
System Informatics (Системная информатика), No. 7 (2016) 11

УДК 519.172

Verification of UCM Models with Scenario Control

Structures Using Coloured Petri Nets

Vizovitin N.V. (A.P. Ershov Institute of Informatics Systems SB RAS),

Nepomniaschy V.A. (A.P. Ershov Institute of Informatics Systems SB RAS,

Novosibirsk State University)

Stenenko A.A. (A.P. Ershov Institute of Informatics Systems SB RAS)

This article presents a method for the analysis and verification of Use Case Maps (UCM)

models with scenario control structures – protected components and failure handling constructs.

UCM models are analyzed and verified with the help of coloured Petri nets (CPN) and the SPIN

model checker. An algorithm for translating UCM scenario control structures into CPN is

described. The presented algorithm and the verification process are illustrated by the case study

of a network protocol.

Keywords: verification, translation, Use Case Maps notation, coloured Petri net, SPIN

model checker, protected component, failure handling.

1. Introduction

At early stages of software projects development during requirements capturing and analysis

error prevention is of importance due to high cost on this stage. Use Case Maps (UCM) scenario-

oriented graphical notation [10] allows users to formalize and analyze functional requirements. At

the same time, it allows customers to monitor the system requirements. UCM models are general

purpose. They are used for test case generation [3, 4], building test coverage criteria [2], and as a

property specification language [8] for use with model checkers.

UCM model of a system depicts a set of scenarios as cause-and-effect relations between

responsibilities. Responsibilities may be superimposed on the underlying components structure,

reflecting the architecture of the system. UCM describes interaction of architectural entities

focusing on causal relations and abstracting from some details of messaging and data processing.

However, tools for analysis and verification of UCM models are insufficiently developed. The

UCM standard [10] defines an analysis procedure, which is implemented in the jUCMNav editor

[11]. This analysis technique is rather primitive and it is hard to use. Since the standard describes

the language semantics informally using traversal requirements for UCM, a number of papers are

12 Vizovitin N.V., Nepomniaschy V.A., Stenenko A.A. Verification of UCM Models with Scenario Control Structures …

focused on providing a formal UCM semantics [6]. A few papers present a solution for verification

of UCM models [7]. Verification methods for specific subject domains are also being developed.

The paper [1] describes testing, analysis, and verification methods for telecommunication

applications based on UCM models.

In previous papers [15, 16], we described an approach for general-purpose UCM models analysis

and verification using coloured Petri nets (CPN). UCM models are translated into CPN models. The

latter are then verified using the well-known SPIN model checker [9]. CPN models may also be

analyzed directly using CPN Tools [5].

This article extends the scope of previously supported UCM constructs with protected

components and failure handling constructs. It describes a method of analysis and verification for

these UCM constructs.

2. Use Case Maps Notation Overview

The Use Case Maps notation is one of the languages defined in the User Requirements Notation

standard [10]. The UCM visual notation is a high-level scenario-oriented modeling tool. It focuses

on the causal flow of behavior, which is optionally superimposed on a structure of components.

UCM models depict the causal interaction of architectural entities in a system while abstracting

from message passing and data details. The notation simplifies modeling and analysis of functional

requirements for distributed and concurrent systems while also allowing to reason about system

architecture.

Fig. 1. Top-level map of the network protocol UCM model

Below we provide a short overview of basic elements of the UCM notation. Detailed language

description including its graphical syntax is provided in [10] and [15]. A map (see Figure 1)

contains any number of paths and components. Paths (depicted as connecting lines) express causal

sequences and causal relationships between path nodes. Paths are directed. They may contain

several types of path nodes. Paths start at Start Points (for example, StartTransmit on Figure

System Informatics (Системная информатика), No. 7 (2016) 13

1) and end at End Points (EndTransmit). These nodes define triggering and resulting conditions

respectively or pre-conditions and post-conditions (shown in square brackets). Start Points also may

denote the beginning of scenarios for failure and exception handling. Such Start Points are called

