = a, eot, lot, s') <** (u, [((u,b,eot’ lot’ u")) = b, eot’, lot', u') < (s, a,
eot, lot, s') < (u, b, eot’, lot', u'), i.e. <=<**. Thus, et2c(c2et(C)) =C.

Clearly, (1g,11) : C — et2c(c2et(C)) = C is a morphism of TCT. Furthermore, it is an
isomorphism.

Now we should prove that (c2et(C),(1g,1.)) is a reflection of C along et2c, i.e. whenever
ET' is a timed event tree and (o,\) : C - et2¢(ET’) is a morphism of TCT, there exists
a unique morphism (g,\’) : c2et(C) — T’ such that (o,\) = et2c(g,\) o (1g,1z). Since
et2c(g,\') = (0,4, \'), we may conclude that A’ must be equal to A and g must be defined so
that o, = 0.

W.lo.g. assume that ET" = (S, s, , B, T", <", L",l', Eot’, Lot") and (o, ) : C - et2c(ET") isa
morphism of TCT. Obviously, et2¢(ET") = (S, s, L', T™, <), where T" = {(u, l'(e), eot, lot,
u') | (u, e, eot, lot, u') e T'} and (u,l’(e),eot,lot,u") <"* (t,I'(e'),eot’ lot',1') <= e<'e" and
there exists a sequence u’ eoﬁotl S1 ... Sp_1 eot%mk t for some k > 0. Define a mapping g : T' — E’
as follows: ¢(s,a,eot,lot,s") = e’ such that I'(e’) = A(a) and (o(s),e,eot’,lot',0(s")) € T" for
some eot’, lot’ € R with eot’ < eot and lot < [ot’.

First, check that g is a function. Let (s, a, eot, lot, s") € T'. Since (o, A) is a morphism of TCT,
we have that (o(s), A(a), eot’, lot’, o(s")) € T™ for some eot’,lot’ € R such that eot’ < eot
and lot < lot'. This implies that (o(s), €, eot’, lot', o(s")) € T" for some e’ € E' such that
I'(e") = Ma). Hence, for all (s,a,eot,lot,s") € T there is an event e’ such that I'(¢) = A\(a) and
(a(s),e eot’ Lot o(s")) € T' for some eot’, lot’ € R with eot’ < eot and lot < lot’. Suppose that
we have e/, e” € E' such that (o(s), e’ eot’,lot',a(s")), (o(s),e",eot” lot" o(s")) eT’, eot’ < eot,
lot < lot', eot” < eot, lot < lot" and I'(e’) =1'(e") = AM(a). Due to the item (iii) of Definition 12,
it holds that e’ = ¢”. Thus, g is well defined.

Second, establish that (g, \) : c2et(C) — £T" is a morphism of TET.

e Check that g(s,a,eot,lot,s") |< g((s,a,eot,lot,s") ]).
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Assume e” € g(s, a, eot, lot, s') |. It means that e” <’ e’ = g(s, a, eot, lot, s') with (o(s),

e, eot’, lot', o(s")) € T" and I'(e’) = A(a). Due to the items (i), (iii) of Definition 12,

. ai ay .
we have a unique sequence s;, —> S1 ... S4.1 — Sk = s in C. It means that
eoty, loty eoty, loty
(Sin,a1,e0t1,lot1,s1) (Sk-1,ak,eoty,loty,sk) (s,a,eot,lot,s") o
Sin — S1 ... Sp_1 — S, = S — s’ in c2et(C). From
eoty, loty eoty, loty eot, lot

Lemma 4 we get (s,a,eot,lot,s") 1S {(Sin,a1,eoty,lot1,s1),. .., (Sk-1,ak, €0ty loty, ) =

s), (s,a,eot,lot,s")}. Since (o, ) is a morphism, it holds that o(s;,) = s}, T o(s1)
eot], lot]

. o(sk-1) ;\,(—a]})t, o(sk) = o(s) %t, o(s") in et2c(ET") for some eot’, eot}, ..., eot},
lot’, lot, ec: kl’ogg € R such thazoe’oto’ < eot, lot < lot', and eot’ < eot; and lot; < lot}
for all 1 < j < k. Hence, o(si,) = s, wt,l%»ma o(s1) ... o(sk1) eot%;t; o(sk) = o(s)
eof’;ot, o(s') in ET" for some €', ef,...,e; € E' such that I'(e’) = A(a), U'(e}) = A(a;)

for all 1 < j < k. Moreover, it is easy to see that ¢(s,a,eot,lot,s") = €', g(s;-1, aj,
eotj, lotj, s;) = €} (1 < j < k). Since ET" is a timed event tree, we may conclude that
g(S,&,@Ot, lOt,S’) s {g(sinaalaeotlalOtla Sl)a ) g(sk—l) Qg €oty, lOtka Sk = S)} by Lemma
4. Assume e’ € g(s,a,eot,lot,s') |. It means that e” = g(s;_1,a;,eot;,lot;, s;) = ¢} for
some 1 < j < k. This implies that (o(s;-1), €], eot}, lot}, a(s;)) <" (o(s), €, eot’,lot’,0(s")).
According to Definition 14, it holds that (s;_1,e;,eot;,lot;,s;) < (s,e,eot,lot,s"). Thus,
e" e g((s,a,eot,lot,s") |).

e Obviously, I’ o g(s,a,eot,lot,s") =1'(e') = Xa) = Xol(s,a,eot,lot,s").

(8in,a1,€0t1,lot1,51) (8k-1,ak €0ty loty,s1) . .

o Lets;, = — S1 ... Sk_1 — sk (k>0) in c2et(C). This means that

eot1, loty eoty, loty
ai ag . . . .
Sin —> 81 ...8k1 —> S in C. Since (0, \) is a morphism, we may conclude that
eoty, loty eoty, loty
Aar) Aag) .

o(Sin) =5, o(s1) ... 0(sk-1) —  o(sg) in et2c(ET') for some eot], ..., eot},
eot!, lot! eot) , lot},

loty, ..., lot; € R such that eot < eot; and lot; < lot} for all 1 < j < k. This implies that

el €l :

o(Sin) =8, — o0(s1) ... 0(s,-1) —>  o(sg)in ET' for some e}, ..., e} € E’ such

eot], lot] eoty , lot)

that '(e}) = A(a;) for all 1< j < k. Moreover, it is easy to see that g(s;_1, a;, eot;, lot;,

sj) =€ (1<j<k).
e Note that Fot'(g(s,a,eot,lot,s")) < eot’ < eot = Fot(s,a,eot,lot,s") and Lot(s, a, eot,

lot, s") = lot < lot" < Lot'(g(s,a,eot,lot,s")).

