System Informatics (Cucremuas unpopmaruka), No. 9 (2017) 155

VJIK 004.8

Operational conceptual transition systems and their
application to development of conceptual operational

semantics of programming languages”

Anureev I.S. (Institute of Informatics Systems)

In the paper the notion of the conceptual operational semantics of a programming language is
proposed. This formalism represents operational semantics of a programming language in terms
of its conceptual model based on conceptual transition systems. The special kind of conceptual
transition systems, operational conceptual transition systems, oriented to specification of
conceptual operational semantics of programming languages is defined, the extension of the
language of conceptual transition systems CTSL for operational conceptual transition systems is
described, and the technique of the use of the extended CTSL as a domain-specific language of
specification of conceptual operational semantics of programming languages is proposed. The
conceptual operational semantics for the family of sample programming languages illustrate this

technique.

Knroueswie cnoesa: operational semantics, conceptual transition system, programming

language, conceptual model, domain-specific language, conceptual operational semantics
1. Introduction

This paper relates to the development of operational semantics of programming languages.
Following [1], we distinguish two parts of the operational semantics of a programming language. The
structural part defines how the elements of the language relate to runtime elements that an abstract
machine of the programming language can use at runtime. The structural part is called instantiation
semantics or structure-only semantics [2]. The dynamic part describes the actual state changes that
take place at runtime.

The notion of the conceptual model of a programming language is proposed in [3]. This formalism
describes the instantiation semantics at the conceptual level. The conceptual model is specified in

terms of conceptual transition systems (CTSs) in the language of conceptual transition systems CTSL

[3].

* Partially supported by RFBR under grants 15-01-05974 and 17-07-01600 and SB RAS interdisciplinary integration
project No.15/10.

156 Anureev L.S. Operational conceptual transition systems and their application to development of conceptual operational

In this paper, we introduce the notion of the conceptual operational semantics of a programming
language. This formalism describes the operational semantics of a programming language in terms
of its conceptual model. The dynamic part of the operational semantics is defined in terms of the
special kind of CTS, operational CTSs, in the extension of CTSL for operational CTSs. Thus, CTSL
acts as a domain-specific language oriented to specification of conceptual operational semantics of
programming languages.

The paper has the following structure. The preliminary concepts and notation are given in section
2. The concepts and definitions related to the pattern matching which operational CTSs are based on
is given in section 3. The operational CTSs is defined in section 4. The extension of the CTSL
language for operational CTSs is described in section 5. Semantics of basic executable elements in
CTSL is defined in section 6. The definition of the conceptual operational semantics of a
programming language is introduced, and the technique of development of conceptual operational
semantics of programming languages is illustrated by the sample programming language examples

in section 7.
2. Preliminaries
The preliminary concepts and notation are given in this section.
2.1. Sets and sequences

Let $w, $w1, $w2, ... denote elements of the sort w, where w is a word, and $$w denote the set
of all elements of the sort w. For example, if n is a sort of natural numbers, then $n, $nl, ... are
natural numbers, and $$n is the set of all natural numbers.

Let $$0 and $$set be sets of objects and sets considered in this paper. Let $$i, $$n, and $$bo be
sets of integers, natural numbers (with zero), and boolean values true and false.

Let $$se denote the set of finite sequences of the form $o1 ... on. Let $$w* denote the set of
finite sequences of the form $w1 ... wn, and $w*, $w*1, $w*2, and so on denote the elements of
the set $$w™*. Let [es] denote the empty sequence. Let $$w™ denote the set of finite nonempty
sequences of the form $w1 ... wn, and $w™, $w*1, $w*2, and so on denote the elements of the
set $$w.

Let [repeat $o $n] denote the sequence consisting of $n-th occurrences of the object $o.

Let [$o € $se] and [$sel = $se2] denote $o € {$se} and {$sel} C {$se2}. Let [len $se] denote
the length of $se. Let und denote the undefined value. Let [$se .. $n] denote the $n-th element of

$se. If [len $se] < $n, then [$se.. $n] = und. Let [$se.. $n:= $o] denote the result $sel of

System Informatics (Cucremuas unpopmaruka), No. 9 (2017) 157

replacement of $n-th element in $se by $o. If $n>[len$se], then $sel =
$se [repeat und [[len $se] — $n — 1]] $o.

Let [$o € $se] and [$sel = $se2] denote $o € {$se} and {$sel} C {$se2}. Let [len $se] denote
the length of $se. Let und denote the undefined value. Let [$se .. $n] denote the $n-th element of
$se. If [len $se] < $n, then [$se.. $n] = und. Let [$se.. $n:= $o] denote the result $sel of
replacement of $n-th element in $se by $o. If $n = [len $se] + 1, then $sel = $se $o. If $n >
[len $se] + 1, then $sel = und.

Let [$o1 <[sse7 $02] denote the fact that there exist $0*1, $0*2 and $0*3 such that $se =
$0*1 $01 $0*2 $02 $073.

Let [$o $01 <« $02] denote the result of replacement of all occurrences of $o1 in $o by $02. Let
[$se $o «=* $01] denote the result of replacement of each element $02 in $se by [$01 $0 < $02].
For example, [a b x «* (f x)] denotes (f a) (f b).

Let $01, $02 € $$se U $$set. Then [$o01 =,,; $02] denote that the sets of elements of $01 and
$02 coincide, and [$01 =,,,,; $02] denote that the multisets of elements of $01 and $02 coincide.

The above defined operations on the set $$se are also applied to the set {($se) | $se € $$se}. The
results of [($se).. $n], [$o € ($se)], [($sel) E ($se2)], [$01 <[sse)y $02], [($se) $o <™ $o1],
[len ($se)], [($se).. $n :=$0] and [and ($se)] are [$se.. $n], [$o € $se], [$sel C $se2],
[$01 <[gse7 $02], [$se S0 <~ $01], [len $se], [$se.. $n := $o0] and [and $se].

Let [(0*) + ($071)], [$0.+(0™)] and [(0™) +. $o] denote ($0 $071), ($0 $0*) and ($0™ $0).

2.2. Contexts

The terms used in the paper can be context-dependent. A context has the form [$0*]. The elements
of $o™ are called embedded contexts. The context in which some embedded contexts are omitted is
called a partial context. All omitted embedded contexts are considered bound by the existential
quantifier, unless otherwise specified.

Let $0[$0*] denote the object $o in the context [$o*]. The expression 'in [$01, $0*]' can be

rewritten as 'in [$o01] in [$0]', if this does not lead to ambiguity.
2.3. Functions

Let $$f be a set of functions. Let $$a and $$v be sets of objects called arguments and values. Let
[$f a*] denote the result of application of $f to $a*. Let [support $f] denote the support in [$£], i.
e. [support $f] = {$a | [$f $a] # und}. Let [image $f $set] denote the image in [$f, $set], i. e.
[image $f $set] = {[$f $a] : $a € $set}. Let [image $f] denote the image in [$f, [support $f]].

158 Anureev L.S. Operational conceptual transition systems and their application to development of conceptual operational

Let [narrow $f $set] denote the function $f1 such that [support $f1] = [support $f] n $set,
and [$f1 $a] = [$f $a] for each $a € [support $f1]. The function $£1 is called a narrowing of $f
to $set. Let [support $f1] N [support $f2] = @. Let $f1 U $f2 denote the union $f of $f1 and
$f2 such that [$f $a] = [$f1 $a] for each $a € [support $f1], and [$f $a] = [$f2 $a] for each
$a € [support $f2]. Let $f1 < $f2 denote the fact that [support $f1] € [support $f2], and
[$f1 $a] = [$/2 $a] for each $a € [support $£1].

An object $u of the form $a:= $v is called an update. The objects $a and $v are called an
argument and values in [$u]. Let $$u be a set of updates.

Let [$f $u] denote the function $f1 such that [$f1 $a] = [$f $a] if $a # $a[$u], and
[$f1 $a[$u]] = $v[$u]. Let [$f%u$u*] be a shortcut for [[$f $u]$u*]. Let
[$f $a.$al. .. .an = $v]beashortcut for [$f $a := [[$f $a] $al. .. .$a$n = $v]]. Let [$u~]
be a shortcut for [$f $u*], where [support $f] = .

Let [if $con then $01 else $02] denote the object $o such that $o = $o1 for $con = true, and

$0 = $02 for $con = false.
3. Pattern matching

General CTSs only defines the state structure. The special kinds of CTSs also refine the structure
of the transition relation. The refinement of operational CTSs is based on the pattern matching on the
state structure.

A function $su € $$cs - $$cs* is called a substituton. Let $$su be a set of substitutions. A
function sub € $$su x $$cs* —» $$cs* is a substitution function if it is defined by the following rules
(the first proper rule is applied):

o if $cs € [support $su], then [sub $su $cs] = [$su $cs];

o [sub $su $ato] = $ato;
sub $su $cs: {$t*}] = [sub $su $cs]: {[sub $su $t*]};
sub $su $cs:: {$t*}] = [sub $su $cs]:: {[sub $su $t*]};
sub $su ($cs™)] = ([sub $su $cs*));

o [sub sucs*] = [$cs* $e <" [sub $su $e]].
A structure $p is a patternin [$cs, $su] if [sub $su $p] = $cs. A structure $p is a pattern in [$cs]

[
° [
* |
* |
if $p is a pattern in [$cs, $su] for some $su. Let $$p be a set of patterns. A structure $in is an

instance in [$p, $su] if [sub $su $p] = $in. A structure $in is an instance in [$p] if $in is an

instance in [$p, $su] for some $su. Let $$in be a set of instances.

System Informatics (Cucremuas unpopmaruka), No. 9 (2017) 159

A structure $cs1 is weakly equal to a structure $cs2 ($cs1 =,, $cs2) if the following properties
hold:

if $cs1 € $$ato, then $cs2 € $$ato, and $cs1 = $cs2;

o if $cs1 =wvl::{t*1}, then $cs2 = v2::{t*2}, vl =, v2, and {t*1} =, {t*2} for some

$va2 and $t*2;

o if$csl =vl:{tT1},then $cs2 = v2::{t*2}, vl =, v2,and {t*1} =, {t*2} for some $va2

and $t*2;

o if $cs1 € $$ccs, then $cs2 € $$ccs, [len $cs1] = [len $cs2], and

[$cs1.. $n] =, $cs2.. $n] foreach 1 < $n < [len $cs1].

A structure set $set1 is weakly equal to a structure set $set2 ($setl =,, $set2) if the following
properties hold:

o if $setl = @, then $set2 = @;

o if $cs1 € $setl, then there exists $cs2 € $set2 such that $csl =, $cs2, and $setl \

{$cs1} =, $set2 \ {$cs2}).

An element $e is linear in [$e*] if $el occurs in $e exactly once for each element $el of $e*. An
element $ps of the form ($p ($va™) ($sv™)) is a pattern specification if the elements of the sequence
$va* $sv* are pairwise distinct, and $p is linear in [$va* $sv*]. The elements $p, ($va*), and
($sv™) are called a pattern, state variable specification and sequence variable specification in [$ps].
The elements of $va* and $sv™* are called state variables and sequence variables in [$ps]. Let $$ps
be a set of pattern specifications. Let $$va and $$sv be sets of state and sequence variables.

A structure $in is an instance in [$ps, $su] if [support $su] = {$va*} U {$sv*}, [$su $va] €
$$s for $va € {$va*}, [susv] € $$s* for $sv € {$sv*}, and $in = w [sub $p[$ps] $su]. A
structure $in is an instance in [$ps] if $in is an instance in [$ps, $su] for some $su.

A function $mt € $$s x $$ps — $$su is a matching tactic if [$mt $s $ps] = $su implies that $s
is an instance in [$ps, $su]. A structure $in is an instance in [$ps, $mt, $su] if [$mt $in $ps] =
$su. A structure $in is an instance in [$ps, $mt] if $in is an instance in [$ps, $mt, $su] for some
$su.

A substitution $su is a matching result in [$ps, $mt, $in] if $in is an instance in
[$ps, $mt, $su]. A substitution $su is a matching result in [$ps, $mt] if $su is a matching result
in [$ps, $mt, $in] for some $in. A value $v is a matching result in [$va, $ps, $mt, $su, $in] if $in
is an instance in [$ps, $mt, $su], and $v = [$su $va]. A value $v is a matching result in
[$va, $ps, $mt, $in] if $v is a matching result in [$va, $ps, $mt, $su, $in] for some $su. Let

$$mr be a set of matching results.

160 Anureev L.S. Operational conceptual transition systems and their application to development of conceptual operational

4. Operational conceptual transition systems

Operational CTSs (OCTSs) are the special kind of CTSs used to describe operational semantics of
program systems and programming languages. Let $$octs be a set of OCTSs.

The structure of ©pg,.sp Is based on program transition relations, program transition rules and
atomic transition relations. Program transition relations and program transition rules include a
specification of a pattern and their application is based on the matching of the first element of a
program with the pattern. Atomic transition relations are applied in the case of the empty program.

