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This work represents the further development of the method for definite iteration ver-

ification [6]. It extends the mixed axiomatic semantics method [1] suggested for C-light

program verification. This extension includes a verification method for definite iteration

over unchangeable arrays with a loop exit in C-light programs. The method includes an

inference rule for the iteration without invariants, which uses a special function that ex-

presses loop body. This rule was implemented in verification conditions generator, which

is the part of our C-light verification system. To prove generated verification conditions

an induction is applied which is a challenge for SMT-solvers. At proof stage the SMT-

solver Z3 is used in our verification system. To overcome mentioned difficulty a rewriting

strategy for verification conditions is suggested. It allows to verify the definite iteration

automatically using Z3. Also the paper describes the application of the theorem prover

PVS for automatic proving of such verification conditions. An example, which illustrates

the application of these methods, is considered.
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1. Introduction

C program verification is an important task nowadays. A lot of projects (e. g. [2, 3])

propose different solutions. But none of the mentioned above suggests any methods for loop

verification without invariants whose construction is a challenge. Therefore, the user has to

provide these invariants. In many cases it is a difficult task. Tuerk [12] suggested to use pre-

and post-conditions for while-loops but the user still has to construct them himself.

Our method describes a class of loops, which can be verified automatically without any

invariants or loop pre- and post-conditions. It deals with a definite iteration of a special

form. We extend our mixed axiomatic semantics of the C-light language [1] with a new rule
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for verification of such iterations. This extension includes a verification method for definite

iteration over unchangeable arrays with a loop exit in C-light programs. The method includes

an inference rule for the iteration without invariants, which uses a special function that expresses

loop body. This rule was implemented in verification conditions generator, which is the part of

our C-light verification system.

At the proof stage, the SMT-solver Z3 [9] and the proof assistant PVS [11] are used. A

rewriting strategy for the induction based verification conditions was suggested to prove them

in Z3.

2. Definite Iteration and Replacement Operation

The method of loop invariants elimination for definite iteration was suggested in [10]. It

includes four cases:

1. Definite iteration over unchangeable data structures without loop exits.

2. Definite iteration over unchangeable data structures with a loop exit.

3. Definite iteration over changeable data structures with a loop exit.

4. Definite iteration over hierarchical data structures with a loop exit.

The first case was considered in [6]. Our paper deals with the second case.

Let us remind the notion of data structures, which contain a finite number of elements. Let

memb(S) be the multiset of elements of the structure S and |memb(S)| be the power of the

multiset memb(S). For the structure S the following operations are defined:

1. empty(S) = true iff |memb(S)| = 0.

2. choo(S) returns an element of memb(S) if ¬empty(S).

3. rest(S) = S ′, where S ′ is a structure of the type of S and memb(S ′) = memb(S) \

{choo(S)} if ¬empty(S).

Sets, sequences, lists, strings, arrays, files, and trees are typical examples of the data struc-

tures.

Let ¬empty(S), then vec(S) = [s1, s2, . . . , sn] where memb(S) = {s1, s2, . . . , sn} and si =

choo(resti−1(S)) for i = 1, 2, . . . , n.

Consider the statement

for x in S do v := body(v,x) end

where S is a structure, x is the variable of the type “an element S”, v is a vector of loop

variables which does not contain x and body represents the loop body computation, which
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does not modify x and S, and which terminates for each x ∈ memb(S). The loop body can

contain only the assignment statements, the if statements and the break statements. Such

for statement is named a definite iteration.

The operational semantics of such statement is defined as follows. Let v0 be the vector

of initial values of variables from v. If empty(S) then the result of the iteration v = v0.

Otherwise, if vec(S) = [s1, s2, . . . , sn], then the loop body iterates sequentially for x taking the

values s1, s2, . . . , sn.

To express the effect of the iteration let us define a replacement operation rep(v, S, body, n),

where rep(v, S, body, 0) = v, rep(v, S, body, i) = body(rep(v, S, body, i − 1), si) for all i =

1, 2, . . . , n if ¬empty(S).

A number of theorems, which express important properties of the replacement operation,

were proved in [10].

The inference rule for definite iterations has the form:
E, SP ` {∃v′ P (v ← v′) ∧ v = rep(v′, S, body)}A;{Q}

E, SP ` {P} for x in S do v := body(v,x) end A;{Q}
Here A are program statements after the loop. We use forward tracing: we move from the

program beginning to its end and eliminate the leftmost operator (at the top level) applying the

corresponding rule of the mixed axiomatic semantics [1] of C-light. E is the environment which

contains an information about current function (its identifier, type and body) which is verified,

an information about current block and label identifier if goto statement occurred earlier. SP

is program specification which includes all preconditions, postconditions, and invariants of loops

and labeled statements.

Let S be a one-dimensional array of n elements. Consider the special case of definite iteration

for (i = 0; i < n; i++) v := body(v, i) end

where v := body(v, i) consists of assignment statements, if statements and break statements.