Failure Start Points and Abort Start Points respectively. Start Point type is defined by a

failureKind attribute, while a failureList attribute specifies a list of failures it may

respond to. Abort Start Point is a Failure Start Point that in addition cancels all scenario behaviors

in its abort scope – map of the Abort Start Point as well as all lower level maps as defined by Stub

hierarchy (see below). Responsibilities (Split) define steps or actions required to fulfill a

scenario. Or-Forks, possibly including conditions for outgoing path selection (shown in square

brackets), and Or-Joins are used to model alternatives and loops. And-Forks and And-Joins express

concurrency. Waiting Places and Timers (ResendTimer) denote points on the path where a

scenario stops until a condition is satisfied or a triggering signal arrives. Scenario may also continue

past the Timer using the timeout path. Connect nodes and Empty Points are used to connect two

paths synchronously or asynchronously. Failure Points represent points on a path where the

continuation of a scenario depends on the occurrence of a failure or exception. Each failure point

has an associated triggering condition, as well as a failure name, which indicates the failure or

exception that happened. Failure name effectively defines Failure or Abort Start Points used to

continue scenario execution in case triggering condition is true. UCM models can be hierarchically

decomposed using Stubs (TransmitConnection) that contain reusable units of behavior and

structure called plug-in maps.

Components (Sender) are used to specify structural aspects of a system. Path nodes that reside

inside a component are said to be bound to it. UCM models without components are said to be

unbounded. Components may contain sub-components and have various types. However, most of

them do not influence model semantics and serve only to convey architectural aspects of a system.

Exceptions include components of kind Object that force interleaved traversal of path nodes of

parallel branches that are bound to the component and protected components

(TransmitNetwork) that restrict the amount of concurrent scenarios inside them. In the URN

standard, maximum amount of concurrent scenarios inside a protected component is always 1.

Therefore, protected components work as a mutual exclusion mechanism for concurrent scenario

execution.

14 Vizovitin N.V., Nepomniaschy V.A., Stenenko A.A. Verification of UCM Models with Scenario Control Structures …

3. UCM Models to Coloured Petri Nets Translation Method

To analyze and verify UCM models we translate them into coloured Petri nets [12]. Input and

output models are represented as hierarchical directed graphs with additional information associated

with vertices and arcs.

3.1. Input UCM Model Restrictions

The following important restrictions are imposed on the input UCM models. All

model elements have unique names and direction of all paths is defined. Special traversal semantics

for the components of type Object is not supported. UCM models with Abort Start Points are

rejected. These path nodes are rarely used and cause state space explosion upon translation due to

scenarios termination semantics. Therefore, we do not translate them to CPN.

For the translation of protected components, we also impose an additional restriction on Or-Fork,

Timer, and Or-Join nodes. Each path node of these types should be either bound or not to a given

protected component together with all of its adjacent path nodes. This limitation is not fundamental

since it could be achieved by simple UCM model modification. In case the system detects that this

limitation is not held, the user is offered to modify the UCM model by either introducing additional

Empty Point nodes adjacent to the problematic path nodes or in any other way that ensures that the

limitation is held.

The listed restrictions do not limit significantly the set of supported UCM models since the most

used elements and their use cases are supported.

3.2. UCM to CPN Translation Algorithm Overview

On the top level, UCM to CPN translation algorithm consists of five steps. On the first step pre-

processing of an input UCM model is performed. The first step includes simple conversions of an

input model as well as checks of input model constraints. The second step creates various CPN ML

language definitions common to the entire CPN model. On the third step, additional vertices are

added to the UCM model graph to simplify its conversion to a bipartite graph. On the fourth step,

path node vertices with their immediate vicinity are translated independently of each other

according to their types. The fifth step combines CPN fragments produced on the previous steps

into a single CPN model. The translation algorithm is described in detail in [15, 16].

On the first step, UCM model is pre-processed. As part of this process the model is converted to

an unbounded one, i.e. all components are removed. Information about protected components is

stored in the attributes of each path node bound to the given protected component. All initial values

System Informatics (Системная информатика), No. 7 (2016) 15

for variables in the UCM model are determined. Algorithm constraints for input models are

checked. The system notifies the user about any implicit conversions during this step.

The second step defines colours, constants, and some variables. A number of auxiliary colours

are introduced, including UNIT – standard “base” colour with only one possible value (). Tokens

with the colour UNIT are normally used to model signal transmission or scenarios execution.

On the third step, graph arcs that are not incident to vertices representing Connect path nodes are

partitioned. Each arc is partitioned into two arcs using new helper vertices i.e. vertices of the new

type FakePathNode. The resulting arcs preserve directions as well as annotations on the arcs

outgoing from non-helper vertices.

On the fourth step, each path node vertex with its immediate neighborhood defined by adjacent

Connect and helper vertices is handled separately. Each path node and its neighborhood are

translated into a CPN model fragment – an annotated graph with additional definitions in CPN ML

language. For each failure name, a CPN model fragment is also generated. During translation,

helper vertices become places of type UNIT.