An object $ptr of the form ($ps, $f) is a program transition relation in [$mt] if $f €
{$su U ({cstate}: $s, {cvalue}: $v[$s]) | $su € $$mr[$ps, $mt], and $s € $$s} — $$tr. Thus,
$ptr specifies a parametric transition relation, where the values of the parameter are the results of the
pattern matching. The special elements {cstate} and {cvalue} refer to the current state and the value
in the current state. Let $$ptr be a set of program transition relation. The objects $p[$ps],
($Sva*[$ps]), ($sv*[$ps]) and $f are called a pattern, state variable specification, sequence variable
specification and value in [$ptr]. The elements of $va* and $sv* are called state and sequence
variables in [$ptr]. If $su is the result of matching the first element $e of the program $p[$s] with
the pattern of $ptr, then a transition from $s to $s1 initiated by $ptr and denoted by
$s Osper, ssup $51 is defined as ($s, $s1) € [$f $su U ({cstate}: $s, {cvalue}: $v[$s])]. Let
$5 Srsrsperyy $51 denote $5 Spgper g5y $51 for some $su.

A partial function $ptrs € $e — $$ptr is a program transition relation specification if
[support $ptrs] is finite. A relation $ptr is a relation in [$ptrs] if [$ptrs $na] = $ptr for some
$na € $$e. An element $na is a name in [$ptr, $ptrs] if [$ptrs $na] = $atr. An element $na is
aname in [$ptrs] if $na is a name in [$ptr, $ptrs] for some $atr. Thus, $ptrs defines a finite set
of named program transition relations.

An element $r of the form ($ps $b) is called a (program) transition rule. The objects $p[$ps],
($Sva*[$ps]), ($sv*[$ps]) and $b are called a pattern, state variable specification, sequence variable
specification and body in [$r]. The elements of $va* and $sv™ are called state and sequence variables
in [$r]. Let $$r be a set of transition rules. If $su is the result of matching the first element $e of the
program $p[[$s] with the pattern of $r, then a transition from $s initiated by $r replaces $e in $p by
[sub $su U ({cstate}: $s, {cvalue}: $v[$s]) $b].

A structure $rs is a rule specification if [$rs . {$na}] € $$r U {und} for each $na € $$e. A rule

$r is a rule in [$rs] if [$rs. {$na}] = $r for some $na € $$e. An element $na is a name in

System Informatics (Cucremuas unpopmaruka), No. 9 (2017) 161

[$r, $rs]if [$rs. {$na}] = $r. Anelement $na is a name in [$rs] if $na is a name in [$r, $7s]
for some $r. Thus, $rs defines a finite set of named transition rules.

A structure $rs is a rule specification in [$s] if $rs = [$s. {rules}], and [$rs. {$na}] € $$r U
{und} for each $na € $$e. It specifies the set of named transition rules in [$s].

Let [support $ptrs] N [support $rs] = @.

A structure $pto of the form ($na*) is a program transition order in [$ptrs, $rs] if {$na*} <
[support $ptrs] U [support $rs], and the elements of $na* are pairwise distinct. It specifies the
order of application of program transition relations and transition rules, i. e. the order of matching the
first element of the program with their patterns.

A structure ($na*) is a program transition order in [$s] if ($na*) =
[$s. {(program transition order)}], and the elements of $na* are pairwise distinct. It specifies
the order of application of program transition relations and transition rules in [$s].

A relation $atr € $$tr is called an atomic transition relation. Let $$atr be a set of atomic
transition relations. If $p[$s] = (), then a transition from $s to $s1 initiated by $atr and denoted by
$s Spsarry $51 is defined as ($s, $s1) € $atr.

A partial function $atrs € $$s — $$atr is an atomic transition relation specification if
[support $atrs] is finite. A relation $atr is a relation in [$atrs] if [$atrs $na] = $atr for some
$na € $$e. An element $na is a name in [$atr, $atrs] if [$atrs nm] = $atr. An element $na is a
name in [[$atrs] if $na is a name in [$atr, $atrs] for some $atr. Thus, $atrs defines a finite set
of named atomic transiton relations.

A structure $ator of the form ($na*) is an atomic transition order in [$atrs] if {$na*} <
[support $atrs], and the elements of $na* are pairwise distinct. It specifies the order of application
of atomic transition relations.

A structure ($na*) is an atomic transition order in [$s] if ($na*)=
[$s . {(atomic transition order)}], and the elements of $na™ are pairwise distinct. It specifies the
order of application of atomic transition relations in [$s].

Let $$bi be a set of elements called backtracking invariants.

Let S$ex #$v#$s denote [$sprogram:($e*) value:$v]. Let $e*#$s denote
[$s program: ($e*)].

A tuple $octs of the form (S$ato, $$is, $Sptrs, $rs, $pto, $atrs, $ator, $$bi, $mt) is an
operational CTS if the system $cts of the form ($$at, $$is, <) is a CTS with backtracking in
[$$bi] and with direct stop, [support $ptrs] N [support $rs] = @, $s is consistent for each
$s € $$rs[<], and < is defined by the following rules (the first proper rule is applied):

162

Anureev L.S. Operational conceptual transition systems and their application to development of conceptual operational

if $ptr = [$ptrs $na], $e is an instance in [$ps[$ptr], $mt, $sull, and $s5 Spgper, s5ug $51,
then

((execute program element) $e ($na $na*)) $e*# $s -

(bactracking $s ((execute program element) $e ($na*))) $e* # $s1;

if $ptr = [$ptrs$na], and $e is not an instance in [$ps[$ptr], $mt], then
((execute program element) $e ($na $na*)) $e* # $s &

((execute program element) $e ($na*)) $e* # $s;

if ($r=[$rs . {$na}], or $r =[[$s. {rules}] . {$na}]), and $e is an instance in
[$ps[$r], $mt, $su], then

((execute program element) $e ($na $na*)) $e* # $s

 [sub $suu({cstate}:$s, {cvalue}:$v[$s]) $b[$7]]

(backtracking $s ((execute program element) $e ($na’x))) $e’x # $s;

if ($r =[$rs . {$na}], or $r = [[$s. {rules}] . {$na}]), and $e is not an instance in
[$ps[$r], $mt], then

((execute program element) $e ($na $na*)) $e* # $s &

((execute program element) $e ($na*)) $e* # $s;

((execute program element) $e () $e* # $s & $e* # und # $s;

if $atr = [$atrs $nal, $s © [$atr] $s1, and $p[$s1] = O, then
((execute atomic transition) ($na $na*)) # $s © $s1;

if $atr = [$Satrs$na], $so [$atr]#Sv#%s1l, and $p[$s1] =(, then
((execute atomic transition) ($na $na*)) # $s &

(backtracking $s ((execute atomic transition) ($na*))) # $s1;

((execute atomic transition) () # $s & [$s true: {stop}];

fe$e* #$s o

((execute program element) $e [$s .. (program transition order)]) $e* # $s;

$s © ((execute atomic transition), [$s.. (atomic transition order)]) # $s.

A state $s is consistent in [$cts] if the following properties hold:

the set of bactracking invariants in [$s] is finite;

[support $ptrs] N [support [$s. {rules}]] = @;

[support $rs] N [support [$s. {rules}]] = @;

if $nal <ppeop $na2, $nal € [$s. {(program transition order)}], and $na2 €

[$s. {(program transition order)}], then $nal <yss. (program transition orderyy] $1a2;

System Informatics (Cucremuas unpopmaruka), No. 9 (2017) 163

if $nal <qaror] $na2, $nal € [$s. {(atomic transition order)}], and $na2 €

[$s. {(atomic transition order)}], then $nal <yss. atomic transition order)y})] SNA2.

5. The CTSL language

The CTSL language is extended for operational CTSs by adding transition rules and extended
transition rules.

The transition rule (($p, ($va*), ($sv*)), $b) with the name $na is represented in CTSL[o] by
the state (rule $p var ($va*) seq ($sv*) then $b):: {$na}.

Extended transition rules are transition rules enriched by the mechanisms of evaluation of pattern
variable matching results, imposition of constraints on pattern variable matching results and their
values and propagation of abnormal values (undefined values and exceptions) from pattern variable
matching results and the attribute value.

Let {$eva*} € {$va*}, the elements of the sequence $eva* are pairwise disjoint, $set = {$eva ::
{+}| $eva € $eva*}, {$va*1} U {$va*2} U {$va*3} < {$va*} U $set, the elements of the sequence
$va*1 $va*2 $va*3 are pairwise disjoint, and $se € {[se], und, exc, abn}. The state
(rule $p var ($va*) seq ($sv*) val ($eva*) abn ($va*1) und ($va*2) exc ($va*3) $se
where $co then $b)
is called an extended rule. It is defined as follows:

e If $co # true, then
(rule $p var ($va*) seq ($sv*) val ($eva*) und ($va*1) exc ($va*2) abn ($va*3) $se
where $co then $b)
is a shortcut for
(rule $p var ($va*) seq ($sv*) val ($eva*) und ($va*1) exc ($va*2) abn ($va*3) $se
where true then (if $co then $b else und)).
e Therule
(rule $p var ($va*) seq ($sv*) val ($eva™) und ($va*1) exc ($va*2)
abn ($va*31 $eva:: {x} $va*32) $se where true then $b)
is a shortcut for
(rule $p var ($va*) seq ($sv*) val ($eva™) und ($va*1) exc ($va*2)
abn ($va*31 $va*32) $se where true then (if ($eva :: {*} is abnormal)
then $eva:: {+} else $b)).
e If{$va*3}n $set = @, then
(rule $p var ($va*) seq ($sv*) val ($eva™) und ($va*1)

164

Anureev L.S. Operational conceptual transition systems and their application to development of conceptual operational

exc ($va*21 Seva:: {*} $va*22) abn ($va*3) $se where true then $b)

is a shortcut for

(rule $p var ($va*) seq ($sv*) val ($eva™) und ($va*1) exc ($va*21 $va*22)

abn ($va*3) $se where true then (if ($eva:: {*} is exception) then $eva:: {*} else $b)).
If ({$va*2} U {$va*3}) N $set = @, then

(rule $p var ($va*) seq ($sv*) val ($eva*) und ($va*11 $eva :: {*} $va*12)

exc ($va*2) abn ($va*3) $se where true then $b)

is a shortcut for

(rule $p var ($va*) seq ($sv*) val ($eva™) und ($va*11 $va*12) exc ($va*2)

abn ($va*3) $se where true then (if ($eva::{*} is undefined) then $eva:: {*} else $b)).
If ({$va*1} U {$va*2} U {$va*3}) N $set = @, then

(rule $p var ($va*) seq ($sv*) val ($eva* $eva :: {x}) und ($va*1) exc ($va*2)
abn ($va*3) $se where true then $b)

is a shortcut for

(rule $p var ($va*) seq ($sv*) val ($eva*) und ($va*1) exc ($va*2)

abn ($va*3) $se where true then (let w be $eva in (subst ($eva :: {x}: w) $b))),
where w is a new state that does not occur in the initial form.

If ({$va*1} U {$va*2} U {$va*31, $va, $va*32}) N $set = @, then

(rule $p var ($va*) seq ($sv*) val () und ($va*1) exc ($va*2)

abn ($va*31 $va $va*32) $se where true then $b)

is a shortcut for

(rule $p var ($va*) seq ($sv*) val () und ($va*1) exc ($va*2)

abn ($va*31 $va*32) $se where true then (if ($va is abnormal) then $va else $b)).
If ({$va*1} U {$va*21, $va, $va*22}) N $set = @, then

(rule $p var ($va*) seq ($sv*) val () und ($va*1) exc ($va*21 $va $va*22)

abn () $se where true then $b)

is a shortcut for

(rule $p var ($va*) seq ($sv*) val () und ($va*1) exc ($va*21 $va*22) abn () $se
where true then (if ($va is exception) then $va else $b)).

If {$va*11, $va, $va*12} N $set = @, then

(rule $p var ($va*) seq ($sv*) val () und ($va*11 $va $va*12) exc () abn () $se
where true then $b)

is a shortcut for

System Informatics (Cucremuas unpopmaruka), No. 9 (2017) 165

(rule $p var ($va*) seq ($sv*) val () und ($va*11 $va*12) exc () abn () $se
where true then (if ($va is undefined) then $va else $b)).
e Therule
(rule $p var ($va*) seq ($sv*) val () und () exc () abn () abn where true then $b) is a
shortcut for
(rule $p var ($va*) seq ($sv*) val () und () exc () abn () where true
then (if (cvalue is abnormal) then else $b).
e Therule
(rule $p var ($va*) seq ($sv*) val () und () exc () abn () exc where true then $b) is a
shortcut for
(rule $p var ($va*) seq ($sv*) val () und () exc () abn () where true
then (if (cvalue is exception) then else $b).
e Therule
(rule $p var ($va*) seq ($sv*) val () und () exc () abn () und where true then $b) is a
shortcut for
(rule $p var ($va*) seq ($sv*) val () und () exc () abn () where true
then (if (cvalue is undefined) then else $b).

A pattern variable $va is evaluated if the matching result for $va is evaluated. The sequence $eva*
contains evaluated pattern variables. The special variable $eva:: {*} references to the value of the
matching result for $va. A pattern variable $va is quoted if the matching result for $va is not
evaluated.

The state $co imposes of constraints on the values of the variables $va*, $sv*, $eva:: {*}".

