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Static verification of source code correctness is a major milestone towards software re-

liability. The dynamic type system of the Jolie programming language, at the moment,

allows avoidable run-time errors. A static type system for the language has been exhaus-

tively and formally defined on paper, but still lacks an implementation. In this paper, we

describe our steps toward a prototypical implementation of a static type checker for Jolie,

which employs a technique based on a SMT solver.
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1. Introduction

Static type checking is generally desirable for programming languages improving software

quality, lowering the number of bugs and preventing avoidable errors. The idea is to allow

compilers to identify as many issues as possible before actually run the program, and therefore

avoid a vast number of trivial bugs, catching them at a very early stage. Despite the fact that,

in the general case interesting properties of programs are undecidable [19], static type checking,

within its limits, is an effective and well established technique of program verification. If a

compiler can prove that a program is well-typed, then it does not need to perform dynamic

safety checks, allowing the resulting compiled binary to run faster.

Jolie [15] is the only language natively supporting microservice architectures and, currently,

has dynamic type checking only. A static type system for the language has been exhaustively

and formally defined on paper, but still lacks an implementation. The obstacles of programming

in a language without a static type analyzer have been witnessed by Jolie developers, especially

by newcomers. However, implementing such system is a non trivial task due to technical
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challenges both of general nature and specific to the language. In this paper, we introduce and

describe ongoing work on a static type checker for the Jolie programming language [15]. Our

approach follows the formal specification rules as defined in [17]. The project is built as a Java

implementation of source code processing and verification via Z3 SMT solver [8] and it has to

be intended as our community contribution to the Jolie programming language [5].

Section 2 recalls the basic of Jolie and section 3 discusses related work. The description of

the static type-checking and the system architecture can be found in Section 4, while Section 5

draws conclusive remarks and discusses open issues.

2. Background

Microservices [9] is an architectural style evolved from Service-Oriented Architectures [11].

According to this approach, applications are composed by small independent building blocks

that communicate via message passing. These composing parts are indeed called microservices.

This paradigm has seen a dramatic growth in popularity in recent years [16]. Microservices are

not limited to a specific technology. Systems can be built using a wide range of technologies

and still fit the approach. In this paper, however, we support the idea that a paradigm-based

language would bring benefit to development in terms of simplicity and development cost.

Jolie is the first programming language constructed above the paradigm of microservices:

each component is autonomous service that can be deployed separately and operated by run-

ning in parallel processes. Jolie comprises formally-specified semantics, inspired by process

calculi such as CCS [13] and the π-calculus [14]. As for practical side, Jolie is inspired by

standards for Service-Oriented Computing such as WS-BPEL [2]. The composition of both

theoretical and practical aspects allows Jolie to be the preferred candidate for the application

of modern research methodologies, e.g. runtime adaptation, process-aware web applications, or

correctness-by-construction of concurrent software.

The basic abstraction unit of Jolie is the microservice [9]. It is based on a recursive model

where every microservice can be easily reused and composed for obtaining, in turn, other mi-

croservices. Such approach allows distributed architecture and guarantees simple management

of all components, which reduces maintenance and development effort. Microservices commu-

nicate and work together by sending messages to each other. In Jolie, messages are represented

in tree structure. A variable in Jolie is a path in a data tree and the type of a data tree is a

tree itself. Equality of types must therefore be handled with that in mind. Variables are not



System Informatics (Системная информатика), No. 10 (2017) 79

declared, wherefore the manipulation of the program state must be inferred. Communications

are type checked at runtime, when messages are sent or received. Type checking of incoming

messages is especially relevant, since it could moderate the consequences of errors.

The Jolie language is constructed in three layers: The behavioural layer operates with the

internal actions of a process and the communication it performs seen from the process point

of view, the service layer deals with the underlying architectural instructions and the network

layer deals with connecting communicating services.