The fifth step combines CPN model fragments produced on the fourth step into a single resulting

CPN model. Model elements with same names are either merged or represented as fusion places if

necessary.

4. Translation of Path Nodes Bound to Protected Components

To verify UCM models efficiently using CPN, number of scenarios being executed at a given

point of the model should be limited. Otherwise, translated CPN model will have places with

unbounded place capacity since places are used to model signal transport.

The UCM standard provides a method for modeling mutual scenarios exclusion for a subset of

the UCM model paths. Protected components depicted with a double outline fulfill this purpose. All

UCM model path nodes bound to the protected component are affected by it. Execution of any

scenario may continue inside a protected component only if no other scenario is already being

executed inside of it.

However, the semantics of the protected components offered by the standard is too restrictive to

represent a wide variety of scenarios interactions while keeping the capacity of CPN places in the

translated model limited. Thus, we propose to extend the standard by allowing to specify a

maximum amount of concurrent scenarios within a protected component. This could be

implemented either by adding a new integer attribute scenarios into the Component class of

UCM abstract grammar or by using comment elements attached to a given protected component.

The latter approach may be used to avoid modifying existing UCM editors.

16 Vizovitin N.V., Nepomniaschy V.A., Stenenko A.A. Verification of UCM Models with Scenario Control Structures …

Below we will describe translation of UCM components with attribute protected = true

and positive values of the scenarios attribute, as well as other UCM path nodes which are bound

to such components. Note that if scenarios = 1 then the protected component has the same

semantics as in the UCM standard.

As any other UCM element, protected components have unique names. We will also impose an

additional restriction for Or-Fork and Or-Join nodes. Each path node of these types should be either

bound or not to a given protected component together with all of its adjacent path nodes. This

limitation is not fundamental since it could be achieved by a simple UCM model modification.

However, it avoids semantics ambiguity for such UCM models, as well as significant complication

of the translation algorithm.

The example of protected components translation from Figure 1 is provided in Section 7 and a

more detailed description of it is given in [14].

On the first step of the translation algorithm, we additionally check that scenarios > 0 for

all protected components. Otherwise, UCM model is deemed incorrect. The additional limitation on

Or-Fork and Or-Join nodes is checked as well. If it does not hold user is advised to modify the

UCM model by adding new Empty Points on the arcs incident to the problematic path nodes and

adjusting protected components. Information about each protected component is stored in the

attributes of path nodes bound to it. Each path node may be bound to multiple protected

components.

The second and third steps of the translation algorithm have nothing specific for protected

components. They are considered in Section 3.2.

Protected components are modeled in CPN using anti-places. Anti-place is a common CPN

modeling pattern used to limit the amount of tokens in a given fragment of CPN. Initial marking of

an anti-place usually holds the amount of UNIT tokens equal to the limit. When other tokens are

created in a given CPN fragment an equal amount of tokens from the anti-place should be

consumed. When other tokens are removed from a given CPN fragment, an equal amount of tokens

should be put back to the anti-place.

On the fourth step, each path node vertex and its adjacent vertices is translated into a CPN

fragment. An anti-place is created for each protected component a vertex has information about in

its attributes. The anti-place has a colour UNIT and an initial marking with the same amount of

tokens as the value of the scenarios attribute was for the protected component. Only the nodes

that are capable of starting (forking) or terminating (joining) scenarios that flow through them and a

System Informatics (Системная информатика), No. 7 (2016) 17

protected component will actually create additional anti-places and arcs. Anti-places are named

after the corresponding protected components, so they are uniquely identifiable as well.

The fifth step of the translation algorithm stays the same – all additional anti-places will be

joined according to their names in the same way other places of CPN fragments are joined, using

fusion places if necessary.

Translation of separate UCM path nodes is described below. For each path node and each

protected component, we may define whether this path node and any of the path nodes adjacent to it

are bound to the component. For Or-Fork and Or-Join nodes the path node itself as well as other

path nodes adjacent to it are either all bound or not to a given protected component. They do not

create or terminate scenarios. Therefore, CPN transitions corresponding to Or-Fork and Or-Join

nodes never need to be connected to anti-places.

Let us consider the translation of path nodes that may create or terminate scenarios. These

include And-Forks, And-Joins, Start Points, and End Points. If a path node is bound to a protected

component, a difference between the number of outgoing and incoming arcs is calculated. In case it

is positive, an arc is added to the resulting CPN fragment from the anti-place to the transition

corresponding to the path node. In case it is negative, an arc is added in the reverse direction. In

both cases, arc inscription equals to the () times the absolute difference value. Note that

difference value cannot be zero – otherwise, there is no scenario creation or termination.