The undefined value und is propagated through the variables $v*1. Exceptions are propagated
through the variables $v*2. Abnormal values are propagated through the variables $v*3.

The sequence $se specifies propagation of abnormal values through the attribute value. The
undefined value is propagated through the attribute value when $se = und. Exceptions are
propagated through the attribute value when $se = exc. Abnormal values are propagated through
the attribute value when $se = abn.

The executable elements (if $con then $e*1 else $e*2) and (let $va be $e*1 in $e*2) are
defined in section 6.7. The executable elements ($e is abnormal), ($eisexception) and
($e is undefined) are defined in section 7.4.

Let $$er be a set of extended transition rules.

166 Anureev L.S. Operational conceptual transition systems and their application to development of conceptual operational

The objects var ($va*), seq ($sv*), val ($eva*), abn ($va*1), und ($va*2), exc ($va*3) and
where $co in extended transition rules can be omitted. The omitted objects correspond to var (),

seq (), val (), abn (), und (), exc () and where true.
6. Semantics of executable elements in CTSL

To define operational semantics of executable elements in CTSL the special denotations for
program and atomic transition relations are introduced.

Let (transition $p var ($va*) seq ($sv*) then $f):: {$na} denote the program transition
relation (($p, ($va®), ($sv™*)), $f) with the name $na. The objects var ($va*) and seq ($sv*) can
be omitted. The omitted objects correspond to var () and seq ().

Let (atomic transition $f)::{$na} denotes the atomic transition relation defined by the
characteristic function $f € $s x $s —» $b with the name $na.

For simplicity, we omit the names of transition relations and transition rules.
6.1. Values

The executable elements handling the transition value are defined in this section.
An element $e of the form $v:: {q} is called a quoted element. It is defined as follows:
(rulev::{q} var (v) abn thenv::{q}:: {transition}),
(transition v::{q}:: {transition} var (v) then $f),

where $v::{q}:: {transition}; $e* # $s 45 $Se” # $v # $s.
The value v is called a quoted value in [$e]. The element $e returns the quoted value v.
The element und is defined by the rule
(rule und abn thenund::{q}).
The element ex is defined by the rule
(rule v::{exc} var (v) abn thenv::{exc}::{q}).
The element ($e is undefined) specifies that $e equals und. It is defined by the rule
(rule (e is undefined) var (e) abn then (e::{q} = und)).
The element ($e is defined) specifies that $e does not equal und. It is defined by the rule
(rule (e is defined) var (e) abn then (e:: {q}! = und)).
The element ($e is exception) specifies that $e is an exception. It is defined by the rule
(rule (e is exception) var (e) abn then (e is exception): : {transition});
(transition (e is exception):: {transition} var (e) then $f),

where

System Informatics (Cucremuas unpopmaruka), No. 9 (2017) 167

(e is exception) :: {transition}; $e* $s5 47
$e* # [if [$e € $$exc] then true else und] # $s.

The element ($e is abnormal) specifies that $e is abnormal. It is defined by the rule

(rule (e is abnormal) var (e) abn then ((e is undefined) or (e is exception)));

The element ($e is normal) specifying that $e is normal. It is defined by the rule

(rule (e is normal) var (e) abn then ((e is defined) and (not (e is exception))));

The element $e of the form (catch:: {und} $va $e*) is called a value handler. It is defined as
follows:

(transition (catch:: {und} va e_s) var (va) seq (e_s) then $f),
where (catch:: {und} $va $e”); $e*1 # $v # $s o551 (sub ($va: $v) $e*) e*1 # true # $s.

The elements $va and $e*1 are called a variable and body in [$e]. The element $e replaces all
occurences of the variable $va in the body $e*1 by the current value, resets the current value to true
and executes the modified body.

The element $e of the form (catch $va $e*) is called an exception handler. It is defined as
follows:

(rule (catch va e_s) var (va) seq (e_s) und then (catch:: {und} va e_s)),

The elements $va and $e* are called a variable and body in [$e]. If the current value is defined,
the element $e replaces all occurences of the variable $va in the body $e*1 by the current value,
resets the current value to true and executes the modified body. It propagates und.

The element (current value) returns the current value. It is defined by the rule

(rule (current value) abn then cvalue::{q}).

The element ((to value) $e) replaces the current value to $v, where $v is the value of $e. It is
defined as follows:

(rule ((to value) e) var (e) val (e) then ((to value) e:: {*}):: {transition}),

(transition ((to value) v):: {transition} var (v) then $f),
where ((to value) $v):: {transition}; $e* # $s 55 Se” # $v # $s.

The element ((catch exception) t) catches an exception of the type $t. It is defined by the rule

(rule ((catch exception) t) var (t) und

then (catch va (

if ((vaisexception) and ((va::{q}. {type}) =t::{q}))
then ((to value) true) else ((to value) va::{q})))).

6.2. Integers

168 Anureev L.S. Operational conceptual transition systems and their application to development of conceptual operational

The executable elements handling integers are defined in this section.

The element ($e is nat) specifies that $e is a natural number. It is defined as follows:

(rule (e is nat) var (e) abn then (e is nat):: {transition});

(transition (e is nat):: {transition} var (e) then $f),
where

($e is nat) :: {transition} $e* $s Sgr) $e* # [if [$e € $$n] then true else und] # $s.

The element ($e is int) specifies that $e is an integer. It is defined as follows:

(rule (e is int) var (e) abn then (e is int):: {transition});

(transition (e is int):: {transition} var (e) then $f),
where

($e is int):: {transition} $e” # $s5 ogr) $e” # [if [$e € $$in] then true else und] # $s.

The element $i is defined by the rules

(rule ivar (i) abn where (i is int) then i:: {q}).

If $v1 and $v2 are values of $e1l and $e2, then the element ($el + $e2) returns [$v1 + $v2]. It
is defined as follows:

(rule (el + e2) var (el, e2) val (el, e2) abn

then (el:: {x} +:: {integer} e2:: {*}):: {transition});

(transition (il +:: {integer} i2):: {transition} var (i1, i2) then f),
where ($il +:: {integer} $i2):: {transition}; $e” # $s Sgp) $e™ # [$i1 + $i2] # $s.

The elements ($el $op $e2), where $op € {—, *, div, mod}, specifying the integer operations
—, *, div and mod, are defined in the similar way.

If $v1 and $v2 are values of $el and $e2, then the element ($el < $e2) specifies that [$v1 <
$v2]. It is defined as follows:

(rule (el < e2) var (el, e2) val (el, e2) abn

then (el:: {*} <::{integer} e2::{x}):: {transition});

(rule (el:: {*} <::{integer} e2:: {*}):: {transition} var (el, e2) then f),
where ($i1 <::{integer} $i2):: {transition}; $e" # $s ©gp S # [$i1 < $i2] # $s.

The elements ($el $op $e2), where $op € {<=, >, >=}, specifying the integer relations <, >

and >, are defined in the similar way.
6.3. Boolean values

The executable elements handling boolean values are defined in this section.

The element true is defined by the rule:

System Informatics (Cucremuas unpopmaruka), No. 9 (2017) 169

(rule true abn then true::{q}).

If $v1 and $v2 are values of $el and $e2, then the element ($el and $e2) specifies the
conjunction of $v1 and $v2. It is defined by the rule:

(rule (el and e2) var (el, e2) abn then (if el then e2 else und)).

If $v1 and $v2 are values of $e1 and $e2, then the elements ($el $op $e2), where $op € {or, =
>, <=>} specifying the disjunction, implication and equivalence of $v1 and $v2 are defined in the
similar way.

If $v1, $v2, .., vn are values of $el, $e2, .., en, then the element
($el and $e2 and ... and en) specifies the conjunction of $v1, $v2, ..., vn. It is defined by
the rule

(rule (el and e2 and e_s) var (el, e2) seq (e_s) abn then ((el and e2) and e_s).

If $v1, $v2, .., vn are values of $el, $e2, .., en, then the element
($el or $e2 or ... or en) specifying the disjunction of $v1, $v2, ..., vn is defined in the similar
way.

If $v is a value of $e, then the element (not $e) specifies the negation of $v. It is defined by the

rule (rule (not e) var (e) abn then (if e then und else true)).
6.4. Conceptual structures

The executable elements handling conceptual structures are defined in this section.

The element ($e is atom) specifies that $e is an atom. It is defined as follows:

(rule (e is atom) var (e) abn then (e is atom):: {transition});

(transition (e is atom):: {transition} var (e) then $f),
where

(e is atom):: {transition} $e” # $s <55y $e” # [if [e € $$ato] then true else und] # $s.

The element ($e is compound) specifies that $e is a compound structure. It is defined by the rule

(rule ((e_s) is compound) seq (e_s) abn then true).

The element ($e is (absolutely typed)) specifies that $e is an absolutely typed structure. It is
defined by the rule

(rule (e::{t_s} is (absolutely typed)) var (e) seq (e_s) abn then true).

The element ($e is (relatively typed)) specifies that $e is a relatively typed structure. It is
defined by the rule

(rule (e: {t_s} is (relatively typed)) var (e) seq (e_s) abn then true).

The element ($e is empty) specifies that $e is an empty structure. It is defined by the rule

170 Anureev L.S. Operational conceptual transition systems and their application to development of conceptual operational

(rule (() is empty) abn then true).

The element ($e is nonempty) specifies that $e is not an empty structure. It is defined by the rule

(rule (e is empty) var(e) abn then (not (e is empty))).

The empty structure is defined by the rule

(rule () abn then ()::{q}).

The element ($ccs is ($t *)) specifies that the value of ($e is $t) does not equal und for each
element $e of $ccs. It is defined by the rule

(rule ((ee_s) is (t *)) var (e, t) seq (e_s) abn then ((e ist) and ((e_s) is (t *)));

(rule () is (t *)) var (t) abn then true).

If $cs is a value of $e, then the element (len $e) specifies the length of $cs. It is defined as
follows:

(rule (len e) var (e) val (e) abn then (len e :: {*x}) :: {transition});

(transition (len cs) :: {transition} var (cs) then $f),
where (len $cs) :: {transition}; $e” # $s ogp) $e™ # [len $cs] # $s.

If $cs1 and $cs2 are values of $el and $e2, then the element ($e1 = $e2) specifies the equality
of $cs1 and $cs2. It is defined as follows:

(rule (el = e2) var (el, e2) val (el, e2) abn then (el :: {*} = e2 :: {q}) :: {transition}),

(transition (cs1 = cs2) :: {transition} var (cs1, cs2) then $f),
where ($cs1 = $cs2) :: {transition}; $e” # $s Sgpp $e” # [$cs1 = $cs2] # $s.

If $cs1 and $cs2 are values of $el and $e2, then the element ($el! = $22) specifies the
inequality of the structures $cs1 and $cs2. It is defined by the rule

(rule (el! = e2) var (el, e2) val (el, e2) abn then (not (el = e2))).

If $cs is a value of $e, then the conceptual structure access operation ($e. $mt) returns
[$cs . $mt]. Itis defined as follows:

(rule (e. mt) var (e, t) val (e) abn then (e :: {x}. mt): {transition});

(transition (cs . mt) :: {transition} var (cs, mt) then $f),
where ($cs . $mt) :: {transition}; $Se* # $s ogpp $e™ # [$cs. $mt] # $s.

If $ccs and $n are values of $el and $e2, then the conceptual structure access operation
($el.. $e2) returns [$ccs .. $n]. It is defined as follows:

(rule (el.. e2) var (el, e2) val (el, e2) abn

where ((el :: {*} is compound) and (e2 :: {*} is nat) and (e2 :: {*} > 0))

then (el :: {x}.. e2 :: {*}): {transition}),

(transition (cs.. n) :: {transition} var (cs, n) then $f),

System Informatics (Cucremuas unpopmaruka), No. 9 (2017) 171

where ($cs.. $n) :: {transition}; $e” # $s ogsp $e™ # [$cs.. $n] # $s.

If $cs and $v are values of $e and $el, then the conceptual structure update operation
($e. $mt:= $el) returns [$cs. $mt == $v]. It is defined as follows:

(rule (e. mtl :=el) var (e, mtl, el) val (e, el) abn)

then (e:: {*}. mtl = el::{x}):: {transition}));

(transition (cs. mt = v)::{transition} var (cs,mt,v) abn then $f),
where ($cs. $mt: = $v):: {transition}; $e” # $s ogs) $e* # [$cs. $mt = $v] # $s.

The conceptual structure update operation ($e. $mt : =) is a shortcut for ($e. $mt : = und).

The conceptual structure update operation ($e. $mtl:= $el, ..., mtn:= en), where
$n > 1, is defined as follows:

(rule (e. mtl :=-elcs_s)var (e, mtl, el) seq (cs_s) abn then ((e. mtl :=el). cs_s)).

If $ccs, $n and $v are values of $el, $e2 and $e3, then the conceptual structure update operation
($el.. $e2:= $e3) returns [$ccs .. $n: = $v]. It is defined as follows:

(rule (el.. e2 :=e3) var (el, e2, e3) val (el, e2, e3) abn

where ((el :: {x} is compound) and (e2 :: {*} is nat) and (e2 :: {*} > 0))

then (el :: {x}.. e2 : {x} = e3 :: {x}) : {transition}),

(transition (ccs.. n = v) :: {transition} var (ccs,n,v) abn then $f),
where ($ccs .. $n:= $v) :: {transition}; $e* # $s 5p) $e* # [$ccs .. $n:= $v] # $s.