Thus, (g, ) is indeed a morphism of TET from c2et(C) to ET".
It is easy to see that (o, \) = (04, A) and ¢ is a unique function such that o, = o. Furthermore,

(c2et(C),(15,11)) is a reflection of C along et2c. O

Now we can summarize the obtained results in order to introduce an adjunction between

TET and TCT.
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Theorem 2. The functor et2c is right adjoint to c2et and this adjunction is a coreflection.

Zoxasameavcmeo. The first statement follows from Proposition 5 and from the fact that for
all morphisms (o, ) : C = (S, sin, L, T,<) > C" = (5", s.,, L', T',<) it is true that (1g/,1./)0
(0,A) = (0,\) = et2c(c2et(o,\)) = et2¢c(c2et(o,A\)) o (1g,11). Next, due to Proposition 5 we
may conclude that the unit ¢ associates each timed causal tree C = (S, s;,, L, T,<) with the

isomorphism (1g,17) : C — et2c(c2et(C)). Hence, 9 is a natural isomorphism. O

Thus, TCT embeds fully and faithfully into TET and is equivalent to the full subcategory
of TET consisting of those timed event trees £T that are isomorphic to c2et(et2¢c(ET)).

4.3. A reflection between the categories TES and TET. This subsection is dedicated
to investigation of the categories TES and TET and a relation between them. The runs of a
timed event structure can be ordered in a tree. Hence, any timed event structure forms a timed

event tree whose states are the runs of the timed event structure. This gives rise to a functor

e2et : TES - TET.

Definition 22. Let £ =(F, <, Con, L, I, Eot, Lot) and &' = (E', <', Con', L', I', FEot’, Lot")
be timed event structures and (pu,\) : € - &' be a morphism from TES. Define e2et(€) = (S,
e, E, Tran, <, L, |, Eot, Lot), where S ={ej...e, € E*|n>0,{e,...,e,} € C(E) and for all
1<i,j<nife; <ej theni<j} and Tran ={(e1...en,ens1, Eot(€ni1), Lot(€ns1),€1 .. €neni1) |

€1...€n, €1...enen1 €S} and define e2et(u, ) = (1, A).
Proposition 6. The mapping e2et is a fully faithful functor.

Jloxazamenvcmeo. First, we need to show that e2et (&) is a timed event tree for all timed event
structures £. Using the definition of the sets S and Tran, we may easy check that (S, €, F,
Tran) is a timed synchronization tree. Note that <€ F' x E is a strict order, because € is a timed

event structure. Next, we should prove that e2et(&) satisfies the requirements of Definition 17:

(i) for all e € E there exists a transition (s, e, eot,lot,s") € Tran.

Clearly, C' = e | u{e} € C(£). W.lo.g. assume that C' = {ey,...,e,} for some n > 0 such
that e, = e and for all 1 <¢,j <n if (e; <e;) then i < j. Define s, =¢;...¢; forall 1 <i<n

and sy = sy, = €. Obviously, for all 1 <i<n, s; € S and (s;_1,€;, Fot(e;), Lot(e;), s;) € Tran.

(ii) if (s,e,eot,lot,s"),(s,e,eot’ lot’ s") € Tran, then (s, e, eot, lot, s') = (s, e, eot’, lot’, s').

Due to the definition of the set T'ran, we have that s = ej...e} for some m > 0,
s =ef...ere, 8" =e]...eie and eot = eot’ = Fot(e) and lot = lot’ = Lot(e). Hence,

(s,e,eot,lot,s") = (s,e,eot! lot' s").
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(v)

(vi)
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. . €1
if (s,e,eot,lot,s"), (u,e,eot’ lot’ u') € Tran, then there is no sequence sy — s
eoty, loty

Sil —> s (k>0) such that (s'=sg A u=s;) or (W =59 A s=sp).
eoty, loty

Suppose that (s,e,eot,lot,s"), (u,e,eot’,lot' ,u") € Tran. By the construction of the set
Tran, we have that s =ej...e}, for some m>0, s"=ej...e}e, u=¢}...e, for some k>0

and u’ = e} ...eje. This means that ee s’, eew’, e ¢ s and e ¢ u. It is easy to see that if s

el €L . .
— 81 ...81 —> Sk (k=>0) then sgis a prefix of s;. Hence, if s’ = sy then u # sy
eoty, loty eoty, loty

and if u’ = sy then s # s.

. . €1 €k
if e<e’ and (s, €, eot,lot,s") e Tran, then there is a sequence sy — s7...58,1 —>
eoty, loty eoty, loty

sk (k> 0) such that e; = e and s = .

Since (s,e’,eot,lot,s") € Tran we have that s = e} ...e;, for some m >0, s’ =¢j...e}e€

m
and {ej,...,exn}, {ef,...,e5 ¢} € C(£). Hence, e € {e],... e} }. W.lo.g. assume e = e
. % % * - * % *
for some 1 < j < m. Define s} =ej...ef for all 1 <i<m and s} ., =e]...e; e’ Clearly,
ej=e em e
* * * * *
— s¥ LSk —> s —> st 1(m>0).

-1 Eot(e;), Lot(e;) -1 Eot(em), Lot(em) m FEot(e’), Lot(e)
Eot(e) < Lot(e) for all e € E.

This follows from the fact that £ is a timed event structure.

for all (s,e,eot,lot,s1) € Tran Eot(e) < eot < lot < Lot(e).

Clearly, for all (s, e, eot,lot,s1) € Tran Fot(e) = eot < lot = Lot(e).

Thus, e2et (&) is a timed event tree.

Second, we need to prove that e2et(u, \) : e2et(£) — e2et(&’) is a morphism of TET for
all morphisms (u, A) : € = &’ of TES. W.l.o.g. assume that € = (E, <, Con, L, [, Eot, Lot) and
E'=(E' <", Con', L' I', Eot', Lot'). Then, e2et(£) = (S, ¢, E, Tran, <, L, |, Eot, Lot) and
e2et(&') = (S, ¢, E', Tran', <', L', I', Eot', Lot'). Since (u,\) : £ = £’ is a morphism of TES,
we get p: B — E"and A: L — L’ are functions and I’ o 4 = A o [. Check that (i, \) satisfies the

requirements of Definition 18.

e Let us show that p(e) J< u(e l).