Let us consider the translation of path nodes bound to a protected component that have adjacent

path nodes not bound to the component. We calculate a balance value for a path node. Starting

balance value is 0. Each outgoing arc that leads to a path node not bound to the component

decreases balance by 1. Each incoming arc from a path node not bound to the component increases

balance by 1. After considering all incident arcs for the given path node we have a balance value of

this path node in relation to the protected component. In case the balance value is positive, an arc is

added to the resulting CPN fragment from the anti-place to the transition corresponding to the path

node. In case it is negative, an arc is added in the reverse direction. In both cases, arc inscription

equals to the () times the absolute balance value. In case the balance is zero no new arcs are

added.

The additional arcs described above may be added independently of one another. In this case,

their inscriptions are combined in a natural way. If a stub is bound to a protected component then

the described procedure is applied to all path nodes on child diagrams of the stub as well,

accounting for Start Points and End Points that have bindings to the stub, which do not create or

terminate scenarios.

18 Vizovitin N.V., Nepomniaschy V.A., Stenenko A.A. Verification of UCM Models with Scenario Control Structures …

5. Translation of Failure Handling Path Nodes

Failure handling in UCM is modeled using Failure Point and Failure Start Point path nodes.

Failure Point represents a point in scenario behavior where the continuation of the scenario depends

on the occurrence of failure or exception. Failure Start Point denotes the beginning of a scenario

behavior in response to failure or, in other words, a start of a failure handler.

Failure Start Point nodes have a list of failure names they are supposed to be triggered for, while

Failure Point nodes have a failure attribute that denotes the name of failure that is triggered.

After a failure is triggered, the triggering scenario at the Failure Point terminates, and a number of

scenarios start at Failure Start Point nodes with a matching failure name in their failure list.

On the fourth step of the translation algorithm, each failure name is translated into a CPN model

fragment – a transition and a place named after the failure name. The place has UNIT type with

empty initial marking. An arc leading from the place to the transition is added with a () inscription.

Arcs are also added from the transition to each place matching Failure Start Points with a

corresponding failure name in their failure list. Each of these arcs has a () inscription as well. This

translation procedure closely resembles And-Fork path nodes translation [15].

Translation of Failure Start Points is similar to ordinary Start Points on child maps when they are

bound to stub inputs [16]. Transition corresponding to a Failure Start Point is linked with a place of

type UNIT, with empty initial marking. Arc from the place to the transition has a () inscription.

Translation of a Failure Point is similar to an Or-Fork [15], which has two output paths – one

that continues the normal execution of the scenario and one that leads to a placed named after the

failure name. The conditions on the output paths are based on the failure condition – one of them is

the failure condition and the other one is its negation. Therefore, there is no need for additional

*_OrForkWarnings place which normally tracks that conditions on the output paths of an Or-

Fork path node are mutually exclusive.

Note that a Failure Point and Failure Start Points it triggers may be on different maps. This case

is automatically resolved on the fifth step of the algorithm by converting some of the places

adjacent to the transition that corresponds to the triggered failure name into fusion places when

joining CPN model fragments.

6. Verification of CPN Models

A CPN model translated from UCM model may be analyzed using CPN Tools [5, 12] facilities.

In fact, it is especially useful for simulation. It also provides some limited state space analysis tools.

However, we find that certain model properties may also be formally verified in an automated and

System Informatics (Системная информатика), No. 7 (2016) 19

more efficient way. We use our own verification system for CPN that uses well-known SPIN model

checker [9]. In order to employ SPIN, CPN models are translated into its input language Promela

[13].

Properties for verification are expressed either as simple predicates that are expected to be true at

the end state (any state without enabled transitions) or as linear temporal logic formulas. In the

former case, the property check is represented as an assertion at the end states of the Promela

model. In a number of cases, properties for verification may be derived from the UCM model itself.

A common choice is to verify that End Points post-conditions hold and the UCM model is correct

with respect to branching conditions. Since UCM models are translated into CPN in a way that

provides auxiliary warning places to track the branching errors, it is possible to define such kind of

property for verification. On the CPN model level, the property holds if all warning places are

empty and all post-condition places contain only true tokens in the end state. This is translated to

Promela model level as a conjunction of several simple state conditions, which is asserted for the

end states.