If $ccs1and $ccs2 are values of $eland $e2, then the element ($el + $e2) specifies the
concatenation of $ccs1 and $ccs2. It is defined by the rules

(rule (el + e2) var (el, e2) val (el, e2) abn then (el :: {*} +:: {q} e2 :: {x}));

(rule ((cs_s1) +:: {q} (cs_s2)) seq (cs_1, cs_2) then (cs_s1 cs_s2) :: {q}).

If $e and $ccs are values of $el and $e2, then the element ($el . + $e2) specifies the addition of
the element $e to the head of $ccs. It is defined by the rules

(rule (el.+ e2) var (el, e2) val (el, e2) abn then (el :: {*}.+:: {q} e2 :: {x}));

(rule (e .+:: {q} (cs_s)) var(e) seq (cs_s) then (e cs_s) :: {q}).

If $e and $ccs are values of $e2 and $el, then the element ($el +. $e2) specifies the addition of
the element $e to the tail of $ccs. It is defined by the rules

(rule (el + e2) var (el, e2) val (el, e2) abn then (el :: {x} +.:: {q} e2 :: {x}));

(rule ((cs_s) +.:: {q} e) var(e) seq (cs_s) then (cs_se) :: {q}).

If $e and $n are values of $el and $e2, then the element (repeat $el $e2) returns
([repeat $e $n]). It is defined by the rule

(rule (repeat e n) var (e, n) val (e, n) abn where (n :: {*} is nat)

172 Anureev L.S. Operational conceptual transition systems and their application to development of conceptual operational

then (repeat::{q} e:: {*} n:: {x})).

The element (repeat::{q} $el $e2) is defined by the rules
(rule (repeat::{q} e 0) var (e) abn then ());

(rule (repeat :: {q} e n) var (e, n) abn

then (let nl be (n — 1) in ((repeat:: {q} enl) +. e:: {q})).
The element (unbracket $ccs) is defined by the rule

(rule (unbracket (cs_s)) seq (cs_s) abn then cs_s).

6.5. Sets

The element ($e is set) specifies that the elements of the compound structure $e are pairwise
distinct is defined as follows:
(rule (e is set) var (e) abn where (e is compound) then (e is set):: {transition});
(transition (e is set):: {transition} var (e) then $f),
where
(e is set):: {transition} $e” # $s 3¢
$e* # [if [the elements of $e are pairwise distinct] then true else und] # $s.
If $e and $ccs are values of $e2 and $el, then the element ($el +.:: {set} $e2) specifies the
addition of the element $e to the set $ccs. It is defined by the rule
(rule (el +.:: {set} e2) var (el, e2) val (el, e2) abn
then (if (e2 {+} :: {q} inel = (+} == {q}) thenel :: {+} :: {q)
else (e2 :: {*} +.:: {q} el :: {*})).
If $e and $ccs are values of $e2 and $el, then the element ($el —.:: {set} $e2) specifies the
deletion of the element $e from the set $ccs. It is defined by the rule
(rule (el —.:: {set} e2) var (el, e2) val (el, e2) abn where (el :: {*} is set)
then (el :: {x} —.:: {set} e2 :: {*}) :: {transition});
(transition (ccs —.:: {set} e) :: {transition} var (ccs, e) then $f),
where ($ccs —.:: {set} $e) :: {transition} $e* # $s ogr) $e” # $ccs1 # $s, $cesl is a set, and
[$ccsl =g,; $ccs $v].
If $e and $ccs are the values of $el and $e2, then the element ($el in $e2) specifies that $e is
an element of $ccs. It is defined as follows:
(rule (el in::{set} e2) var (el, e2) val (el, e2) abn where (e2 :: {*} is compound)
then (el :: {x} in:: {set} e2 :: {x}) :: {transition});

(transition (e in:: {set} ccs) :: {transition} var (e, ccs) abn then $f),

System Informatics (Cucremuas unpopmaruka), No. 9 (2017) 173

where
($e in :: {set} $ccs) :: {transition}; $e* $s Sgpy
$e* # [if [$e € $ccs] then true else und] # $s.
If $ccs1 and $ccs2 are the values of $el and $e2, then the element ($el includes:: {set} $e2)
specifies that $ccs1 includes the elements of $ccs1. It is defined as follows:
(rule (el includes: : {set} e2) var (el, e2) val (el, e2) abn
where ((el :: {*} is compound) and (e2 :: {*} is compound))
then (el :: {x} includes: : {set} e2 :: {x}) :: {transition});
(transition (ccs1 includes:: {set} ccs2) :: {transition} var (ccs1, ccs2) abn then $f),
where
($ccsl includes :: {set} $ccs2) :: {transition}; $e* $s ©p4p)
$e* # [if [$ccs1 includes the elements of $ccs2] then true else und] # $s.
If $ccs1 and $ccs2 are the values of $el and $e2, then the element (disjoint:: {set} $el $e2)
specifies that $ccs1 and $ccs1 have no common elements. It is defined as follows:
(rule (disjoint: : {set} el e2) var (el, e2) val (el, e2) abn
where ((el :: {*} is compound) and (e2 :: {*} is compound))
then (disjoint:: {set} el :: {x} e2 :: {x}) :: {transition}),
(transition (disjoint:: {set} ccs1 ccs2) :: {transition} var (ccs1, ccs2) abn then $f),
where
(disjoint :: {set} $ccs1 $ccs2) :: {transition}; $e” $s ©p4p
$e* # [if [$ccs1 and $ccs2 have no common elements] then true else und] # $s.
The elements ($elin $e2), ($el includes $e2) and (disjoint $el $e2) are shortcuts for
($el in:: {set} $e2), ($el includes: : {set} $e2) and (disjoint:: {set} $el $e2).

6.6. States

The executable elements handling states are defined in this section.

The state access operation (current state) returns the current state is defined by the rule:

(rule (current state) abn then cstate::{q}).

If $cs is a value of $e, then the element ((to state) $e) replaces the current state to $cs. It is
defined as follows:

(rule ((to state) e) var (e) val (e) then ((to state) e:: {*}):: {transition});

(transition ((to state) cs):: {transition} var (cs) then $f),

where ((to state) $cs)::{transition}; $e* # $s g7 $cs.

174 Anureev L.S. Operational conceptual transition systems and their application to development of conceptual operational

The state access operation (. $mt) returns [. $mt]. It is defined by the rule

(rule (. mt) var (mt) abn then (cstate :: {q} . mt)).

If $v is a value of $e, then the state update operation (mt: = $e) replaces the current state by
[. $mt = $v]. It is defined by the rule

(rule (mt: = e) var (mt, e) abn then (to state (cstate :: {q} . mt = e))).

The state update operation (. mt : = $e) is an alias for (mt : = $e). It is defined by the rule

(rule (. mt:= e) var (mt, e) abn then (mt : = e)).

The state update operation (mt: =) and (. mt : =) are shortcuts for (mt : = und) and (. mt: =
und).

The state update operation ($mt1l:= $el, ..., mtn: = en), where $n > 1, is defined by the
rule

(rule (mtl = el cs_s) var (mtl, el) seq (cs_s) abn) then (mtl = el); (cs_s)).

The state update operation (. $mtl:= $el, ..., mtn:= en) is an alias for ($mtl:=
$el, ..., mtn: = en). Itis defined by the rule

(rule (. mtl = el cs_s) var (mtl, el) seq (cs_s) abn) then (mtl := el cs_s)).

6.7. Statements

The executable elements called statements are defined in this section. They are similar to
statements in programming languages.

The element skip does nothing. It is defined as follows:

(rule skip abn then skip :: {transition});

(transition skip :: {transition} then $f),
where skip :: {transition}; $e* # $s ogrp e” # $s.

The element $e of the form (seq e*) is called a sequential composition. It is defined by the rule

(rule (seq e_s) var (e_s) seq (e_s) then e_s).

The elements of $e* are called elements in [[$e]], and $e* is called a body in [$e]. The element $e
executes its elements sequentially from left to right.

The element $e of the form (if $co then $e*1 else $e*2) is called a conditional element. It is
defined as follows:

(rule (if cothene_s1 else e_s2) var (co) seq (e_s1, e_s2) val (co) abn

then (if co :: {*} then e_s1 else e_s2) :: {transition});

(transition (if vthen e_s1 else e_s2) :: {transition} var (v) seq (e_s1, e_s2) then $f),

where

System Informatics (Cucremuas unpopmaruka), No. 9 (2017) 175

(if $v then $e*1 else $e*2) :: {transition}; $e* $s S5
[if [$v # und] then $e*1 else $e*2] $e* # $s.
The objects $co, $e*1 and $e*2 are called a condition, then-branch and else-branch in [$e]. The
element (if $con then $e*) is a shortcut for (if $con then $e* else skip).
The conditional element (if :: {exc} $con then $e*1 else $e*2) is defined by the rule
(rule (if :: {exc} con then e_s1 else e_s2) var (con) seq (e_s1, e_s2) val (con)
exc (con, con :: {x}) abn then (if con :: {q} then e_s1 else e_s2)).
The element (if :: {exc} $con then $e*) is a shortcut for (if :: {exc} $con then $e* else skip).
The conditional element
(if $sel $col then $e*1 elseif $se2 $co2 then $e*2 ... elseif sen con then $e*$n else $e*),
where senl € {[es], exc} for each 1 < $n1 < $n, is defined by the rules
(rule (if cothen e_s1 elseif e_s2) var (co) seq (e_s1, e_s2) abn
then (if co then e_s1 else (if e_s2)));
(rule (if cothene_s1 elseif :: {exc} e_s2) var (co) seq (e_s1, e_s2) abn
then (if co then e_s1 else (if :: {exc} e_s2)));
(rule (if :: {exc} cothene_s1 elseif e_s2) var (co) seq (e_s1, e_s2) abn
then (if :: {exc} co thene_s1 else (if e_s2)));
(rule (if :: {exc} cothene_s1 elseif :: {exc} e_s2) var (co) seq (e_s1, e_s2) abn
then (if :: {exc} co thene_s1 else (if :: {exc} e_s2))).
The element $e of the form (let $va be $e*1 in $e*2) is defined as follows:
(rule (let va be e_s1 in e_s2) var (va) seq (e_s1,e_s2) abn
then e_s1; (let va be current value in e_s2) :: {transition});
(transition (let va be current value in e_s2) :: {transition} var (va) seq (e_s2) then $f),
where
(let $va be current value in $e2) :: {transition}; $e* # $v # $s S 44
[sub ($va: $v) $e*2]; $e* # $s.
The elements $va, $e*1 and $e*2 are called a variable, value specifier and body in [$e].
The element $e of the form (let :: {und} $va be $e*1 in $e*2) is defined by the rules
(rule (let :: {und} va be e_s1 in e_s2) var (va) seq (e_s1,e_s2) abn
then e_s1; (let :: {und} va be current value in e_s2));,
(rule (let :: {und} va be current value in e_s2) var (va) seq (e_s2) und
then (let va be current value in e_s2): {transition}).

The element $e of the form (let :: {abn} $va be $e*1 in $e*2) is defined by the rules

176 Anureev L.S. Operational conceptual transition systems and their application to development of conceptual operational

(rule (let :: {abn} va be e_s1 in e_s2) var (va) seq (e_s1,e_s2) abn
then e_s1; (let :: {abn} va be current value in e_s2));
(rule (let :: {abn} va be current value in e_s2) var (va) seq (e_s2) abn
then (let va be current value in e_s2) :: {transition}).
The element $e of the form (let :: {exc} $va be $e*1 in $e*2) is defined by the rules
(rule (let :: {exc} va be e_s1 ine_s2) var (va) seq (e_s1,e_s2) abn
then e_s1; (let :: {exc} va be current value in e_s2));
(rule (let :: {exc} va be current value in e_s2) var (va) seq (e_s2) exc
then (let va be current value in e_s2) :: {transition}).
The element $e of the form (let :: {seq} $va* be $e*1 in $e*2), where [len va*] = [len e*1], is
defined by the rules
(rule (let :: {seq} va,va_s be el, e_s1 ine_s2) var (va, el) seq (va_s,e_s1,e_s2) abn
then (let va be el in (let :: {seq} va_s be e_s1 in e_s2)));
(rule (let :: {seq} be in e_s2) seq (e_s2) abn then e_s2).
The elements $va*, $e*1 and $e*2 are called a variable specification, value specification and body
in [$e]. The elements of $va* and $e*1 are called variables and value specifiers in [$e].
The element $e of the form (let :: {seq,und} $va* be $e*1in $e*2), where [lenva*] =
[len e*1], is defined by the rules
(rule (let :: {seq,und} va,va_s be el, e_s1 in e_s2) var (va, el) seq (va_s,e_s1,e_s2)
abn then (let :: {und} va be el in (let :: {seq,und} va_s be e_s1 in e_s2)));
(rule (let :: {seq,und} be in e_s2) seq (e_s2) abn then e_s2).
The element $e of the form (let :: {seq,abn} $va* be $e*1 in $e*2), where [lenva*] =
[len e*1], is defined by the rules
(rule (let :: {seq,abn} va,va_s be el, e_s1 in e_s2) var (va, el) seq (va_s,e_s1,e_s2)
abn then (let :: {abn} va be el in (let :: {seq,abn} va_s be e_s1 in e_s2)));
(rule (let :: {seq,abn} be in e_s2) seq (e_s2) abn then e_s2).
The element $e of the form (let: {seq, exc} $va* be $e*1 in $e*2), where [len va*] = [len e*1],
is defined by the rules
(rule (let :: {seq,exc}va,va_s be el, e_s1 ine_s2) var (va, el) seq (va_s,e_s1,e_s2) abn
then (let :: {exc} va be el in (let :: {seq, exc} va_s be e_s1 in e_s2)));
(rule (let :: {seq, exc} be in e_s2) seq (e_s2) abn then e_s2).
The element $e of the form (while $con do $e*1) is called a while statement. It is defined by the

rule

System Informatics (Cucremuas unpopmaruka), No. 9 (2017) 177

(if (while condo e_s) var (con) seq (e_s) abn
then (if con then e_s; (while con do e_s))).