In order to generate verification conditions we have to determine v, body(v, i), and the

function rep.

Let the loop body has the form

{x1 = expr1(x1,x2, . . . ,xk);

x2 = expr2(x1,x2, . . . ,xk);

. . .

xk = exprk(x1,x2, . . . ,xk); }
where exprj(j = 1, 2, . . . k) are some C-light expressions.
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The vector v of loop variable consists of all variables from left parts of assignment statements:

v = (x1, x2, . . . , xk). From the statements before the loop, we can get the initial value of v and

obtain the first axiom for rep:

rep(v, S, body, 0) = (x10 , x20 , . . . , xk0)

where xj0 , j = 1, 2, . . . , k are the initial values of xj before the loop execution.

At the next step, we make consecutive substitutions

x1 = expr1(x1, x2, . . . , xk);

x2 = expr2(expr1(x1, x2, . . . , xk), x2, . . . , xk);

. . .

xk = exprk(expr1(x1, x2, . . . , xk), expr2(expr1(x1, x2, . . . , xk), x2, . . . , xk), . . . , xk);

And then in the right parts rep((x1, x2, . . . , xk), S, body, i− 1) is substituted for xj.

For each if statement of the form if (e(i,x1,x2, . . . ,xk)){A; } else {B; }, where A and B

are compound statements consisting of assignment statements, two axioms are added to the

output of verification conditions generator:

∀x1∀x2 . . . ∀xk e(i, x1, x2, . . . , xk)⇒ A∗

∀x1∀x2 . . . ∀xk ¬e(i, x1, x2, . . . , xk)⇒ B∗

where A∗ and B∗ are obtained by consecutive substitutions as described above.

The break statement could appear at the top level of the loop or in the if statement. The

first case is obvious, it means that the loop iterates no more than once and all the statements

after break in the loop body are ignored. Therefore, the function rep is defined for i = 0, 1.

The second case means that for some j such that 0 < j ≤ n a loop exit occurs and such j

is defined by the condition of the if statement. Therefore, for all i such that j ≤ i ≤ n

rep((x1, x2, . . . , xk), S, body, i) = rep((x1, x2, . . . , xk), S, body, j)

In this case the following axiom is added:

∀x1∀x2 . . . ∀xk e(i, x1, x2, . . . , xk)⇒ (A∗ ∧ (∀l i < l⇒ A∗))

For the case when the break statement is located in the else statement, the negation of e is

used.

3. Example

Let us demonstrate the application of our method. Consider the following function search.

For a given integer key it finds its first occurrence in the given array of integers arr consisting

of length elements. If key does not occur in arr the function returns −1.

The annotated (in SMT-LIB v2 syntax of Z3) C-light program has the form:
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/* (assert (> length 0)) */

int search(int* arr, int length)

{

auto int result = -1;

for (i = 0; i < length; i++)

if (key == arr[i])

{

result = i;

break;

};

return result;

}

/* (assert (or

(forall ((i Int))

(implies (and (< -1 i) (< i length))

(and (not (= key (select arr i))) (= result -1))))

(exists ((r Int))

(implies (and (< -1 r) (< r length))

(forall ((i Int))

(implies (and (< -1 i) (< i r))

(and (not (= key (select arr i)))

(= key (select arr r))

(= result r)))))))) */

In this function v = (result) and its initial value before the iteration is −1. Also note that

in Z3 all functions must be total. Therefore, the first axiom is:

(declare-fun rep (Int Int (Array Int Int) Int) Int)

(assert (forall ((i Int) (key Int) (arr (Array Int Int)) (result Int))

(implies (< i 1)

(= (rep result key arr i) -1))))

According to our method described in Sec. 2, the second and the third axioms are:

(assert (forall ((i Int) (key Int) (arr (Array Int Int)) (result Int))

(implies (and (< 0 i) (= (select arr (- i 1)) key))
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(and (= (rep result key arr i) (- i 1))

(forall ((j Int))

(implies (< i j)

(= (rep result key arr j) (- i 1))))))))

(assert (forall ((i Int) (key Int) (arr (Array Int Int)) (result Int))

(implies

(and (< 0 i)

(not (= (select arr (- i 1)) key)))

(= (rep result key arr i) (rep result key arr (- i 1))))))

Z3 is the SMT-solver but our task is to check a validity of verification conditions, not

satisfiability. Therefore, the verification conditions generator produces the negation of the

verification condition:

(assert (not

(forall ((result Int) (key Int) (length Int) (arr (Array Int Int)))

(implies (and

(> length 0)

(= result (rep result key arr length)))

(or

(forall ((i Int))

(implies (and (< -1 i) (< i length))

(and (not (= key (select arr i)))

(= result -1))))

(exists ((r Int))

(implies (and (< -1 r) (< r length))

(forall ((i Int))

(implies (and (< -1 i) (< i r))

(and (not (= key (select arr i)))

(= key (select arr r))

(= result r)))))))))))

And then we expect the answer “unsat” which means that the negation is unsatisfiable therefore

the verification condition is true.