Several restrictions on the input CPN models are imposed to translate them into Promela

language. CPN models produced from UCM models by our translation algorithm conform to all of

these restrictions but the finiteness restriction required to verify a model efficiently. CPN models

are expected to be finite – places and data types’ capacities should be limited. The finiteness

restriction may be viewed as a reflection of real computer memory finiteness. It is possible to set all

finiteness limits manually before the verification.

The finiteness restriction may be conformed to in various ways – by either constructing a UCM

model in a certain way or applying additional restrictions on the Promela model level for state space

exploration. In case a given finiteness limit is reached during a verification the system advises the

user to either increase the limit value or modify the UCM model by adding protected components to

it. Protected components are used as a means to limit places capacity. At the same time, protected

components usually identify an important limitation on the UCM model level, such as a limited

network bandwidth or a limited amount of memory available to the system.

Verification may be successful or not. If the given property does not hold, a counterexample is

generated. A counterexample is a sequence of states (places with their markings) and binding

elements (transitions and their variable bindings) that lead to the found invalid state or does not

satisfy linear temporal logic formula if the property was specified as one. For user convenience,

counterexamples may then be mapped back to the UCM model or analyzed with CPN Tools. After

correcting issues in either the UCM model or the property to verify, the verification process is

repeated.

20 Vizovitin N.V., Nepomniaschy V.A., Stenenko A.A. Verification of UCM Models with Scenario Control Structures …

7. Case Study

We demonstrate algorithms and tools presented in this paper in a case study. A UCM model

describes a simple communication protocol designed to transfer reliably a decimal number over a

network capable of transmitting only one digit per packet. Data to transfer is integer due to URN

Data Language limitations. The UCM model is translated to CPN and then to Promela model,

which is then executed to verify a post-condition from the UCM model. The case study

demonstrates usage of protected components to ensure the translated model is finite.

Figure 1 shows a top-level map of the UCM model of the protocol. All UCM elements except

fork and join elements are labeled. URN Data Language expressions (branch conditions and post-

conditions) are depicted as labels with code in square brackets. URN Data Language actions

(associated with Responsibilities depicted as crosses) and some expressions are not shown. The

model includes four components: Sender, Receiver, TransmitNetwork, and AckNetwork. The latter

two components are protected and were added by the user after the initial verification attempt

failed. These protected components limit the amount of concurrent scenarios to 2 and reflect a

limited network bandwidth. Sender splits SendData value into digits and sends them over the

network, retransmitting as necessary. Each of the two network components contains a Static Stub

that represents an unreliable network environment for transmitting packets from Sender to Receiver

and vice versa. Both stubs contain the same Connection plug-in map. Receiver processes packets as

soon as they arrive and assembles transmitted data from them. Receiver acknowledges each arriving

packet with a sequence number of the next expected packet. Sender receives acknowledgement

packets and updates the sequence number of the next packet to send. Sender assumes that sequence

numbers can only increase.

After sending a packet, Sender waits on a Timer element. If the current packet sequence number

equals to the sequence number of the next packet to send, then the same packet is resent. Otherwise,

Sender fetches the next digit to send and sends a new packet with the next sequence number. A

packet with the payload -1 signals the end of data. If Sender receives an acknowledgement that

such packet was received, data is considered transmitted and the EndTransmit End Point post-

condition [Received && ReceiveData = SendData_pre] is checked, where

SendData_pre is the initial value of the SendData variable. The post-condition is satisfied if

Receiver considers the data received (an appropriate flag is true) and the data received equals to

the data sent.

The UCM model post-condition for the EndTransmit End Point is verified, together with the

absence of warnings during model execution. According to this property, the protocol always

System Informatics (Системная информатика), No. 7 (2016) 21

finishes in the expected correct state and the source UCM model is consistent with respect to

branching conditions. The property is simply asserted in the resulting Promela model at end states.

The UCM model, CPN and Promela intermediate models with verification results and a detailed

description can be found in [14]. During verification, no additional restrictions were imposed on the

Promela model. Verification was successful.

8. Conclusion

The Use Case Maps graphical notation provides an expressive means of describing functional

requirements for software systems and protocols. In this article, we have presented a method for

translation of UCM models to CPN and its application for verification of UCM models. This

method enables users to analyze and verify more expressive UCM models as compared with the

method in [15, 16] by supporting failure handling and protected components.

Protected components with the extended semantics are especially useful for verification.

Protected components limit the number of concurrent scenarios thus limiting places capacity in the

translated CPN model. This ensures that the model is finite and can be efficiently verified using

SPIN.