Take an arbitrary e € E. Obviously, C' = e | u{e} € C(£). Hence, u C € C(&’). Since
p(e) € p C, we have that p(e) J<pu C =p(el)u{u(e)}. Because (i, A) is a morphism of
TES, we have u(e) | n{u(e)} =@. Thus, p(e) 1€ u(e ).

el €n

o et s;, — 81 ...8,.1 — 8, for some n > 0. Due to the definition of the set

eoty, loty eotn, loty
Tran, we have that s;, =€, and for all 1<i<n s;=e;...e; €5, eot; = Fot(e;) and lot; =

Lot(e;). Since s; € S (1 <i<n), we get {e1,...,e;} € C(E) for all 1 <i <n. Because (u, \)
is a morphism of TES, it holds that {u(e1),...,u(e;)} € C(E’) for all 1 < ¢ < k. Define
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. . (e1)
st=p(ey)...u(e;) for all 1 <2 <n. Clearly, st € S” (1<t <k) and s/ g
i= ). le) 5 €5 ) ™ Bot'(u(er)), Lot'(u(er)
p(en)
sho...8h Eot'(u(en)),—zot'(u(en)) st Eot'(u(e;)) < Eot(e;) and Lot(e;) < Lot'(u(e;)) for
all 1<j<k.

e Clearly, Eot'(uu(e)) < Eot(e) and Lot(e) < Lot'(u(e)) for all e € E, since (u,\) is a
morphism of TES.

This means that (u, \) is indeed a morphism of TET from e2et(&) to e2et(&’).

Third, consider an identity morphism (1g,1;) : £ - £ and a pair of morphisms (u, A) : € - &’
and (u/,\) : & - &" from TES. Clearly, e2et(1g,1.) = (1g,11), and e2et((u/, ) o (1, A))
=e2et(pu/ opu,Nod) = (opu,NoX)=(u,N)o(u,\) =e2et((u,\))oe2et(u,\). Thus, we
have that e2et is indeed a functor.

Finally, we need to show that e2et is a fully faithful functor. Take an arbitrary objects
€ and &' of TES. Define a function Fg e : TES(E,E") -~ TET(e2et(€),e2et(E’)) such that
Fee(p,A) = e2et(u,\) = (i, A) for all morphisms (u, ) : € - & of TES. It is obvious that
F¢ ¢ is a function, because e2et is a functor. It is easy to see that F¢ ¢ is injective, because
Feer(p,A) = (1, A). Hence, e2et is a faithful functor. Check that Fg ¢ is a surjective function.
Take an arbitrary morphism (u, \) : e2et(E) — e2et(E’) of TET. Since (i, \) is a morphism
of TET, we may conclude that : EF - E'" and A\ : L - L' are functions, I’ o = Aol and
FEot'(u(e)) < Eot(e) and Lot(e) < Lot'(uu(e)) for all e € E. Let C be a configuration of £. By
the definition of the sets of states of e2et(€) and e2et(E’), we get that u C' € C(E’) and for
all e,e’ € C if p(e) = p(e’) then e = e’. This implies that (g, ) is a morphism of TES and
Feer(p,N) = (p, A). Therefore, e2et is a full functor. O

Note that we can transform any timed event tree into a timed event structure, defining the
set of consistent events as a set of events that appear together on some branch and ignoring

the tree structure. Thus we obtain a functor et2e: TET — TES.

Definition 23. Let ET = (S, s, E, T, <, L, I, Eot, Lot) and ET" = (S', s, E', T", <', L',

', Eot', Lot') be timed event trees. Define et2e(ET) as (E, <, Con, L, I, Fot, Lot), where
Con ezactly contains all subsets A of the sets {e1,...,ex} € E (k>0) such that there are states

. €1 €L
S1, ..., S €S with 845, —> 81 ... 8.1 —> S for some eoty,...,eoty, loty,..., lot, € R.
eoty, loty eoty, loty

Moreover, et2e(pu, \) = (i, ).
Proposition 7. The mapping et2e is a faithful functor.

Jlokasameavcmeso. First, we need to show that et2e(€T) is a timed event structure for all

timed event trees £7. It follows from Definition 17 and Lemma 4.
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Second, we have to prove that et2e(u,\) : et2e(ET) — et2e(ET") is a morphism of TES
for all morphisms (u,\) : ET - ET" of TET. Since (u,\) : ET — ET' is a morphism of TET,
we may conclude that p: F - E’ and A: L - L’ are functions and I’ o= Aol.

Take an arbitrary configuration C' in the timed event structure et2e(E7). Check that
pu CeC(et2e(ET)).

Since C' is a configuration, it holds that C' € Con and if e < ¢/ € C then e € C. Hence,

there exist events ey,..., e, € F such that si;,  —>  §p ... Sp1 —> s (k>0)in ET for
eoty, loty eoty,, loty
some sy, ..., g € S and C € {ey,...,er}. According to the item (iii) of Definition 18, we get
that s;, ey S8 o) s (k> 0) in ET' for some si,...,s} € S" and for some
eot], lot] eoty , lot)
eoty, ..., eoty,loty, ... lot; € R such that eot’ < eot; and lot; < lot} for all 1 < j < k. Thus

{u(er),...,pu(ex)} € Con’ and p C < {u(ey),...,u(ex)}. Hence, u C € Con'.
Let €’ € p C and e” <’ ¢/. This means that e’ = u(e;) for some 1 < j < k such that e; € C.
Thus, e” € u(e;) |. According to item (i) of definition 18 we have that p(e;) IS pu(e; 1). Using
the fact that C' is a configuration, we may conclude that e” € u(e;) |< pu(e; |) € p C. Thus, p C

is a configuration.
Now we need to show that Ve e’ € C . if u(e) = wu(e’) then e = ¢/. Assume that it is not
true. Then we have e, e’ € C' such that p(e) = p(e’) and e # ¢’. This implies that e = e; and
n(e;) o

e’ = ¢ for some 1< j,0 <k. W.lLo.g. assume that j <[. Then there is a sequence s ; — s’
eot’., lot’.
3’ J

8 u(;),i}:f) s;. This contradicts the item (iii) of Definition 17.

Note thlz;t éot’(u(e)) < Fot(e) and Lot(e) < Lot'(u(e)) for all e € E due to the item (iv) of
Definition 18.

Thus, (p, A) is a morphism of TES between et2e(£7) and et2e(ET") by Definition 16.