The objects $con and $e*1 are called a condition and body in [$e].

The element $e of the form (foreach $va in $el do $e*1) is called a foreach statement. It is
defined by the rule

(rule (foreach vain el do e_s) var (va, el) seq (e_s) val (el) abn

then (foreach::{q} vainel :: {x} do e_s)).

The objects $va, $el and $e*1 are called an iteration variable, iteration structure specifier and
body in [$e]. If ($v*) is a value of $el, then the element $e executes sequentially $e*1 for values
of $va from the structure ($v*).

The element (foreach:: {q} va in ($v*) do $e*) is defined by the rules

(rule (foreach::{q} va in (vv_s) do e_s) var (va, v) seq (v_s, e_s) abn

then (let va be v :: {q} ine_s); (foreach::{q}vain (v_s) do e_s));

(rule (foreach::{q} va in () do e_s) var (va) seq (e_s) abn then).

6.8. Countable concepts

The executable elements handling countable concepts are defined in this section.

A normal element $e is a countable concept in [$s] if [$s. ((countable concept) $e)] € $n >
0. Thus, the parametric attribute ((countable concept) $e) defines countable concepts. Let $$cc be
a set of countable concepts. A number $n is an order in [$cc, $s] if $n=
[$s5. ((countable concept) $cc)]. Let $$cco be a set of orders of countable concepts. An element
$n::{$cc} is called an instance in [$cc]. An element $n:: {$cc} is an instance in [$cc, $s] if 1 <
$n < $cco[[$cc].

The element ($e is (countable concept)) specifies that $e is a countable concept. it is defined
by the rule

(rule (e is (countable concept)) var (e) abn then ((. {((countable concept) e)}) > 0)).

The element ($e is $cc) specifies that $e is an instance of $cc. It is defined by the rule

(rule (n::{cc1} is cc2) var (n, ccl, cc2) abn where (cc2 is (countable concept))

then ((ccl::{q} = cc2::{q}) and (0 < n) and (n <= (. {((countable concept) cc2)})))).

The element ((new instance) $cc) generates a new instance of the countable concept $cc and
adds this concept if it was not. It is defined by the rule

(rule ((new instance) cc) var (cc) abn

then (let n be (. {(countable concept) cc}) in

178 Anureev L.S. Operational conceptual transition systems and their application to development of conceptual operational

(if (n > 0) then (letnlbe(n+1)in
({((countable concept) cc)} == nl); nl::{cc}::{q})
else ({((countable concept) cc)} = 1); nl::{cc}::{q}).

6.9. Rules

The executable elements handling rules are defined in this section.
The element ($e is rule) specifies that $e is a rule. It is defined as follows:
(rule (e is rule) var (e) abn then (e is rule):: {transition});
(transition (e is rule): : {transition} var (e) then $f),
where
($e is rule):: {transition} $e* # $s Sgr) $e” # [if [e € $$r] then true else und] # $s.
The element ($e is (extended rule)) specifies that $e is an extended rule. It is defined as follows:
(rule (e is (extended rule)) var (e) abn then (e is (extended rule)):: {transition});
(transition (e is (extended rule)):: {transition} var (e) then $f),
where
($e is (extended rule)) :: {transition} $e* $s 4]
$e* # [if [e € $$er] then true else und] # $s.
An element $na is a name if $na is normal. Let $$n be a set of names.
The element ($e is name) specifies that $e is a name. It is defined by the rule
(rule (e is name) var (e) abn then (e is normal)).
The element $r: $na adds the rule $r with the name $n into [. {rules}]. It is defined by the rule
(rule e::{na} var (e, na) abn where ((e is rule) and (na is name))
then ({rules}:= ((.{rules}) . {na} :=e:: {q}))).
The element $er: $na adds the rule $r with the name $n into [. {rules}], where $er is a shortcut
for $r. It is defined as follows:
(rule e::{na} var (e, na) abn where ((e is (extended rule)) and (na is name))
then ({rules} := ((.{rules}) . {na} = (rulee)))).
The element (rule $er) returns $r, where $r is a shortcut for $er. It is defined as follows:
(transition (rule er):: {transition} var (er) then $f),

where (rule $er):: {transition} $e* # $s o g¢) $e* # $r # $s, where $r is a shortcut for $er.
6.10. The pattern matching

The executable elements handling the pattern matching are defined in this section.

System Informatics (Cucremuas unpopmaruka), No. 9 (2017) 179

The conditional pattern matching element $e of the form

(if $el matches $p var ($va*) seq ($sv*) then $e*1 else $e*2),
where ($p ($va*) ($sv™*)) is a pattern specification, executes $e*1 if $e1 matches $p and executes
$e*2, otherwise. It is defined as follows:

(rule (if el matches p var (va_s) seq (sv_s) then e_s1 else e_s2) var (el, p)

seq (va_s, sv_s, e_s1, e_s2) abn where (disjoint (va_s)::{q} (sv_s)::{q})

then (if el matches p var (va_s) seq (sv_s) then e_s1 else e_s2):: {transition});

(transition (if el matches p var (va_s) seq (sv_s) then e_s1 else e_s2):: {transition}

var (el, p) seq (va_s, sv_s, e_s1, e_s2) then $f),
where

(if $el matches $p var ($va”) seq ($sv™) then $e*1 else e*2):: {transition}; $e* # $s o4

[if [$el is an instance in [($p ($va™) ($sv™)), $mt, $su] for some $su]
then [sub $su U (cstate: $s, cvalue: $v[$s]) $e*1]
else [sub (cstate: $s, cvalue: $v[$s]) $e*2]]; $e* # $s.

Thus, the semantics of the conditional pattern matching elements combines the semantics of the
conditional element with the semantics of transition rules. The elements $el, $p, $va*, $sv*, $e*1
and $e*2 are called a matched structure, pattern, state variable specification, sequence variable
specification, then-branch and else-branch in [$e]. The elements of $va* and $sv* are called state
and sequence variables in [$e].

Let {$eva*} € {$va*}, the elements of the sequence $eva* are pairwise disjoint, $set = {$eva ::
{x} | $eva € $eva*}, {$va*1} U {$va*2} U {$va*3} € {$va*} U $set, the elements of the sequence
$va*1 $va*2 $va*3 are pairwise disjoint, and $se € {[se], und, exc, abn}.

The semantics of the extension

(if $el matches $p var ($va*) seq ($sv*) val ($eva*) abn ($va*1) und ($va*2)

exc ($va*3) $se where $co then $e*1 else $e*2)
of the conditional pattern matching element is similar to the semantics of extended transition rules.

The objects var ($va*), seq ($sv*), val ($eva*), abn ($va*1), und ($va*2), exc ($va*3) and
where $co in conditional pattern matching elements can be omitted. The omitted objects correspond
to var (), seq (), val (), abn (), und (), exc () and where true.

The pattern matching element

($e1 matches $p var ($va*) seq ($sv*) val ($eva™) abn ($va*1) und ($va*2)

exc ($va*3) $se where $co then $e*1 else $e*2)

is a shortcut for

180 Anureev L.S. Operational conceptual transition systems and their application to development of conceptual operational

(if $el matches $p var ($va*) seq ($sv*) val ($eva*) abn ($va*1) und ($va*2)

exc ($va*3) $se where $co then true else und).

The selection element $e of the form (select $va from $el wrt $p var ($va*) seq ($sv*)),
where ($p ($va*) ($sv™*)) is a pattern specification, and $va € $va*, or $va € $sv*, selects the
values of the variable $va such that an element of $e1 matches the pattern $p. It is defined by the
rule

(rule (select va from of el wrt p var (va_s) seq (sv_s))

var (va,el,p) seq (va_s,sv_s,t_s) abn
where ((disjoint (va_s) :: {q} (sv_s) :: {q}) and
((va::{q}in (va_s)::{q}) or (va::{q} in (sv_s)::{q})))
then (select:: {check} va from el wrt p var (va_s) seq (sv_s))).

The elements $va, $el, $p, $va* and $sv* are called a selection variable, matched structure,
pattern, state variable specification, sequence variable specification, then-branch and else-branch in
[$e]. The elements of $va* and $sv* are called state and sequence variables in [$e].

The element (select: : {check} $va from $el wrt $p var ($va*) seq ($sv*)) is defined by the
rules

(rule (select: :{check} va fromel::{t_s} wrt p var (va_s) seq (sv_s))

var (va,el, p) seq (va_s, sv_s, t_s) abn

then (select:: {check} va from (el:: {t_s}) wrt p var (va_s) seq (sv_s)));

(rule (select: :{check} va fromel:{t_s} wrt p var (va_s) seq (sv_s))

var (va, el, p) seq (va_s, sv_s, t_s) abn

then (select:: {check} va from (el:{t_s}) wrt p var (va_s) seq (sv_s)));

(rule (select::{check} va from () wrt p var (va_s) seq (sv_s))

var (va,p) seq (e_s,va_s,sv_s) abn then ());

(rule (select: :{check} va from (el e_s) wrt p var (va_s) seq (sv_s))

var (va,el,p) seq (e_s,va_s,sv_s) abn where (va::{q} in (va_s)::{q})

then (if el matches p var (va_s) seq (sv_s)

then (va_s::{q} .+ (select:: {check} va from (e_s) wrt p var (va_s) seq (sv_s)))
else (select::{check} va from (e_s) wrt p var (va_s) seq (sv_s))));

(rule (select: :{check} va from (el e_s) wrt p var (va_s) seq (sv_s))

var (va,el,p) seq (e_s,va_s,sv_s) abn where (va::{q} in (sv_s)::{q})

then (if el matches p var (va_s) seq (sv_s)

then ((va_s)::{q} .+ (select::{check} va from (e_s) wrt p var (va_s) seq (sv_s)))

System Informatics (Cucremuas unpopmaruka), No. 9 (2017) 181

else (select::{check} va from (e_s) wrt p var (va_s) seq (sv_s)))).
The semantics of the extension
(select $va from $el wrt $p var ($va*) seq ($sv*) val ($eva*)
abn ($va*1) und ($va*2) exc ($va*3) $se where $co)
of the selection element is similar to the semantics of the extension of the conditional pattern
matching element.
The semantics of the extension
(select:: {seq} $val® from $el wrt $p var ($va*) seq ($sv*) val ($eva*)
abn ($va*1) und ($va*2) exc ($va*3) $se where $co)
of the selection element is similar to the semantics of the above selection element extension except
that the resulting sequence consists of the compound elements of the length [$va1*]. Each of these
elements contains the values of the selection variables in the order of their occurences in $val®.
The selection elements
(select $va wrt $p var ($va*) seq ($sv*) val ($eva™)
abn ($va*1) und ($va*2) exc ($va*3) $se where $co)
and
(select:: {seq} $val* wrt $p var ($va*) seq ($sv*) val ($eva*)
abn ($va*1) und ($va*2) exc ($va*3) $se where $co)
are shortcuts for
(let $s be (current state) in (select $va from $s wrt $p var ($va*) seq ($sv*) val ($eva™)
abn ($va*1) und ($va*2) exc ($va*3) $se where $co))
and
(let $s be (current state) in (select:: {seq} $val* from $swrt $p var ($va*) seq ($sv*)
val ($eva*) abn ($va*1) und ($va*2) exc ($va*3) $se where $co)).

7. Examples of conceptual operational semantics
of programming languages

An operational semantics of executable elements of $$c[$!] in CTSL[o] is called a conceptual
operational semantics of $1. Thus, the conceptual operational semantics of $1 is defined in terms of
the conceptual model of $1 in CTSL[o].

The conceptual operational semantics for the family of model programming languages (MPLS) is
defined in this section. These languages has been described and their conceptual models has been
defined in [1].

182 Anureev L.S. Operational conceptual transition systems and their application to development of conceptual operational

7.1. MPL1: types, typed variables and basic statements

The MPLL1 language [1] is an extension of CTSL that adds types, typed variables, the variable
access operation, and the basic statements such as variable declarations, variable assignments, if
statements, while statements and block statements.