However, Z3 does not support proofs by induction, which appears inevitably in our veri-
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fication method. In this example we get the answer “unknown” which means that Z3 is not

able to determine whether the formula is satisfiable or not. Rustan Leino suggested a rewriting

strategy and a heuristic for when to apply it to verify simple inductive theorems [5].

4. Working with Induction in Z3

To prove by induction some proposition ∀n P (n) we try to prove the equivalent formula

∀n (∀k k < n ⇒ P (k)) ⇒ P (n). In this way we rewrite the verification condition for Z3 be

able to prove it. We should add an extra axiom (induction hypothesis) of the form ∀n ∀k k <

n ⇒ P (k) and modify the verification condition by adding a base case of induction P (1). In

our case of definite iteration over unchangeable one-dimensional arrays the inductive variable

is always the length of array. Therefore, the verification conditions generator is able to rewrite

the verification condition which contains a rep function automatically.

In the example from Sec. 3 this extra axiom has the form:

(assert (forall ((result Int) (key Int) (length Int) (len Int)

(arr (Array Int Int)))

(implies (and

(> len 0)

(> length len)

(= result (rep result key arr len)))

(or

(forall ((i Int))

(implies (and (<= 0 i) (< i len))

(and (not (= key (select arr i))) (= result -1))))

(exists ((r Int))

(implies (and (<= 0 r) (< r len))

(forall ((i Int))

(implies (and (<= 0 i) (< i r))

(and (not (= key (select arr i)))

(= key (select arr r))

(= result r))))))))))

And the base case is when length = 1. Therefore we add the second verification condition

which is obtained from the one in Sec. 3 by replacing the first conjunct (> length 0) with (=
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length 1).

After adding this axiom and the second verification condition, Z3 immediately returns the

answer “unsat” which means that the verification condition is true. Thus, the program is

partially correct.

5. Using PVS to Prove Inductive Verification Conditions

Another approach to the implementation of our method is based on the meta verification

condition generation (MetaVCG) [8] for building verification conditions and using PVS for its

proving. Detailed information about the MetaVCG can be found in [4].

The PVS language allows us to define the theory, which is the input argument of PVS

theorem prover. The PVS language is a functional programming language supplemented with

constructs for defining higher-order logic sentences. Thus, a PVS theory contains type defini-

tions, functions, and formulas. The PVS theorem prover can be applied to a certain formula of

the theory or to all formulas of the theory.

Let us consider the process of verification of the example from Sec. 3. The following theory

was generated:

search: THEORY

BEGIN

rep(result:int, key:int, arr:ARRAY[nat->int], i:nat) : RECURSIVE int =

IF (i < 1) THEN result

ELSE (IF ((0 < i) AND (arr(i-1) = key)) THEN rep(i-1, key, arr, i-1)

ELSE rep(result, key, arr, i-1) ENDIF) ENDIF

MEASURE i

vc: LEMMA

FORALL (result:int, key:int, length:nat, arr:ARRAY[nat -> int]):

((length > 0) AND (result = rep(-1, key, arr, length)))

IMPLIES

((FORALL (i:int): ((0 <= i) AND (i < length) AND (not (key = arr(i))))

IMPLIES

(result = -1))

OR

(EXISTS (r:int): ((0 <= r) AND (r < length))



System Informatics (Системная информатика), No. 10 (2017) 65

IMPLIES

(FORALL (i:int): ((0 <= i) AND (i < r) AND (not (key = arr(i)))

AND (key = arr(r))))

IMPLIES (result = r)))

END search

Note that it is necessary to provide a measure for the recursive function rep. The measure is

a well-founded relation. As mentioned in Sec. 4 the length of array is the appropriate measure

for the definite iteration over unchangeable arrays with a loop exit, therefore the measure could

be provided to PVS automatically.

PVS has special inference rules, which allow to use induction. In the case under consideration

the construct (induct-and-simplify "length") is used. It tells the prover to apply the

induction with the variable length. This leads to successful automatic proving of two formulas:

the base case and the induction step.

6. Conclusion

This paper represents an extension of our system [7] for C-light program verification. In the

case of definite iteration over unchangeable arrays with a loop exit, this extension allows us to

generate verification conditions without loop invariants.

This generation is based on the described inference rule for the C-light for statement which

introduces the replacement operation. It expresses definite iteration in the special form de-

scribed in the paper.

The suggested rewriting strategy for the induction allowed us to prove obtained verification

conditions in Z3. Also they are automatically proved in PVS.

The rewriting strategy allowed Z3 to prove automatically the partial correctness of the

example from [6]. It iterates over an array of integers and for a given integer computes the

number of its occurrences in this array. Also, PVS was able to prove automatically the partial

correctness of this example.

We plan to improve the suggested algorithm of rep function determination for the case of

nested if statements and to prove its correctness. Also, we will consider the case of loop elimi-

nation for changeable data structures and verify automatically classical array sorting programs.
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