A current version of our tool supports translation of jUCMNav editor [11] files to CPN Tools [5]

files. UCM models translated to CPN can be analyzed using either built-in CPN Tools facilities or

the CPN models verifier based on SPIN [13]. A verification result shows if a model is correct with

respect to a given property. If not, an error must be located. While it is possible to map the

counterexample generated by SPIN to the UCM model, we find that it is often more convenient and

productive to perform the required analysis using CPN Tools.

The algorithm for UCM models translation into CPN is efficient. The translation method

described in [15, 16] has polynomial complexity for the size of the resulting CPN models [16]. This

estimate holds for the translation algorithm described in this paper as well.

It is important to justify that UCM to CPN translation is correct. However, this requires a formal

semantics for the UCM, which is not provided by the standard [10].

We plan to evaluate our tools using other UCM models of communication protocols as well as

other systems. We also plan to explore timing extensions [7] for the UCM notation.

9. References

1. Anureev I., Baranov S., Beloglazov D., Bodin E., Drobintsev P., Kolchin A., Kotlyarov V.,

Letichevsky A., Letichevsky A. Jr., Nepomniaschy V., Nikiforov I., Potienko S., Pryima L., Tyutin B.

22 Vizovitin N.V., Nepomniaschy V.A., Stenenko A.A. Verification of UCM Models with Scenario Control Structures …

Tools for Supporting Integrated Technology of Analysis and Verification of Specifications for

Telecommunication Applications // SPIIRAN №1.- St.Petersburg, 2013 (in Russian).

2. Baranov S., Kotlyarov V., Weigert T. Verifiable Coverage Criteria for Automated Testing. // SDL

2011, LNCS 7083.- 2011.- P. 79-89.

3. Baranov S.N., Drobintsev P.D., Kotlyarov V.P., Letichevsky A.A. The Technology of Automated

Verification and Testing in Industrial Projects. // Proc. IEEE Russia Northwest Section, 110

Anniversary of Radio Invention Conference.- IEEE Press, St.Petersburg, 2005.- P. 81-89.

4. Boulet P., Amyot D., Stepien B. Towards the Generation of Tests in the Test Description Language

from Use Case Map Models. // SDL 2015, LNCS 9369.- Springer.- 2015.- P. 193-201.

5. CPN Tools Homepage, http://cpntools.org/

6. Hassine J., Rilling J., Dssouli R. Abstract Operational Semantics for Use Case Maps. // FORTE 2005,

LNCS 3731.- Springer.- 2005.- P. 366-380.

7. Hassine J. Early modeling and validation of timed system requirements using Timed Use Case Maps.

// Requirements Engineering v. 20 №2.- 2015.- P. 181-211.

8. Hassine J., Rilling J., Dssouli R. Use Case Maps as a Property Specification Language. // Software and

Systems Modeling 8(2).- 2009.- P. 205-220.

9. Holzmann, G.J.: The SPIN model checker. Primer and Reference Manual.- Addison-Wesley, 2004.

10. ITU-T, Recommendation Z.151 (10/12), User Requirements Notation (URN) – Language definition.

http://www.itu.int/rec/T-REC-Z.151/en

11. jUCMNav – Eclipse plugin for the User Requirements Notation,

http://jucmnav.softwareengineering.ca/ucm/bin/view/ProjetSEG/WebHome

12. Jensen K., Kristensen L.M. Coloured Petri Nets: Modelling and Validation of Concurrent Systems. //

Springer 2009.

13. Stenenko A.A., Nepomniaschy V.A. Model checking approach to verification of coloured Petri nets //

Preprint 178.- Institute of Informatics Systems SD RAN.- Novosibirsk.- 2015 (in Russian).

http://www.iis.nsk.su/files/preprints/stenenko_nepomniaschy_178.pdf

14. Vizovitin N.V. Verification of UCM Models of Distributed Systems with Protected Components

Using Coloured Petri Nets. Appendix. http://bitbucket.org/vizovitin/ucm-

verification-examples-2

15. Vizovitin N.V., Nepomniaschy V.A. UCM-specifications to coloured Petri nets translation algorithms

// Preprint 168.- Institute of Informatics Systems SD RAN.- Novosibirsk.- 2012 (in Russian).

http://www.iis.nsk.su/files/preprints/168.pdf

16. Vizovitin N.V., Nepomniaschy V.A., Stenenko A.A. Verifying UCM Specifications of Distributed

Systems Using Colored Petri Nets // Cybernetics and Sys. Anal. 51, 2.- Springer.- 2015.- P. 213-222.