The element ($c is type) specifies types in MPL1. It is defined by the rules

(rule (t is type) var (t) abn then (t:: {q} = int::{q}));

(rule (t is type) var (t) abn then (t::{q} = nat::{q})).

The element (subtype $t1 $t2) checks that $t1 is a subtype of $t2. It is defined by the rule

(rule (subtype t1 t2) var (t1, t2) abn

then ((t1::{q} = nat::{q}) and (t2::{q} = int:: {q}))).

The element ($na is variable) specifies variables. It is defined by the rule

(rule (va is variable) var (va) abn where (va is name) then (. {(variable va)})).

The program is defined by the rule

(rule (programn c_s) var (n) seq (c_s) abn where (n is name)

then ((collect body membes) c_s) c_s).

Let $$m be a set of elements called body members.

The element ((collect body members) $c*) collects information about members of the body
$c*. It is defined by the rules

(rule ((collect body members) (var vat) c_s) var (va, t) seq (c_s) abn

where ((va is name) and (not (va is variable)) and (t is type))

then ({(typeva)} =t :: {q}); ({(variable va)} = true);

((collect body members) c_s));

(rule ((collect body members) (var c1 c2) c_s) var (c1, c2) seq (c_s) abn then und);

(rule ((collect body members) c c_s) var (c) seq (c_s) abn

then ((collect body members) c_s));

(rule ((collect variables)) then).

Thus, the body members in MPL1 are variables.

The variable declaration is defined by the rule

(rule (var c_s) seq (c_s) abn then).

The execution of the variable declaration does not collect information about the declared variable,
since the corresponding actions are performed by the element ((collect body members) $c*).

The variable access is defined by the rule

(rule va var (va) abn where (va is variable) then (. {(value va)}).

System Informatics (Cucremuas unpopmaruka), No. 9 (2017) 183

The element (type $¢) returns the type of the variable or the constant $c. It is defined by the rules
(rule (type va) var (va) abn (va) abn where (va is variable) then (. {(type va)});
(rule (type n) var (n) abn (n) abn where (n is nat) then nat:: {q});
(rule (type i) var (i) abn (i) abn where (i is int) then int:: {q}).
The variable assignment is defined by the rule
(rule (va \= c) var (va, c) val (va) exc (c, c::{*}) abn

where ((va is variable) and

(let::{seq} t1, t2 be (type va), (type c::{x}) in (subtype t2 t1)))
then ({(value va)}:= c:: {*}::{q})).
The block statement is defined by the rule
(rule (block c_s) seq (c_s) abn then c_s).
The if statement is defined by the rule
(rule (\if cthenc_s1 else c_s2) var (c) seq (c_s1, c_s2) abn (c) abn
then (if::{exc} c then (block c_s1) else (block c_s2)));
The while statement is defined by the rule
(rule (\while c do c_s1) var (c) seq (c_s1) abn (c) abn
then (while:: {exc} c do (block c_s1))).
Thus, then- and else- branches of the if statement and the body of the while statement behaves as
blocks.

7.2. MPL2: variable scopes

The MPL2 language [1] is an extension of MPL1 that adds the variable scopes feature. The relative
scope of the variable $va occuring in the element $c is the number of blocks surrounding this
occurrence of $va in $c. The value and type of $va depend on its scope. The variable $va can be
global (with the scope 0) and local.

The element (scope) returns the current scope. It is defined by the rule

(rule (scope) abn then (. {(current scope)})).

The same name $na can refer to different program objects. For example, $va refers to the variables
with the name $va of the scopes from 0 to [. {(current scope)}]. To distinguish these program
objects, they are versioned. The pair ($na, $ve), where $ve is a version, refers to the only one
program object (with the version $ve). In the case of variables, the version coincides with the variable

scope.

184 Anureev L.S. Operational conceptual transition systems and their application to development of conceptual operational

The element (version $va) returns the correct version of $va in the current context of program
execution. It is defined by the rule
(rule (version va) var (va) abn (va) abn where (va is name)
then (let sc be (scope) in (version sc w))).
The element (version $va $sc) is defined by the rule
(rule (version va sc) var (va, sc) abn (va, sc) abn
then (if (. {(variable va sc)}) then sc::{q} else (if (sc = 0) thenund
else (let scl be (sc — 1) in (version va scl))))).
The element ($na is variable) is defined by the rule
(rule (va is variable) var (va) abn then (version va)).
The element ((collect body members) $c*) is defined by the rule
(rule ((collect body members) c_s) seq (c_s) abn
then ((collect body members 1) () c_s).
The element ((collect body members):: {1} ($va™) $c*) is defined by the rules
(rule ((collect body members) :: {1} (va_s) (var vat) c_s) var (va, t)
seq (vag, c) abn (va, t) abn where ((va is name) and (t is type))
then (let sc be (scope) in
(if (. {(variable va sc)}) then und
else ({(typevasc)} =t :: {q}); ({(variable va sc)} := true);
((collect body members):: {1} (va_s va) c_s))));
(rule ((collect body members) :: {1} (va_s) (var c1 c2) c_s) var (c1, c2)
seq (va_s, c_s) abn then und);
(rule ((collect body members):: {1} (va_s) c c_s) var (c) seq (va_s, c_s) abn
then ((collect body members):: {1} (va_s) c_s));
(rule ((collect body members):: {1} (va_s)) seq (va_s) abn then (va_s)::{q}).
Thus, it returns the set of variables declared in the body $c*.
The variable access is defined by the rule
(rule va var (va) abn (va) abn
then (let:: {und} sc be (version va) in (. {(value va sc)}))).
In the case when $c is a variable, the rule for the element (type $c) is replaced by the rule
(rule (type va) var (va) abn (va) abn
then (let: {und} sc be (versionva) in (. {(type va sc)}))).

The element (scope + +) increases the value of the current scope by 1. It is defined by the rule

System Informatics (Cucremuas unpopmaruka), No. 9 (2017) 185

(rule (scope + +) abn then ({(current scope)} : = ((. {(current scope)}) + 1))).
The element (scope — —) decreases the value of the current scope by 1. It is defined by the rule
(rule (scope — —) abn then ({(current scope)} : = ((. {(current scope)}) — 1))).
The variable assignment is defined by the rule
(rule (va \: = c) var (va, c) val (c¢) abn (va) exc (c,c::{*}) abn
then (let::{und} sc be (version va)
in (if (let::{und, seq} t1, t2 be (type va sc), (type c::{*}) in (subtype t2 t1))
then (((value va sc)) : = c:: {*}::{q}) else und))).
The block statement is defined by the rule
(rule (block c_s) seq (c_s) abn
then (enter block); (let v_s be ((collect body members) c_s)
in x (catch:: {und} v ((exit block) v_s); v::{q}))).
The element (enter block) specifies the actions executed when the current state enters the block.
It is defined by the rule
(rule (enter block) abn then (scope + +)).
The element ((exit block) ($va™)) specifies the actions executed when the current state exits the
block. It is defined by the rule
(rule ((exit block) (va_s)) seq (va_s) abn then ((delete variables) va_s); (scope — —)).
The element ((delete variables) $va*) deletes the local variables $va* with the current scope.
It is defined by the rules
(rule ((delete variables) va_s) seq (va_s) abn
then (let sc be (scope) in ((delete variables):: {1} sc va_s))).
The element ((delete variables):: {1} $sc $va™) is defined by the rules
(rule ((delete variables):: {1} sc va va_s) var (sc, va) seq (va_s) abn (sc, y) abn
then ({(variable va sc)} :=); ({(type va sc)} =); ({(value va sc)} :=);
((delete variables):: {1} sc va_s));
(rule ((delete variables):: {1} sc) var (sc) abn (sc) abn then).

7.3. MPL3: functions

The MPL3 language [1] is an extension of MPL2 that adds the functions feature: declarations and
calls of functions, and the return statement. For simplicity, function overloading is prohibited.
The element (call level) returns the current call level. It is defined by the rule

(rule (call level) abn then (. {(current call level)})).

186 Anureev L.S. Operational conceptual transition systems and their application to development of conceptual operational

The element ($c is function) specifies functions. It is defined by the rule
(rule (f is function) var (f) abn where (f is name) then (. {(function f)})).
In the case when the first element of the body $c* is a variable declaration, the rule for the element
((collect body members):: {1} (va™) c*) is replaced by the rule
(rule ((collect body members) :: {1} (va_s) (var vat) c_s) var (va, t) seq (va_s, c_s)
abn (va, t) abn where ((va is name) and (t is type))
then (let::{seq} sc, cl be (scope), (if (sc = 0) then 0 else (call level))
in (if (.{(variable va sc cl)}) then und
else ({(type va sc)}: = t::{q}); ({(variable va sc)}: = true);
((collect body members):: {1} (va_s va) c_s)))).
The element ((collect body members):: {1} (va™) c*) is also redefined by the extra rules
(rule ((collect body members) :: {1} (function f (tna_s) t c_s1) c_s) var (f, t)
seq (tna_s, c_s1, c_s) abn (f, t) abn
where ((f is name) and (not (fis function)) and (t is type))
then ((collect member arguments) f tna_s); ({((returntype))} = t::{q});
({(body)} = (c_s1) = {q}); ({((function f)} = true);
((collect body members)::{1} c_s));
(rule ((collect body members):: {1} (function c_s)) seq (c_s) abn then und).
Thus, body members in MPL3 are variables and functions.
The element ((collect member arguments) $m $tna*) collects information about the typed
arguments $tna* of the body member $m. It is defined by the rule
(rule ((collect member arguments) m tna_s) var (m) seq (tna_s) abn
then ((collect member arguments 1) m 0 tna_s)).
The element ((collect member arguments 1) $m $n $tna™) is defined by the rules
(rule ((collect member arguments 1) mnnat tna_s) var (m, n, na, t) seq (tna_s)
abn where ((m is name) and (n is nat) and (na is name) and (t is type))
then (let nl be (n + 1) in ({((argument type) mnl)} = t::{q}));
({(argument mn1)} :=na::{q}; ((collect member arguments 1) m nl tna_s))));
(rule ((collect member arguments 1) mn) var (m, n) abn
where ((mis name) and (n is nat)) then ({(arity m)} = n)).
Thus, it collects information about function arguments.
The function declaration is defined by the rule:

(rule (function c_s) seq (c_s) abn then).

System Informatics (Cucremuas unpopmaruka), No. 9 (2017) 187

The execution of the function declaration does not collect information about the declared function,
since the corresponding actions are performed by the element ((collect body members) $c*).
The return statement is defined by the rule
(rule (return c) var (c) val (c) exc (c,c:: {*}) abn
then (let:: {seq} t1, t2 be (. {(current return type)}), (type c::{*})
in (if (subtype t2 tl) then (return: {type}, c::{*}: {value}):: {exc} else und))).
The function call is defined by the rule
(rule (call f a_s) var (f) seq (a_s) abn (f) abn
where ((f is function) and ((len a_s::{q}) = (.{(arity)})))
then (let::{und, seq} av_s, b, cs, crt
be ((argument values) a_s), (body f av_s), (scope), (. {(current return type)})
in (call level + +); ({(current scope)} = 0); b;
(catch:: {und} v
(if (vis (not admissible function body value)) then und);
({(current return type)} = crt::{q}); (call level — —=); ({(current scope)} = cs);
(if vmatches (return: {type}, vl:{value})::{exc} var (v1) then ((to value) v1::{q})
else ((to value) v::{q}))))).
The element ($vis (notadmissible function body value)) specifies values that are not
admissible when a function body exits. It is defined by the rule
(rule v is (not admissible function body value)) var (v) abn
then (not (v is exception))).
Thus, the values that are not exceptions are not admissible in MPL3 when a function body exits.
The element ((argument values) $a*) returns the values of the arguments $a*. It is defined by
the rules
(rule ((argument values) a, a_s) var (a) seq (a_s) abn (a) abn
then (a .+ ((argument values) a_s)));
(rule ((argument values)) then ()).
The element (body $f ($v*)) creates the block with the body of the function $f followed the
declarations of the local variables corresponding to the arguments of $f and the assignment
statements assigning the values $v* to these variables.

(rule (body f (v_s)) var (f) seq (v_s) abn (f) abn
then (block::{q}.+ (((create local variables) f 0v_s) + (. {(block f)}))));

188 Anureev L.S. Operational conceptual transition systems and their application to development of conceptual operational

The element ((create local variables) $f $n $v™) creates the declarations of the local variables
corresponding to the arguments of $f and the assignment statements assigning the values $v* to these
variables. It is defined by the rules

(rule ((create local variables) f nvv_s) var (f, n, v) seq (v_s) abn (f, n, v) abn

then (let :: {seq} nl, a, t

be (n+ 1), (. {(argument f nl)}), (. {((argument type) f nl1)}) in
((varat) .+ ((a\= v::{q}) .+ ((create local variables) f nlv_s)))));

(rule ((create local variables) f n) var (f, n) abn (f, n) abn then ()).

The element (call level + +) increases the value of the current call level by 1. It is defined by the
rule

(rule (call level + +) abn

then ({(current call level)} = ((. {(current call level)}) + 1))).