Third, consider an identity morphism (1g,1.) : ET - T and a pair of morphisms (pu, ) :
ET - ET" and (', N) : ET' —» ET" from TET. Obviously, et2e(lg,1.) = (1g,11), and
et2e((p/, \) o (1, \)) = et2e(p’ o, N oX) = (p' o, NoX) = (u',\N)o (u,\) = et2e(p’,\) o
et2e(p, \). Thus, we have that et2e is indeed a functor.

Finally, we should prove that et2e is a faithful functor. Take arbitrary objects ET and £T
of TET. Define a function Fer e : TET(ET,ET') » TES(et2e(ET),et2e(ET")) such that
Ferer (1, A) = et2e(p, A) = (p, A) for all morphisms (p, A) : ET - ET' of TET. It is obvious

that Fer ¢ is a function, because et2e is a functor. Clearly, Fer g7 is injective, because

Ferer (1, A) = (1, A). Hence, et2e is a faithful functor. ]

Proposition 8. Let £ = (E, <, Con, L, I, Fot, Lot) be a timed event structure. Then
e2et(&) is a timed event tree, (1g, 1) : et2e(e2et(E)) - &£ is an isomorphism and the pair

(e2et(€),(1r,1L)) is a coreflection of € along et2e.

Jlokazamesvcmso. Obviously, e2et(€) = (S, €, E, Tran, <, L, [, Eot, Lot), where S = {e; ...e,
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eE*|n>0,{e,...,e,} € C(E) and for all 1 < 4,5 <n if (e; <e;) then (i < j)} and Tran =
{(e1...€n, ens1, Eot(ens1), Lot(eni1), €1...€4€n41) | €1...€n, €1...€nen41 € S}. Moreover, we

can easily see that et2e(e2et(€)) = (E, <, Conx, L, I, Eot, Lot), where Con* exactly contains

€1 €k
all subsets A of events from F such that A c {ey,...,ex} and s;, —> $1 ... 8.1 — S
eoty, loty eoty, loty

(k > 0) for some sq,...,8; € S and eq,...,e, € E. It is easy to check that Con = Conx. This
implies that et2e(e2et(£)) = £. Hence, we have that (1g,1,) : et2e(e2et(£)) =€ - € is a
morphism of TES and, moreover, it is an isomorphism.

Finally, show that (e2et(&),(1g,1.)) is a coreflection of £ along et2e. Consider a timed
event tree ET' = (S, s, ,E",T',<', L', l', Eot’, Lot') and a morphism (u,\) : et2e(ET") —
£ and show that there is a unique morphism (f,s) : ET' - e2et(£) such that (u,\) =
(1g,11) cet2e(f,<). From this equation, it follows that (f,¢) must match (u,\), because
et2e(f,<) = (f,s). Hence, we only need to show that (u,\) is a morphism of TET between
ET' and e2et ().

Clearly, et2e(ET") = (E’, </, Con’, L', I', Eot', Lot"), where Con’' exactly contains all

subsets A of events from E such that A € {e;,...,e;} and there are states sq,...,s; € S’
el eg
(k> 0) such that s;,, — s1...8.1 — s (k>0) for some real numbers eoty, ..., eoty,
eot1, loty eoty, loty

loty, ..., loty. Because (u,\) : et2e(ET') — £ is a morphism of TES, we have that y: B’ - E
and \: L' - L are functions, [op = Aol” and for all e € E' it holds that Fot(u(e)) < Fot’(e) and
Lot'(e) < Lot(u(e)). Prove that (i, A) satisfies the other requirements from Definition 18. First,
check that p(e) J€ pu(e |). Let e € E'. Since et2e(ET") is a timed event structure, e | u{e} is a
configuration. Because (u, \) : et2e(ET") — £ is a morphism of TES, we have that u(e | u{e})
is a configuration too. Hence, pu(e) |c u(e | u{e}) = u(e ) u{u(e)}. Clearly, if ¢’ € u(e) | then
e’ # pu(e). Thus, p(e) Ic u(e l).

Next, assume that s;, eotleﬁ;h S1 ... 8k eotﬁotk sy, for some k > 0. Hence, {e1,...,¢e;} € Con’
for all 1 < j < k. Moreover, for all 1 < j <k {ey,...,e;} is left-closed by Lemma 4. Thus,
we get that {e1,...,e;} € C(et2e(ET")) for all 1 < j < k. Since (u,\) : et2e(ET') - € is a
morphism of TES it holds that {u(eq),...,u(e;)} € C(E) for all 1 < j < k. Hence, for all

1 < j,1 <k it holds that u(e;) < p(e)) = j <. Let s = p(er),...,pu(e;) for all 1 < j < k.

According to the definition of e2et, we have si,...,s; € S and € ey 81 ... 81
Eot(u(e1)), Lot(u(e1))
ko) s;.. Moreover, according to Definition 17 and Definition 18, we have that
Eot(u(er)), Lot(p(ex))
Eot(pu(e;)) < Eot'(e;) < eotj and lot; < Lot'(e;) < Lot(u(e;)) for all 1 < j < k. O

Using the results mentioned above, we can formulate the following theorem.

Theorem 3. The functor et2e is left adjoint to the functor e2et and this adjunction is a

reflection.
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Joxazamenvcmeo. The first part of this theorem follows from Proposition 8 and from the fact
that for all morphisms (p,A) : & = £’ it is true that (1, 1,/) o et2e(e2et(u, \)) = (1g/, 11/) 0
et2e(u,A\) = (1g, 1) o (u, A) = (g, A) = (1, A) o (1g, 11). Moreover, due to Proposition 8, we
have that the counit 1 associates each timed event structure & = (E, <, Con, L, I, Eot, Lot)

with the isomorphism (1g, 1) : et2e(e2et(€)) - £. Hence, 1 is a natural isomorphism. O

Thus, TES embeds fully and faithfully into TET and is equivalent to the full subcategory
of TET consisting of those timed event trees €T that are isomorphic to e2et(et2e(ET)).

4.4. A coreflection between the categories TES and TST. It is a well-known fact
that there exists a coreflection from the category of synchronization trees to the category of
event structures. In this subsection, we try to extend this result to timed variants of the models
mentioned above. Clearly, the configurations of a timed event structure can be translated to a

tree. Hence, we can specify the following functor e2s: TES - TST.