Other workflow languages are capable of expressing orchestration of (micro)services the same

way Jolie can do, for example WS-BPEL [2]. WS-BPEL allows developers to describe workflows

of services and other communication aspects (such as ports and interfaces), and it has been

also shown how dynamic workflow reconfiguration can be expressed [12]. However, WS-BPEL

has been designed for high-level orchestration, while programming the internal logic of a single

micro-service requires fine-grained procedural constructs. Here it is were Jolie works better.

3. Related work

The implementation of a static type checker for Jolie is part of a broader attempt to enhance

the language for practical use. Previous work on the type system has been done, however focus-

ing mostly on dynamic type checking. Safina extended the dynamic type system as described

in [21], where type choices have been added in order to move computation from a process-driven

to a data-driven approach.

The idea to integrate dynamic and static type checking with the introduction of refinement

types, verified via SMT solver, has been explored in [22]. The integration of the two approaches

allows a scenario where the static verification of internal services and the dynamic verification

of (potentially malicious) external services cooperates in order to reduce testing effort and

enhancing security.

The idea of using SMT Solvers for static analysis, in particular in combination with other

techniques, has been successfully adopted before for other programming languages, for example

LiquidHaskell and F*. LiquidHaskell [10]1 is a notable example of implementation of Liquid

Types (Logically Qualified Data Types) [20]. It is a static verification technique combining

automated deduction (SMT solvers), model checking (Predicate Abstraction), and type systems

(Hindley-Milner inference). Liquid Types have been implemented for several other program-

1Online demo at http://goto. ucsd.edu/ rjhala/liquid/haskell/demo/
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ming languages. The original paper presented an OCaml implementation. F* [1] instead an

ML-like functional programming language specifically designed for program verification.The F*

type-checker uses a combination of SMT solving and manual proofs to guarantee correctness

Another direction in developing static type checking for Jolie is creating the verified type

checker [3] by means of proof assistant instead of SMT solver. Proof assistant is a software tool

needed to assist with the development of formal proofs by human-machine collaboration and

helps to ascertain the correctness of them. The type checker is expressed as well-typed program

with dependent types in Agda [18]. If the types are well formed, all required invariants and

properties are described and expressed in the types of the program meaning that the program

is correct. This work is currently in progress and evolves in parallel with ours.

4. Static type-checking implementation

This paper builds on top of Julie Meinicke Nielsen’s work at the Technical University of Den-

mark ("A Type System for the Jolie Language" [17]) implementing the type checker specifica-

tion. The thesis represents the theoretical foundation for the type checking of the core fragment

of the Jolie language, which excludes recursive types, arrays, subtyping of basic types, faults

and deployment instructions such as architectural primitives. The work of Nielsen presents the

first attempt at formalizing a static type checker for the core fragment of Jolie, and the typing

rules expressed there are the core theory behind our static checker.

The implementation of the type checker consists of two system components. Firstly, a Java

program accepts the source code of a Jolie program, builds an abstract syntax tree (AST),

visits it and produces a set of logical theorems written in Z3 [8]. At the second phase, the

generated theorems feed a Z3 solver of which they represent the input. The basic idea is to

implement, for each Jolie node2, methods containing statements expressed in the SMT-LIB [6]

syntax. These statements can then be processed via a solver. In Figure 1 the overall process is

pictorially represented.

The concept of SMT solvers is closely related to logical theorems. Logic, especially in the

field of proof theory, considers theorems as statements of a formal language. Existence of such

logical expressions allows to formulate a set of axioms and inference rules to formalize the typing

rules for each of Jolie nodes and then perform the validation of the nodes using constructed

theorems. Consequently, the Jolie typing rules are the specific cases of logical theorems, that
2Any syntax unit is considered a node. It can be a logical or arithmetic expression, an assignment; a condition; a loop etc.

Those nodes comprise the abstract syntax tree.
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Fig. 1. Process of Type Checking in the Jolie Verifier

are used in the project. The concept is implied from software verification fundamentals [7].