The element (call level — —) decreases the value of the current call level by 1. It is defined by
the rule

(rule (call level — —) abn

then ({(current call level)} .= ((. {(current call level)}) — 1))).

The element (version $na) is defined by the rules

(rule (version va) var (va) abn (va) abn where (va is name)

then (let:: {seq} sc, cl be (current scope), (current call level) in (version va sc cl)));

The element (version $na $sc $cl) is defined by the rules

(rule (versionvay z) var (va, sc, cl) abn (va, sc, cl) abn

then (if (. {(variable va sc cl)}) then sc

else (if (sc = 0) thenund
else (let scl be (sc — 1) in (version va sc1 cl))))).
The variable access is defined by the rule
(rule va var (va) abn (va) abn
then (let::{und, seq} sc, cl be (versionva), (if (sc::{q} = 0) then 0 else (call level))
in (. {(value va sc cl)}))).
In the case when $c is a variable, the rule for the element (type $c) is replaced by the rule
(rule (type va) var (va) abn (va) abn
then (let :: {und, seq} sc, cl
be (versionva), (if (sc::{q} = 0) then 0 else (call level))
in (. {(type va sc cl)}))).

System Informatics (Cucremuas unpopmaruka), No. 9 (2017) 189

The variable assignment is defined by the rule
(rule (va \: = c) var (va, e) val (c) abn (v) exc (c, c::{*}) abn
then (let::{und} sc, cl, t1, t2
be (variant va), (if (sc::{q} = 0) then 0 else (current call level)),
(-{(type va sc cl)}), (type c::{*})
in (if (subtype t2 tl) then ({(value x sc cl)} = c::{*}::{q}) else und))).
The element ((delete variables) $va™) is defined by the rules
(rule ((delete variables) va_s) seq (va_s) abn
then (let:: {seq} sc, cl be (scope), (if (sc::{q} = 0) then 0 else (call level))
in ((delete variables):: {1} sc cl va_s))).
The element ((delete variables):: {1} $va* $sc $cl) is defined by the rules
(rule ((delete variables):: {1} sc clva va_s) var (sc, cl, va) seq (va_s) abn (sc, cl, va)
abn then ({(value va sc cl)} =); ({(type va sc cl)} =);
({(variable va sc cl)} =); ((delete variables):: {1} sc cl va_s));

(rule ((delete variables):: {1} sc cl) var (sc, cl) abn (sc, cl) abn then).
7.4. MPL4: procedures

The MPL4 language [1] is an extension of MPL3 that adds the procedures feature: declarations
and calls of procedures, and the exit statement. For simplicity, procedure overloading is prohibited.
The sets of function names and procedure names are disjoint.

The element ($c is procedure) specifies procedures. It is defined by the rule

(rule (pr is procedure) var (pr) abn where (pr is name) then (. {(procedure pr)})).

The element ((collect body members):: {1} (va*) c*) is redefined by the extra rules

(rule ((collect body members):: {1} (procedure pr (tna_s) c_s1) c_s)

var (pr) seq (tna_s, c_s1, c_s) abn (pr) abn

where ((pr is name) and (not (pr is procedure)))

then ((collect member arguments) pr tna_s);
({(body pr)} = (cs1) #: {q}); ({(procedure pr)} = true);
((collect body members)::{1} c_s));

(rule ((collect body members):: {1} (procedure c_s)) seq (c_s) abn then und).

Thus, body members in MPL4 are variables, functions and procedures.

The element ((collect member arguments) $m $ta™) is extended to procedures. Its definition

is not changed.

190 Anureev L.S. Operational conceptual transition systems and their application to development of conceptual operational

The procedure declaration is defined by the rule:
(rule (procedure c_s) seq (c_s) abn then).
The execution of the procedure declaration does not collect information about the declared procedure,
since the corresponding actions are performed by the element ((collect body members) $c*).
The exit statement is defined by the rule
(rule exit abn then (exit: {type}):: {exc}).
The element ($v is (not admissible function body value)) is redefined by the extra rule
(rule ((exit: {type}) :: {exc} is (not admissible function body value)) var (v) abn
then true).
Thus, exceptions initiated by exit statements are not admissible in MPL4 when a function body exits.
The procedure call is defined by the rule
(rule (call pr a_s) var (pr) seq (a_s) abn (pr) abn
where ((pr is procedure) and ((len a_s::{q}) = (.{(arity pr)})))
then (let::{und,seq} av_s, b, cs
be ((argument values) a_s), (body pr av_s), (scope)
in (call level + +); ({(current scope)} = 0); b;
(catch::{und} v
(if (vis (not admissible procedure body value)) then und);
(call level — =); ({(current scope)} = cs);
(if vmatches (exit: {type}): : {exc} then true else ((to value) v::{q}))))).
The element ($v is (not admissible procedure body value)) specifies exceptions that are not
admissible when a procedure call exits. It is defined by the rule
(rule ((return: {type}, v:{value}) :: {exc} is (not admissible procedure body value))
var (v) abn then true).
Thus, exceptions initiated by return statements are not admissible in MPL4 when a procedure body
exits.
The elements (body $f ($v*)) and ((create local variables) $f $n $v™*) are extended to

procedures. Their definitions are not changed.
7.5. MPL5: pointers

The MPLS5 language [1] is an extension of MPL4 that adds the pointers feature: the pointer types,
the operations of pointer content access, variable address access and pointer deletion, statements of

pointer content assignment and pointer deletion.

System Informatics (Cucremuas unpopmaruka), No. 9 (2017) 191

The element ($c is (pointer value)) specifies pointers in MPL5. It is defined by the rule
(rule (n::{pointer} is (pointer value)) var (n) abn then (y is nat)).

The element (po is pointer) specifies pointers in states. It is defined by the rule

(rule (po is pointer) var (po) abn where (po is (pointer value)) then (. {(pointer po)})).
The element ($po is (pointer $t)) specifies pointers with the given content type. It is defined by

the rule

(rule (po is (pointer t)) var (po, t) abn where ((po is pointer) and (t is type))
then ((. {((content type) po)}) =t::{q})).

The element ($t is (pointer type)) specifies pointer types. It is defined by the rule
(rule ((pointer t) is (pointer type)) var (t) abn then (t is type)).
The element (c is type) is redefined by the extra rule

(rule (cis type) abn then (c is (pointer type))).
The element $$po is defined by the rule

(rule x::{pointer} var (x) abn where (x is nat) then x:: {pointer}:: {q}).
The element ((content type) $po) returns the content type of $po. It is defined by the rule
(rule ((content type) po) var (po) abn where (po is pointer)

then (. {((content type) po)})).
The element (type $po) is defined by the rule
(rule (type po) var (po) abn where (po is pointer)

then (let t be (. {((content type) po)}) in (pointer t)::{q})).
The pointer content access operation is defined by the rule
(rule (* c¢) var (c) val (c) abn (c, c :: {*}) abn

where (c:: {*} is pointer) then (. {(content c::{*})})).
The pointer content assignment statement is defined by the rule
(rule (* c1 == c2) var (cl, c2) val (c1, c2) abn (c1, c2, c1 :: {x}, c2 :: {*}) abn
where (c1::{*} is pointer)

then (let::{und, seq} t1, t2 be (. {((content type) cl::{x})}), (type c2::{*})

in (if (subtype t2 t1) then ({(content c1::{*})}:= c2::{x}::{q}) else und))).
The pointer addition operation is defined by the rule
(rule (new (pointer t)) var (t) abn (t) abn where (y is type)

then (let po be ((new instance) pointer)

in ({((content type) po)}:=t::{q}); ({(pointer po)}: = true); po)).

The pointer deletion operation is defined by the rule

192 Anureev L.S. Operational conceptual transition systems and their application to development of conceptual operational

(rule (delete c) var (c) val (c) abn (c, c::{*}) abn where (c:: {*} is pointer)
then ({(content c:: {*})} :=); ({((content type) c::{*}}:=); ({(pointer c::{*})}:=)).
The element (version $na $sc $cl) is defined by the rules
(rule (versionvay z) var (va, sc, cl) abn (va, sc, cl) abn
then (if (. {(pointer va sc cl)}) then sc
else (if (sc = 0) thenund
else (let scl be (sc — 1) in (version va sc1 cl))))).
The variable address access operation is defined by the rule
(rule (& va) var (va) abn (va) abn
then (let :: {und, seq} sc, cl be (version va),
(if (sc::{q} = 0) then 0 else (current call level))
in (if sc::{q} then (let po be (. {(pointer va sc cl)}) in (. {(content po)}))
else und)).
The variable access is defined by the rule
(rule va var (va) abn (va) abn then (let:: {und} po be (& va) in (. {(content po)}))).
The element (type va) is defined by the rule
(rule va var (va) abn (va) abn
then (let: : {und} po be (& va) in (. {((content type) po)}))).
In the case when the first element of the body $c* is a variable declaration, the rule for the element
((collect body members):: {1} (va™) c*) is replaced by the rule
(rule ((collect body members) :: {1} (va_s) (var vat) c_s) var (va, t) seq (va_s, c_s)
abn (va, t) abn where ((va is name) and (t is type))
then (let:: {seq} sc, cl be (scope), (if (sc::{q} = 0) then 0 else (call level))
in (if (.{(pointer va sc cl)}) then und
else (let po be ((new instance) pointer)
in ({((content type) po)}:= t::{q}); ({(pointer po)}:= true);
((collect body members)::{1} (va_s va) c_s)))).
The variable assignment is defined by the rule
(rule (va\:= c¢) var (va, c) abn (va, c, c::{*}) abn
then (let:: {und, seq} sc, cl, po, t1, t2
be (versionva), (if (sc::{q} = 0) then 0 else (call level)), (. {(pointer va sc cl)}),
(- {((content type) po)}), (type c::{*})
in (if (subtype t2 tl) then ({(content po)}:= c::{*}::{q}) else und))).

System Informatics (Cucremuas unpopmaruka), No. 9 (2017) 193

The element ((delete variables):: {1} $va* $sc $cl) is defined by the rules
(rule ((delete variables):: {1} sc cl va va_s) var (sc, cl, va) seq (va_s) abn (sc, cl, va)
abn then ({(pointer va sc cl)} :==); ((delete variables):: {1} sc cl va_s));

(rule ((delete variables):: {1} sc cl) var (sc, cl) abn (sc, cl) abn then).
7.6. MPLG6: jump statements

The MPL6 language [1] is an extension of MPL5 that adds the jump statements feature: break
statement, continue statement, goto statement and labelled statement.

The element (e is label) specifies labels. It is defined by the rule

(rule (e is label) var (e) abn then (x is normal)).

The break statement is defined by the rule

(rule break abn then (break: {type}):: {exc}).

The continue statement is defined by the rule

(rule continue abn then (continue: {type}):: {exc}).

The goto statement is defined by the rule

(rule (goto 1) var (1) abn where (lis label) then (goto: {type}, l: {label}):: {exc}).

The element ($v is (not admissible function body value)) is redefined by the extra rules

(rule ((break: {type})::{exc} is (not admissible function body value)) abn then true);

(rule ((continue: {type}) :: {exc} is (not admissible function body value)) abn

then true);

(rule ((goto: {type}, l:{label}) :: {exc} is (not admissible function body value))

var (l) abn then (lis label)).

The element ($v is (not admissible procedure body value)) is redefined by the extra rules

(rule ((break: {type})::{exc} is (not admissible procedure body value)) abn then true);

(rule ((continue: {type}) :: {exc} is (not admissible procedure body value)) abn

then true);
(rule ((goto: {type}, l: {label}) :: {exc} is (not admissible procedure body value))
var (l) abn then (L is label)).

Thus, exceptions initiated by break, continue and goto statements are not admissible in MPL6
when a function or procedure body exits.

The label statement is defined by the rule

(rule (label 1) var (I) abn where (lLis label)

then (catch v (if v matches (goto: {type}, [1:{label})::{exc} var (I11)

194 Anureev L.S. Operational conceptual transition systems and their application to development of conceptual operational

where ((I1 is label) and (I11::{q} = l:: {q})) then else v::{q}))).
The block statement is defined by the rule
(rule (block c_s) seq (c_s) abn
then (enter block);
(let::{und, seq} va_s, l_s be ((collect body members) c_s), ((collect labels) c_s)
inc_s; ((catch goto) (I_s) c_s);
(catch:: {und} v ((exit block) va_s); v::{q}))).
The element ((collect labels) $c*) collects labels from the label statements occurring in $c*. It
is defined by the rules
(rule ((collect labels) (label l) c_s) var (1) seq (c_s) abn
where (lis label) then (I::{q} .+ ((collect labels) c_s)));
(rule ((collect labels) c c_s) var (c) seq (c_s) then ((collect labels) c_s));
(rule ((collect labels)) then ()).
The element ((catch goto) ($1%) $c*) catches the exceptions initiated by goto statements when
the current block exits. It is defined by the rule
(rule ((catch goto) (I_s) c_s) seq (I_s, c_s) abn
then (catch v
(if vmatches (goto: {type}, l: {label})::{exc} var (1) where (l:: {q} in:: {set} (I_s)::{q})
thenv::{q}; c_s; ((catch goto) (I_s) c_s) else v::{q}))).
The while statement is defined by the rules
(rule (\while con do c_s) var (con) seq (c_s) exc (con) abn
then (while :: {exc} con do (block c_s; ((delete exception) continue)));

((delete exception) break)).
7.7. MPL7: dynamic arrays

The MPL7 language [1] is an extension of MPL6 that adds the dynamic arrays feature: dynamic
array types, the array element access operation and the array element assignment statement.