Definition 24. Let £ =(FE, <, Con, L, I, Eot, Lot) and &' = (E', <', Con', L', l', FEot’, Lot")
be timed event structures and (ju, \) : € = &' be a morphism of TES. Define e2s(E) = (S, ¢, L,
Tran), where S ={e1...e, |n>0,{e1,...,e,} € C(E) and for all1 <i,j<n (e;<ej) = (i<j)}
and Tran = {(e1...en, l(eni1), Eot(ens1), Lot(eni1), €1...€n€ni1) | €1 €n, €1...€n€ni1 €S},
and e€2s(u,\) = (i, A), where i : S - S’ is defined as: f(ey...e,) = p(er)...u(e,) for all

€1...6, € S.
Proposition 9. The mapping e2s is a faithful functor.

Jlokazamenvcmeo. First, by the definition of the sets S and Tran, we get that e2s(€) is a
timed synchronization tree for all timed event structures €.

Second, we need to prove that e2s(u, \) : €2s(€) — €2s(€’) is a morphism of TST for all
morphisms (u,\) : £ > & of TES, where e2s(u, \) = (71, A) and fi(e;...e,) = pler) ... u(en).
Since (i, A) : € = &’ is a morphism of TES, it is easy to see that p: E - E" and : S - S’ are
functions. Check that the pair (jz, A) satisfies the requirements of Definition 18. It is obvious
that fi(€) = e. Assume that (e ...ex_1, [(er), Eot(er), Lot(ey), e1...ex_1ex) € Tran. This means

that s',s" € S, where s’ = i(ey ...e,_1) and s” = i(ey ... ex1ex) = s’u(ex). By construction of
U(p(ex))
—
Eot'(u(ex)), Lot'(u(ex))
and Fot'(u(er)) < Eot(er) and Lot(ey) < Lot'(u(eg)), since (u, A) is a morphism of TES.

Thus, (&, A) is indeed a morphism of TST from e2s(&) to e2s(&’).

Tran', we have i(e; . ..ex1) n(er ... ex-1€x)). Moreover, I'op(ey) = Aol(ex)

Third, we should contemplate an identity morphism (1g,1.) : £ - £ and two morphisms
(1, A\): & > & and (@', \) : & - & from TES. Obviously, e2s(1g, 1) = (1g,11) = (15,11), and
ezs((:u,v )‘,) ° (N? )‘)) = ezs(p,’op,7 /\IO)‘) = (/L’ oM, )\’o)\) = (ﬁ’ )‘,)O (ﬁ? )‘) = eZS(,u’, )‘,) Oe2S(ILL’ )‘)

Thus, we have that e2s is indeed a functor.
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Finally, we need to clarify that e2s is a faithful functor. Take an arbitrary timed event
structures £ and &’ from TES. Specify a function Fg ¢ : TES(E,E) - TST(e2s(€),e2s(&"))
such that Fge g (u,\) = €2s(pu, A) = (f, A) for all morphisms (u, ) : € - £ of TES. Because
e2s is a functor, we have that F¢ ¢ is a function.

Next, we need to verify that Fg ¢ is an injective function. Take two arbitrary morphisms
(p1, A1) : € = &€ and (u2, A2) : € - &' such that Fgg(p1, A1) = Fegr(p2, A2). This implies that
(m1, A1) = (2, A2). Hence, A\ = Ay and [y = J15. Take an arbitrary event e € E. Since £ is a
timed event structure, we have a configuration {ey,...,e,} = e | u{e} of £ such that e, = e and
for all 1 <¢,75 <nif e; <e; then ¢ < j. This implies that s; = e;...¢; € S for all 1 <¢ < n. Since
i1 = iz, we have that py(e;) = ua(e;) for all 1 < <n. Hence, pq = pio. Thus, Fg ¢ is injective,

i.e. e2s is a faithful functor. O

Next, we try to transform a timed synchronization tree § into some timed event structure &,
assuming that each transition of S represents a separate event with the same timed limits as
this transition, defining the set of consistent events as a set of transitions that appear together
on some branch and specifying the causal dependency relation as the hierarchy of transitions

in the tree structure. Thus, we can specify a functor s2e: TST - TES.

Definition 25. Let S = (S, 8in, L, T) and 8" = (S',s), , L', T") be timed synchronization trees

in’

and (o,\) : S - 8" be a morphism of TST. Define s2e(S) = (T, <*, Con*, L, I*, Eot*, Lot*),

. ail
where (s,a,eot,lot,s") <* (u,b,eot’ lot' u') <= there is a sequence s’ — 51 Sk
eoty, loty
ay
—  SL U for some k > 1, Con* = {A < {ty,...,try} | tr1 = (Sin, a1, €oty, loty, s1), ...,
eoty, loty

try = (Sg-1, ak, eoty, loty, sg) €T, (k>0)}, I*(s,a,eot,lot,s") = a, Eot*(s,a,eot,lot,s") = eot
and Lot*(s,a,eot,lot,s") = lot. Moreover, define s2e(o,\) = (11, \), where u(s,a,eot,lot,s") =
(a(s),\(a),eot’ lot' a(s")) for some eot’,lot' € R.

Lemma 7. For any timed synchronization tree S, if C € C(s2e(S)) then C = {(Sin, a1, eoty,

al a
lot1, 1), -, (Sn-1, Gn, €0ty, lOt,, $p) | Sin  —> 81 ... Sp-1  —>  Sp} for some n > 0.
eot, loty eotn, loty

Proposition 10. The mapping s2e is a faithful functor.

Jloxazamenvcmeo. First, we need to show that s2e(S) is a timed event structure for all timed
synchronization trees S. It is easy to check that <* is a strict order and, for all (s, a, eot, lot, s") €
T, Eot*(s,a,eot,lot,s") < Lot*(s,a,eot,lot,s"). Take an arbitrary (s,a,eot,lot,s’) € T. Now we
need to verify that (s, a,eot,lot,s") | = {(u,b,eot’ lot’ ,u") € T | (u, b, eot’, lot’, u") <* (s, a, eot,

lot, ")} is a finite set. Since S is a timed synchronization tree, we can find a unique sequence

Sin LN S1 ... Sp_1 LN sk =8 (k >0). Using the definition of a timed synchronization
eot1, loty eoty, loty
tree, we get that (s, a, eot, lot, s') | € {(Sin, a1, eoty, loty, $1), ..., (Sk_1, ak, €oty, lotg, S)}.

Hence, (s,a,eot,lot,s") | is a finite set. Moreover, it immediately follows from the definition of
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Con* that V(s,a,eot,lot,s") € T - {(s,a,eot,lot,s")} € Con* and Y € X € Con* = Y € Con*.
By the definition of the relation <*, we get that for all X € Con*, if (u,b,eot’ lot’ u') <*
(s,a,eot,lot,s") e X then X u {(u, b, eot’, lot’, u')} € Con*.