Since Jolie program may contain complex expressions with function calls, it is also necessary

to consider data structures representing a match between names and expressions, in order to

be able to avoid inconsistency and redundancy, that are likely to cause conflicts during type-

checking. The project implementation considers using a stack during the recursive checking of

the nodes during a traversal mostly so far.

4.1. Jolie verifier

The Java program reuses an existing structure of a Visitor pattern that was used in a

previous project for formatting Jolie source code [4]. It accepts processed Jolie program source

code in the form of AST and performs traversing. For each kind of node the system creates

one or more logical formulas written using SMT-LIB [6] syntax, which are then stored into a

file on disk. At the current implementation state the theorems are collected in a single data

element.The verifier targets assignments, conditions, and other cases of variables usage where

type consistency can be violated.

4.2. SMT Solver

Z3 carries out the main functionality of program verification. Z3 is an SMT solver from

Microsoft Research [8]. It is targeted at solving problems that arise in software verification and

software analysis. Given a set of formulas that was previously created by the verifier in Java,

Z3 processes it and returns whether this set is satisfiable or not. In case of any contradiction in

the set, the solver will signal that the overall theorem is not satisfiable, therefore alerting that
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the input program is not consistent in terms of types usage.

4.3. Typing rules to SMT translation

Our objective is to accurately translate Jolie typing rules into SMT statements, therefore

allowing static type checking 3. The foreground activity so far is producing the set of statements

for the construct of the behavioural layer of Jolie. The layer describes the internal actions of

a process and the communications it performs seen from the processвЂTM point of view. The

layer is chosen for the first phase of the development because of being the foundation of the

syntactical structures of Jolie. Also there is a similarity of the layer with common programming

languages in a sense of the abstraction level. So these facts make the behavioural level to be

the first entry in the world of Jolie language capabilities.

Here we will illustrate an example of the translation in order to understand the procedure

in detail. All statements at the behavioural layer of Jolie are called behaviours. We write

Γ `B B.Γ′ to indicate a behaviour B, typed with respect to an environment Γ, which updates

Γ to Γ′ during type checking [17].

The conditional typing statement is the following:
Γ ` e : bool Γ `B B1 . Γ′ Γ `B B2 . Γ′

Γ `B if(e) B1 else B2 . Γ′

The typing rule of the if statement does not contradict intuition. The statement is typeable

when its condition expression is boolean, and the execution of both its branches brings the

same updates to the environment. This means that the set of matches between expressions and

variables with their types remains the same with no difference from a branch choice. This is

necessary since it is not possible to predict what branch will be executed at runtime. 4

The full implementation is available on github 5. Here we show the Java fragment which

builds the corresponding SMT statement.

1 public void v i s i t ( I fStatement n) {

2 for ( Pair<OLSyntaxNode , OLSyntaxNode> statement :

n . ch i l d r en ( ) ) {

3 OLSyntaxNode cond i t i on = statement . key ( ) ;

4 OLSyntaxNode body = statement . va lue ( ) ;

5 check ( cond i t i on ) ;

3Please note that, at the moment, not all the rules in [17] have been implemented.
4The else part may also be omitted and B2 may be replaced by an empty behavior.
5https://github.com/innopolis-jolie-smt-typechecker/jolie
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6 TermReference conditionTerm = usedTerms . pop ( ) ;

7 wr i t e r . wr i t eL ine ( " ( a s s e r t ( hasType " +

conditionTerm . id + " bool ) ) " ) ;

8 i f ( body != null ) {

9 body . accept ( this ) ;

10 }

11 }

12 i f (n . e l s eP r o c e s s ( ) != null ) {

13 n . e l s eP r o c e s s ( ) . accept ( this ) ;

14 }

15 }

The code structure represents basic steps to achieve a record with corresponding SMT state-

ments of the block as a result. Firstly, a condition of the if statement is separated from the

body. Then the condition is sent to be checked using the same visitor class. Eventually after

the last ’recursion’ step the condition is put in the stack of terms, which contains any terms

(expressions, variables etc.) processed during the checking. So the term corresponding to the

condition is expected to be on top of the stack. Then an assertion that says the condition term

is boolean is written. Afterwards the body is processed using one of the other overloads of the

visitor. These steps can be repeated in case of existence of nested conditional statements. In

the end of the method the else branch body of the very first if is processed if it is present.