The element ($t is (dynamic array type)) specifies dynamic array types. It is defined by the
rule

(rule ((arrayt) is (dynamic array type)) var (t) abn then (t is type)).

The element ($t is (array type)) specifies array types. It is defined by the rule

(rule (t is (array type)) var (t) abn then (t is (dynamic array type))).

The element (c is type) is redefined by the extra rule

System Informatics (Cucremuas unpopmaruka), No. 9 (2017) 195

(rule (cis type) abn then (c is (array type))).

The element ($e is (dynamic array)) specifies dynamic arrays. It is defined by the rule

(rule ((v: {content}, t:{type}) :: {(dynamic array)} is (dynamic array)) var (v, t)

abn where (t is type) then (v is ((array content) t))).

The element ($e is array) specifies arrays. It is defined by the rule

(rule (e is array) var (e) abn then (e is (dynamic array))).

The element ($v is ((array content) $t)) is defined by the rules

(rule () is ((array content) t)) var (t) abn then true);

(rule ((vv_s) is ((array content) t)) var (v,t,v_s) abn where (vist)

then ((v_s) is ((array content) t))).

The element $ar is defined by the rule

(rule ar var (ar) abn where (ar is array) then ar::{q}).

The element ((element type) $ar) returns the element type of $ar. It is defined by the rule

(rule ((element type) ar) var (ar) abn where (ar is array) then (ar. {type})).

The element ($dar is (array $t)) specifies dynamic arrays with the given element type. It is
defined by the rule

(rule (dar is (array t)) var (dar, t) abn

where ((dar is (dynamic array)) and (t is type))

then (((element type) dar) = t:: {q})).

The element (type $dar) is defined by the rule

(rule (type dar) var (dar) abn where (ar is (dynamic array))

then (let t be ((element type) dar) in (array t)::{q})).

The array content access operation is defined by the rule

(rule (content c) var (c) val (c¢) abn (c, c :: {*}) abn where (c :: {*} is array)

then (c:: {*} . {content})).

The len operation for arrays is defined by the rule

(rule (len c) var (c) val (c) abn (c, c :: {*}) abn where (c :: {*} is array)

then (content c:: {x}::{q})).

The array element access operation is defined by the rule

(rule (c1[c2]) var (c1, c2) val (c1, c2) abn (c1, cl::{x}, c2, c2::{*}) abn

where ((cl::{*}is array) and (c2::{*} is nat)) then ((content c1::{*})..c2::{x})).

The array element assignment statement is defined by the rule

(rule (c1[c2] = c3) var (c1,c2,c3) val (c1,c2,c3)

196 Anureev L.S. Operational conceptual transition systems and their application to development of conceptual operational

abn (c1,c2,c3,cl:: {x},c2:: {*},c3:: {*}) abn
where ((cl::{*} is (dynamic array)) and (c2:: {*} is nat))
then (let::{und, seq} tl, t2 be ((element type) c1::{*}), (type c3::{*})
in (if (subtypet2tl)
then (cl::{*}. {content}:= ((content cl::{}).. c2::{*} = c3::{x}::{q}))
else und))).

7.8. MPL8: static arrays

The MPLS8 language [1] is an extension of MPL?7 that adds the static arrays feature: static array
types, the array element access operation and the array element assignment statement.

The element ($t is (static array type)) specifies static array types. It is defined by the rule

(rule ((array t n) is (static array type)) var (t) abn then ((t is type) and (nis nat))).

The element ($t is (array type)) is redefined by the extra rule

(rule (t is (array type)) var (t) abn then (t is (static array type))).

The element ($e is (static array)) specifies dynamic arrays. It is defined by the rule

(rule ((v: {content}, t:{type}) :: {(static array)} is (static array)) var (v, t) abn

where (t is type) then (v is ((array content) t))).

The element ($e is array) is redefined by the extra rule

(rule (e is array) var (e) abn then (e is (static array))).

The element ($sar is (array $t $n)) specifies static arrays with the given element type and
length. It is defined by the rule

(rule (sar is (array tn)) var (sar, t) abn

where ((sar is (dynamic array)) and (t is type))

then ((((element type) sar) = t::{q}) and ((len (sar . {content})) = n))).

The element (type $sar) is defined by the rule

(rule (type sar) var (sar) abn where (sar is (static array))

then (let:: {seq} t, n be ((element type) sar), (lensar) in (array tn)::{q})).

The array element assignment statement is redefined by the extra rule

(rule (c1[c2] = c3) var (c1,c2,c3) val (c1,c2,c3)

abn (c1,c2,c3,c1 :: {x},c2 :: {x},¢c3 :: {x}) abn

where ((c1 :: {x}is (static array)) and (c2 :: {*} is nat) and

(c2::{x} <= (lencl::{x})))

System Informatics (Cucremuas unpopmaruka), No. 9 (2017) 197

then (let:: {und, seq} tl, t2 be ((element type) c1::{*}), (type c3::{*})
in (if (subtypet2tl)
then (cl::{*}. {content}:= ((content cl::{}).. c2::{*} = c3::{x}::{q}))
else und))).

7.9. MPLO9: structures

The MPL9 language [1] is an extension of MPL8 that adds the structures feature: the structure
types, the structure field access operation, structure declarations, and the structure field assignment
statement.

The element ((collect body members 1) (va*) c*) is redefined by the extra rules

(rule ((collect body members 1) (structure st (tna_s)) var (st) seq (tna_s,c_s) abn (st)

abn where ((st is name) and (not (st is (structure type))))

then ((declare fields) st tfi_s); ({((structure type) st)} = true));
((collect body members 1) c_s));

(rule ((collect body members 1) (structure st (tna_s)) var (st) seq (tna_s, c_s)
abn (st) abn then und).

Thus, body members in MPLS8 are variables, functions, procedures and structure types.

The element ((declare fields) $st $tna*) declares the fields of $st. It is defined by the rules

(rule ((declare fields) st na t tna_s) var (st, na,t) seq (tna_s) abn

where ((na is name) and (t is type))

then ({(type na st)} := t:: {q}); {(fields na st)} := true); ((declare fields) $st tna_s);

(rule ((declare fields) st) var (st) abn then).

The structure declaration is defined by the rule

(rule (structure st (tna_s)) var (st) seq (tna_s) abn then).

The execution of the structure declaration does not collect information about the declared structure
type, since the corresponding actions are performed by the element ((collect body members) $c*).

The element ($na is (structure type)) specifies structure types. It is defined by the rule

(rule (na is (structure type)) var (na) abn where (na is normal)

then (. {((structure type) na)})).

The element (c is type) is redefined by the extra rule

(rule (cis type) abn then (c is (structure type))).

The element (fields $st) returns the sequence of fields of $st. It is defined by the rule

(rule (fields st) var (st) abn where (st is (structure type))

198 Anureev L.S. Operational conceptual transition systems and their application to development of conceptual operational

then (select fiwrt (v. {(field fist)}) var (v, fi) abn)).
The element ($fi is (field $st)) checks that $fi is a field of $st. It is defined by the rule
(rule (fiis (field st)) var (fi, st) abn where (st is (structure type))

then (. {(field fist)})).
The element (type $fi $st) returns the type of the field $fi of $st. It is defined by the rule
(rule (type fist) var (fi,st) abn where (st is (structure type)) then (. {(type fist)})).
The element ($str is structure) specifies structures. It is defined by the rule
(rule ((co: {content}, st:{type}) :: {structure} is structure) var (co, st) abn
where (st is (structure type)) then (co is ((structure content) st))).
The element ($e is ((structure content) $st)) is defined by the rules

(rule (() is ((structure content) st)) var (st) abn then true);
(rule ((v:{fi} e_s) is ((structure content) st)) var (v, fi, st,e_s) abn

where ((fiis (field st)) and (let t be (type fist) in (vist)))

then ((e_s) is ((structure content) st))).
The element ($str is $st)) specifies structures with the given type. It is defined by the rule
(rule (str is st) var (str, st) abn

where ((str is structure) and (st is (structure type)))

then ((str. {type}) = st::{q})).
The element $str is defined by the rule

(rule str var (str) abn where (str is structure) then str:: {q}).
The element (type $str) is defined by the rule

(rule (type str) var (str) abn where (str is structure) then (str. {type})).
The element (fields $str) returns the sequence of fields of $str. It is defined by the rule
(rule (fields str) var (str) abn where (c:: {*} is structure)

then (let st be (type str) in (fields st))).
The element ($fi is (field $str)) checks that $£7i is a field of $str. It is defined by the rule
(rule (fiis (field str)) var (fi,str) abn where (str is structure)

then (let st be (type str) in (fiis (field st)))).
The element (type $fi $str) returns the type of the field $fi of $str. It is defined by the rule
(rule (type fistr) var (fi,str) abn where (str is structure)

then (let st be (type $str) in (type fi st))).
The structure field access operation is defined by the rule
(rule (c. fi) var (c, fi) val (c¢) abn (c, c :: {*}) abn

System Informatics (Cucremuas unpopmaruka), No. 9 (2017) 199

where ((c :: {*} is structure) and (fiis (field c :: {*})))
then ((str.{content}) .{fi})).
The structure field assignment statement is defined by the rule
(rule (c1\. fi:= c2) var (c1, fi,c2) val (c1,c2) abn (c1,c2,cl::{*},c2::{*}) abn
where ((cl::{*} is structure) and (fiis (field c1::{*})))
then (let::{und, seq}tl, t2 be (type ficl::{*}), (type c2::{*})
in (if (subtypet2tl)
then (cl::{*}. {content} = ((cl::{*}. {content}). {fi} = c2::{*}::{q}))
else und))).

8. Conclusion

In the paper the notion of the conceptual operational semantics of a programming language has
been proposed. The conceptual operational semantics of a programming language is an operational
semantics of the programming language in terms of its conceptual model [3]. The special kind of
CTSs, operational CTSs, oriented to specification of conceptual operational semantics of
programming languages has been proposed, the language CTSL has been extended to this kind of
CTSs, and the technique of the use of the extended CTSL as a domain-specific language for
specification of conceptual operational semantics has been presented. We have conducted the
incremental development of the conceptual operational semantics for the family of sample
programming languages to illustrate this technigue.

There is only one more approach which, like our approach, can specify both the structural and
dynamic parts of the operational semantics of a programming language in quite general unified way.
This approach is based on abstract state machines (ASMs) [4]. ASMs are the special kind of transition
systems in which states are algebraic systems.

The key features of our approach in comparison with the approach based on ASMs are as follows.

The instantiation semantics and, in particular, states are directly described in CTSs in ontological
terms whereas its conceptual structure can be only modelled by the appropriate choice of symbols of
the signature of an algebraic system.

The transition relation in ASMs is built with the finite set of algebraic operations [5]. The
transition relation in operational CTSs is based on the pattern matching on the conceptual structure

of states.

200 Anureev L.S. Operational conceptual transition systems and their application to development of conceptual operational

The set of predefined executable elements of the CTSL language have analogues for the algebraic
operations used in sequential ASMs, and also includes the elements for parsing the conceptual state
structure.

The languages of executable specifications of abstract state machines AsmL [6] and XasM [7] are
general-purpose languages of specification of discrete dynamic systems. They are not domain-
specific languages oriented to development of operational semantics of programming languages in
contrast to the CTSL language.

At present, our technique is applied to only the sequential fragments of programming languages.

We plan to extend it to the concurrent fragments of programming languages.

References

1. Prinz A., Mgller-Pedersen B., Fischer J. Object-Oriented Operational Semantics. In: Grabowski J.,
Herbold S. (eds) System Analysis and Modeling. Technology-Specific Aspects of Models. SAM 2016.
Lecture Notes in Computer Science, vol 9959. Springer, Cham. P. 132-147.

2. Wider A. Model transformation languages for domain-specific workbenches // Ph.D. thesis, Humboldt-
Universitat zu Berlin. 2015.

3. Anureev LS., Promsky A.V. Conceptual transition systems and their application to development of
conceptual models of programming languages // System Informatics. 2017. Vol. 9. P. 133-154.

4. Gurevich Y. Abstract State Machines: An Overview of the Project. Foundations of Information and
Knowledge Systems (FolKS): Proc. Third Internat. Symp. Lect. Notes Comput. Sci. 2004. Vol. 2942.
P. 6-13.

5. Borger E., Stark R.F. Abstract State Machines: A Method for High-Level System Design and Analysis.
Springer, Secaucus. 2003.

6. AsmL: The Abstract State Machine Language. Reference Manual, 2002.
http://research.microsoft.com/en-us/projects/asml/

7. Matthias Anlauff. XasM — An Extensible, Component-Based Abstract State Machines Language.
http://xasm.sourceforge.net/XasmAnl00/XasmAnl00.html