Second, we have to prove that s2e(o, \) is a morphism of TES. Assume that s2e(S) = (7,
<*,Con*, L,1*, Eot*, Lot*) and s2e(S’) = (T", <'*, Con'*, L', I"*, Eot’*, Lot’*). Since (o,\) : § —>
S’ is a morphism of TST, we may conclude that A\: L - L’ and o : S — S’ are functions, o(s;,) =
siand for each (s,a,eot,lot,s") € T there is the only (o(s),\(a),eot’,lot',o(s")) € T', where
eot’ < eot and lot < lot’. Hence, u, defined as (s, a,eot,lot,s") = (a(s), A(a), eot’, lot’, a(s")), is
a function. Take an arbitrary configuration C' of s2e(S) and check that u C' € C(s2e(S")). Since

C'is a configuration, it holds that C' € C'on* and if e <* ¢’ € C then e € C'. Hence, there exist states

S1, ..., sp €S (k>0) such that s;, —> 51 ... 851 2 s and C ¢ {(s0,a1,eoty,loty, s1),
eoty, loty eoty,, loty
oy (Sg-1,ag, €oty, loty, sg)}. W.lo.g. suppose e; = (s;_1,a;,eot;,lot;,s;) (i = 1,...,k), where
A
So = Sin. Because (o, \) is a morphism of TST, we get that o(s;,) M) o(s1) ... o(Sk-1)

eot!, lot}
eoj,(—alit, o(s) in S'. Moreover, it is easy to see that p(e;) = (o(si-1), A(a;),eot],lotl,o(s;)) for
allk’l Ski <k. Thus, up C < {pu(er), ..., u(ex)} and {u(ey), ..., u(ex)} € Con'*. Clearly, for all
e, €C, u(e;) d ={uler), ..., n(e;-1)}. Hence, p C is a configuration. Note that Ve;, e; € C o if
p(e;) = p(e;) then i = j. Moreover, it is obvious that Eot™(u(s, a, eot, lot, s')) < Eot*(s, a,
eot, lot, s") and Lot*(s, a, eot, lot, s") < Lot™ (u(s, a, eot, lot, s')) for all (s,a,eot,lot,s")eT,
since (s, a,eot,lot,s") = (a(s),N(a),eot’ lot’ o(s")) with eot’ < eot and lot < lot’. Thus, (u, \)

is indeed a morphism of TES.

Third, we should contemplate an identity morphism (1g,17) : S = S and two morphisms
(o,A) :§ - &8 and (o/,N) : & - §” from TST. Obviously, s2e(ls,1.) = (p151,,11) =
(15,11), and s2e((0', \') (5, 1)) = 526000, X 0 A) = (frasxtons N o) = (1r0s )0 (s )

= s2e(o’, \') os2e(o, \). Hence, s2e is a functor.

Finally, show that s2e is a fully faithful functor. Take arbitrary timed synchronization trees
S and &' from TST. Define a mapping Fs s : TST(S,S’") - TES(s2e(S),s2e(S")) such that
Fssi(o,)\) = s2e(0,\) = (fo1,A) for all morphisms (o,\) : S - S’ of TST. Because s2e is a

functor, we have that Fs s is a function.

Check that Fsg is a bijective function. Take arbitrary morphisms (o1,A;) : & — §” and
(02,A2) : S - 8" such that Fs (01, A1) = Fs.s/(02, A2). This means that (fto, x, A1) = (Lo rgs A2)-
Hence, A\; = Ao and i, n, = [loy),- Take an arbitrary state s € S. Because S is a timed syn-
chronization tree, we can find the only transition (s',a,eot,lot,s) € T. Since fig, n, = Hoyry, WE
have (01(s"), M\1(a),eot’ lot’ o1(s)) = (02(s"), Aa(a) = A1 (a),eot” lot" o5(s)). This implies that
o1(s) = 02(s). Hence, Fss is injective, i.e. s2e is a faithful functor. Next, take an arbitrary

morphism (u, A) : s2e(S) — s2e(S’) of TES. Define a function g : S — 5" as follows: ¢(s;,) = .,
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and for all s € S such that s # s;,,, g(s) = last(u(trs)), where try € T such that last(trs) = s and
last is a function which maps each transition to it’s last state, i.e. last(u, b, eot’,lot',u") = u' for
all transitions (u, b, eot’, lot',u"). Since S is a timed synchronization tree, there is the only transi-
tion try € T with last(trs) = s. This means that g is indeed a function. Since p(tr) | = u(tr }) for
all tr € T and " o pu = [*, we get that (last(u(trs)), N(a),eot’ lot’ last(u(try))) = p(try) € T7,
where try = (s, a,eot,lot,s"). This implies that (g, \) is a morphism of TST from S to §" and
Fss(g,A) = (i, A). Thus, s2e is a full functor. O

Proposition 11. Let S = (S, sin, L, T) be a timed synchronization tree. Then there is an
isomorphism (n%,11) : S — e2s(s2e(S)) such that the pair (s2e(S), (n*,11)) is a reflection of
S along e2s.

Jlokasameavcmso. Note, that s2e(S) = (T, <*, Con*, L, I*, Fot*, Lot*), where <*, Con*, [*,
Eot* and Lot* are defined as in Definition 25. Furthermore, e2s(s2e(S)) = (S*, €, L, Tran),
where S* = {(sg, a1, eotq, loty, $1) ... (Sp-1, Gn, €0ty, lot,, s,) | n >0, {(so, a1, eoty, loty, s1),
covy (Sn-1, an, €0ty lot,, s,)} € C(s2e(S)) and for all 1 <, j <n (s;-1, a;, eot;, lot;, s;) <* (-1,
aj, eotj, lotj, s;) = (i< j)} and Tran = {((so, a1, eoty, loty, s1) ... (Sn-1, Gn, €0ty, lOty, Sp),
1*((Sny Anets €0tnyt, L0tni1, Spi1)), Eot*((Sn, ne1, €0tni1, L0tns1, Sns1)), Lot ((Sp, Gny1, €0tns1,
lotni1, Sns1)), (So, a1, eoty, loty, $1) ... (Sp-1, Qn, €0ty L0ty $n) (Sp, Qns1, €0tpi1, L0tni1, Spi1))
| (80, a1, eotq, loty, s1) ... (Sp_1, n, €oty, lot,, $,), (So, a1, eoty, loty, $1) ... (Sp-1, Gn, €Oty,
loty, $n) (Sn, Qns1, €0tnit, lOtni1, Spi1) € S*}.