There is also an important note is that the conditional statement does not impose any other

direct type restrictions besides the condition term that is confirmed by the mentioned typing

rule. Other implemented nodes can be seen in the source mentioned above.

The Jolie verifier takes some input for processing. Let us consider the following simple piece

of Jolie code with a conditional statement:

1 a = 2 ;

2 b = 3 ;

3 i f ( a > b ) {

4 pr int ln@Console ( a + b ) ( )

5 } else {

6 pr int ln@Console ( "Hel lo , world ! " ) ( )
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7 }

In the case everything works, none of the typing rules is violated. Z3 agrees with the opinion

and results in ’sat’, that means the program state is satisfiable. There is the SMT statements

representing the condition processing:

1 (declare−const $$__term_id_10 Term)

2 ( assert ( hasType $$__term_id_10 bool ) )

3

4 ( assert ( hasType $$__term_id_10 bool ) )

The first assertion is made based on an expression type determination: the expression a > b

is boolean. The second one is imposed by the typing rule: the condition expression must be

boolean. In the case there is no contradiction between these two assertions.

If the condition would be replaced with some other type expression the typing rule may be

violated. There is the corresponding example case with a replacement of a > b:

1 a = 2 ;

2 b = 3 ;

3 i f ( 5 ) {

4 pr int ln@Console ( a + b ) ( )

5 } else {

6 pr int ln@Console ( "Hel lo , world ! " ) ( )

7 }

And the constructed SMT statements for the condition expression are following:

1 (declare−const $$__term_id_10 Term)

2 ( assert ( hasType $$__term_id_10 i n t ) )

3

4 ( assert ( hasType $$__term_id_10 bool ) )

Now the contradiction between the assertions is notable. The parser decided the expression

to be an integer, which is correct. But the restriction on a condition type from the typing

rule simply contradict with the actual type. Consequently Z3 results in ’unsat’. This means

that the program state representing the assertion unsatisfiable and incorrect in terms of the

considered static type checking analysis.
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5. Conclusions and future works

Static type checking allows compilers to identify programming mistakes (for what concerns

types) at compile time, i.e. before actually running the program. Therefore a vast number

of trivial bugs can be avoided being caught and fixed at a very early stage of the software

life-cycle. In this paper, we tackled the problem of static type checking for the Jolie program-

ming language, which natively supports microservice. A static type system for the language

has been exhaustively and formally defined on paper, but so far still lacked a full implemen-

tation. We introduced our ongoing work on a static type checker and presented some details

of the implementation. The type checker prototype, at the moment, consists in a set of rules

for the type system expressed in Z3. The actual implementation covers operations such as

assignments,logical statements, conditions, primitive terms usage and comparison.

The type checker is already able to validate programs, as it has been shown in this paper.

However, it works with certain assumptions. The main assumption is that programs do not

contain implicit type casts. The Jolie language allows implicit type casts, however, their be-

havior is very complex. Handling such situations is an open issue left for future development

and future versions. Two other major issues have not been addressed.

Variable types can be changed at runtime. This strictly depends on the approach that

has been chosen. Generally, static typing guarantees that a variable has a type that cannot

be changed after declaration or assignment. However, Jolie allows this operation. We need to

determine which behavior we expect from the type checker, thus deciding how to process type

changes.

Implicit type casts in Jolie are ambiguous. This is a major problem, and further research

is required in order to find a solution. While Jolie allows implicit type casts, sometimes the

result of a cast is not obvious. For example, casting a negative Integer to Boolean will result

in a False. This is an unexpected behavior when compared to other programming languages.

There may be a solid rationale for this, however, we need to investigate all cases and make sure

that the type checker works accordingly to the Jolie actual behavior, and not to the expected

one.
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