By Lemma 7 we may conclude that S* = {(s;,, a1, eoty, loty, s1) ... (Sp_1, Gp, €0ly, loty,,
$p) | n>0and (s;_1, a;, eot;, lot;, s;) € T for all 1 <i <n} and Tran = {((sin, a1, eoty, loty, s1)
oo (Snt, Qp, €0ty Loty Sn), Gpy1, €0tny1, L0ty 1, (Sin, a1, eoty, loty, $1) ... (Sp_1, Gn, €0y, lot,,
$n) (Sn, Qny1, €0tnyt, L0tnit, Sne1)) | (Sic1, ai, eoty, lot;, s;) €T for all 1 <i<n+1}.

Define a mapping 0% : S — S* as follows: for all s € S« n¢(s) = (Sin, a1, eoty, loty, s1) ...
(Sk-1, ag, eoly, lotg, si)), where s; = s. It is easy to see that for all s € S there is a unique
sequence S;, wt%fotl S1 ... 841 eot%mfk s = s with k£ > 0 by Definition 12. Hence, g is a function
and 7% (sin) = €.

Define a mapping ng* : S* — S as follows: for all s* € S* o n¢*(s*) = n&* ((8in, a1, €oty, loty,
$1) ... (Sk-1, ak, eoty, loty, si)) = s and n&*(€) = s45,. Clearly, ng* is a function and n¢*ong = 1g
and ngong* = lg-.

Now, we need to prove that (n%,11) : S - e2s(s2e(S)) is a morphism of TST. Obviously,

n% and 17 are functions and n¢(si,) = €. Take an arbitrary (s,a,eot,lot,s’) € T. According

ol . ai ak
to Definition 12, we have a unique sequence s;, — S1 ... S4.1 —> S = S. Hence,
eoty, loty eoty, loty
n&(s) = (Sin, a1, eoty, loty, s1) ... (Sk-1, ak, eoty, lotg, si), N&(s") = (Sin, a1, eoty, loty, s1)

oo (Sk-1, ag, eoly, loty, si) (s, a, eot, lot, s") and (n§(s), a, eot, lot, n§(s')) € Tran. Thus,
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(n&, 1) : S - e2s(s2e(S)) is really a morphism of TST.

Next, we need to show that (n¢*, 1) : e2s(e2¢c(S)) — S is a morphism of TST. Obviously,
n&* is a function and 1§*(€) = s;,. Suppose that (¢, a, eot, lot, t') € T'ran for some t,t’ € S*. This
means that t = (8, a1, eoty, loty, s1) ... (Sg-1, ag, €oty, lotg, s), t' = (Sin, a1, €oty, loty, s1)
oo (Sk-1, ag, eoty, loty, si) (Sk, a, eot, lot, si1) and (sg, a, eot, lot, sp.1) € T. Since ng*(t) = s
and ng*(t') = sgs1, we may conclude that (n¢*,1.) : e2s(s2e(S)) - S is indeed a morphism of
TST.

Hence, (n%,1.) and (n%*,11) are morphisms of TST and (n¢*,12) o (n%,1.) = (1s,12) and
(né, 1) o (ng*, 1) = (1g+,11). Thus, (9%, 1) is an isomorphism.

Finally, check that (s2c(S),(n%,11)) is a reflection of S along e2s, i.e. whenever £’ is a
timed event structure and (o,\) : § - €2s(&’) is a morphism of TST, there exists a unique
morphism (g, \') : s2e(S) - &’ such that (o, ) = e2s(g, \') o (9%, 11). Since €2s(g, ') = (g, \),
we may conclude that A" must be equal to A and g ong must match o.

Take an arbitrary timed event structure &' = (E’,<’,Con’, L',l’, Eot’, Lot") and an arbitrary
morphism (o,\) : § — e2s(&’) of TST. It is obvious that e2s(&’) = (5’,¢, L', Tran’), where
S'={er...en | n 20, {ey,...,e,} € C(€) and for all 1 < i,j <n (e <ej) = (i <j)} and
Tran' = {(e1...en, I'(€ns1), Eot'(ens1), Lot'(€n41), €1---€n€ni1) | €1...€n, €1...€n€ns1 € S'}.
By definition of morphism of TST, it holds that ¢ : S - S" and A : L - L’ are functions,
o(sin) = € and for all (s, a, eot, lot, s') € T there exist eot’,lot’ € R such that eot’ < eot, lot < lot’
and (o(s),A(a),eot’,lot’ o(s")) € Tran'.

Clearly, gont = 0 <= for all (s,e,eot,lot,s") € T g(s,e,eot,lot,s") = e, where o(s’) =
ey ...ex for some k > 0. We should only show that (g, ) : s2e(S) - £’ is a morphism of TES,
where g(s,e,eot,lot,s") = e, with o(s’) = ey...e, for some k > 0. Note that ¢ is a function,
because o is a function. Moreover, for all (s, a,eot,lot,s") € T there exist eot’,lot' € R such that
eot’ < eot, lot < lot' and (o(s),A(a),eot’,lot’ o(s")) € Tran’. By the definition of e2s(&’), we
have o(s") = o(s) e, and I'(er) = A(a). This implies that I’ o g(s,a,eot,lot,s") =1'(ex) = Ma) =
Aol*(s,a,eot,lot,s") for all (s,a,eot,lot,s")eT.

Assume that C' € C(s2e(S)). By Lemma 7 we have that C = {(s;, = so, a1, eoty, loty, s1),

ey (Sno1, g, €0ty lot,, s,) | (Sj-1, a;, eot;, lot;, s;) € T for all 1 < j <n}. It is easy to see that

o(so) =€, 0(s1)=¢,...,0(sp)=¢] ... el for some e}, ..., e/, € E'. Hence, g C = {g(Sin = So,
ai, eoty, loty, $1), ..., g(Sn-1, Qn, €0ty, lot,, sp) | (Sj-1, a;, eot;, lot;, s;) € T for all 1 < j<n}
={el,....el, | o(s,) =€} ... el }. Thus, g C € C(&’). Next, consider two transitions (s;_1, aj,

eotj, lotj, s;) and (s;_1, a;, eot;, lot;, s;) from C. If g(s;_1, aj, eot;, lot;, s;) = g(s;-1, a;, eot;,
lot;, s;) then e} = ej. Hence, i = j.
Furthermore, for all (s;_1, a;, eot;, lot;, s;) € C it holds that Fot'(g(s;-1, a;, eot;, lot;, s;)) =

Eot'(el) < eot; = Eot*(s;-1, a;, eot;, lot;, s;) and Lot*(s;_1, a;, eot;, lot;, s;) = lot; < Lot'(el) =
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Lot'(g(si-1, a;, eot;, lot;, s;)). Thus, (g,A) is indeed a morphism of TES between s2e(S) and
E'. Therefore, (s2e(S), (n*,11)) is a reflection of S along e2s. O

As a result, the following statement is true.
Theorem 4. The functor e2s is right adjoint to s2e and the adjunction is a coreflection.

Loxazameavcmeo. The first statement follows from Proposition 11 and from the fact that for all
morphisms (o,A) : S = (S, sin, L, T) = 8" = (5", s,,, L', T") it is true that (n%,,11) 0 (0, A) =
e2s(s2e(o,\)) o (1§, 11). Next, due to Lemma 11 we may conclude that the unit ¢ associates
each timed synchronization tree S = (S, s;,, L, T') with the isomorphism (7§, 1z) : S —

e2s(s2e(S)). Hence, 1 is a natural isomorphism. O

Thus, TST embeds fully and faithfully into TES and is equivalent to the full subcategory
of TES consisting of those timed event structures £ that are isomorphic to s2e(e2s(€)).

4.5. Summary. The following diagram summarizes the functors which relate the models
under consideration. Here the hooks represent embeddings and the small triangles between

arrows indicate the direction of left adjoints.

TCT ¥ TET
14 vl
TST ¥ TES

The diagram can be seen as a decomposition of the coreflection from TST to TES into three
consecutive adjunctions. Moreover, it is clear that the embeddings and left adjoints commute.
Thus we have derived a composed adjunction between timed causal trees and timed event
structures. It is not a coreflection, but it is induced by a coreflection and a reflection via a
larger category, TET. The object component of the right adjoint of this adjunction amounts
to the following transformation: it ‘linearizes’ a timed event structure into a timed causal tree
by forgetting about events.

5. Conclusion. In this paper we established some relations between the timed extension

of the well-known concurrent models. In particular, we showed that:

e The category of timed synchronization trees embeds fully and faithfully into the category

of timed event structures and into the category of timed causal trees.

e There is an adjunction between the category of timed causal trees and the category of
timed event structures. This adjunction is represented as the composition of a coreflection
from the category of timed causal trees to the category of timed event trees and a reflection

from the category of timed event trees to the category of timed event structures.
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Thus, as in the case of timeless models, timed causal trees are more trivial than timed event
structures because they apply causality without the notion of an event and, at the same time,
are more expressive than the latter, because their possible runs can be defined in terms of a
tree without restrictions, but the set of possible runs of any event structure must be closed

under the shuffling of concurrent transitions.
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HasBanue: Cpasrenne NpUYUHHON 3aBUCUMOCTH U CEMAHTUKU MCTUHHOIO IapaJijie/n3Ma
B KOHTEKCTE BPEMEHHBIX MOJIeIei

AsBTop(BI):

I'pubosckast H.C. (Uucruryr cucrem undopmarnku CO PAH)

Annoranus: Ilens ganHoil paboTbl — yCTAHOBUTH B3aMMOCBA3H MEXKJY Pa3/IMYHBIMU Ia-
paJLIeIbHBIMU MOJIE/ISIMU PeaIbHOrO BpeMeHu. JIjis JJoCTrKeHus JTJAHHOM 1eJIM MbI OIIPE eI
KaTeropruio BPEMEHHBIX PUYUHHBIX JE€PEBbEB U UCCIIEOBAIN, KAKOE MECTO 3aHMUMAET 3Ta Ka-
TEropus Cpeu JAPYIUX KaTeropuii BpeMeHHbIX Mojiesieil. B 4acTHOCTH, MBI YCTAHOBUJIU CYIIE-
CTBOBaHME COIPSIXKEHHBIX (DYHKTOPOB MEXK/Ly KaTeropueil BpeMeHHbIX HPUYUHHBIX JIEPEBHEB 1
KaTeropueil BpeMEeHHBIX CTPYKTYDP COOBITHIA, UCHOJIB3Ys Jjist 9TOr0 60jiee BhIPA3UTEIBHYIO MO-
JIeJIb BPEMEHHBIX JIepeBbeB coObITHi. Tem caMbiM MBI MOKa3a/Ii, YTO BPEMEHHbIE [TPUINHHbIE
JIEPEBbS MIPOITEe BPEMEHHBIX CTPYKTYP COOBITHI B TOM, UTO OHH OTPAYKAIOT TOJBKO OJMH ACHEKT
CEMAHTUKU MCTUHHOTO HapaJule/in3Ma, a UMEHHO MPUIMHHYIO 3aBUCHUMOCTb, U HE WCIOJIb3YIOT
HOHATHE COOBITUS JIJIsl 3aJIaHUs OTHOIEHUsT IPUIMHHO 3aBucumocTu. C JApyroit CTOPOHBI, MO-
JIeJIb BPEMEHHBIX IPUIUHHBIX JIePEBLEB 60J/1e€ BHIPA3UTE/IbHA, 9eM MOJIE/Ih BPEMEHHBIX CTPYKTYD
COOBITHI 110 CJIe/IyIONell IpUYnHe: JIJIg Hee MHOXKECTBO BCEX BO3MOXKHBIX I0CJIEI0BATEIHHO-

CTell BBINIOJIHEHUSA MOXKET OBIThH OIPEJIe/IEHO B TEPMUHAX JiepeBa 6€3 KaKUX-JIn00 OrpaHuvdeHunid,
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& MHOXKECTBO BCEBO3MOXKHBIX IIOCJIEJIOBATEJILHOCTEN BBIINOJIHEHUA 11 BPEMEHHON CTPYKTYPbI
COOBITHI JIOJIZKHO OBITh 3aMKHYTBIMU OTHOCHTEIHHO OIEPAIMH ITePECTAHOBKH ITapaJlieIbHbIX
IIEPEXOJIOB.

KuroueBsbie ciioBa: MoJie/ PEAIbHOTO BpEMEH!, UCTUHHBIN apaJIIe/In3M, TPUIUHHAS 3a-

BHCHMOCTD, OTHOITICHUS, YHU(PUKAINS, TEOPUs KaTeropuit
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