
System Informatics (Системная информатика), No. 8 (2016) 33

UDC 519.713

Using BALM-II for deriving parallel composition of timed

finite state machines with outputs delays and timeouts: work-

in-progress

Shabaldina N. (Tomsk State University),

Gromov M.(Tomsk State University)

In this paper we consider a procedure of parallel composition construction of Timed Finite

State Machines (TFSMs) using BALM-II and suggest different ways of getting linear functions

that describe a set of output delays. Our research consists of three steps: at first step we consider

composition of TFSMs when an output delay may be a natural number or zero; at second – we

add transitions under timeouts; at third we consider composition of TFSMs in general case

(when output delays are described as sets of linear functions). This paper is devoted only to the

first step of the research.

Keywords: Timed finite state machines, parallel composition, BALM-II.

1. Introduction

Most modern applications, such as web-services, telecommunication protocols, are oriented on

interaction with each other. The classical model for a discrete system is Finite State Machine

(FSM). If the behavior of each system is described by an FSM, then their common work can be

described by their composition (that also will be an FSM under appropriate assumptions) [1,2]. In

this work we are interested in so-called parallel composition [1], when the interacting systems work

asynchronously in as-sumption of slow environment, and for deriving such FSM composition there

is a tool named BALM-II (Berkeley Automata and Language Manipulation)[2].

Sometimes it is necessary to take into account time aspects of a discrete system. Probably the

most general way to describe such a system is Timed Automaton [3]. However, in this work we are

interested in input-output reactive systems, when every input action is necessary followed by output

action, probably after some time. The class of such systems has been already mentioned, it includes

telecommunication protocols, sequential circuits, web-services etc. In this case we can use Timed

Finite State Machine (TFSM) as a model. There exist different ways to introduce Timed FSM, for

example, with timed guards on transitions [4]. In this work we consider TFSM with output delays

and timeouts [5,6]. We got inspiration for our research from the work [5], in which authors describe

34 Shabaldina N., Gromov M. Using BALM-II for deriving parallel composition of timed finite state machines …

how to build parallel binary composition of two timed FSMs with output delays and timeouts. In

order to derive the composition of timed FSMs the corresponding automaton should be built [5].

First we transform both TFSMs into automaton, then we compose them, and then we need to go

back to the TFSM model. In [5] it is shown that composition of two Timed FSMs can have infinite

number of output delays for a given transition and those delays can be de-scribed by a finite set of

linear functions { b + k·t | b, k {0} ℕ }.

There are several tools dealing with timed automata, their composition and verification. One of

the most popular is UPPAAL [7]. It allows to describe timed system using Extended Timed

Automata, as well as composition of such systems. One of the key feature of UPPAAL is built-in

verifier. Unfortunately, UPPAAL does not build composition explicitly and one of the objectives

for this work is to get composition explicitly for further processing (for example, test generation).

For that reason in this work we decided to use BALM-II since it was designed to build parallel

binary com-position of two FSMs. To be able to use this tool for Timed FSMs we use well-known

transformation of TFSM into FSM and then into common automaton by introducing new (tick)

action. Also we suggest two approaches for extracting functions f(t) = b + k·t from the composition

of corresponding automata in order to derive TFSM. First approach is based on using BALM-II

once again. And the second one is to find corresponding loops in the transition graph of the

automaton composition.

This work is partially supported by the basic part of the State Assignment of the Ministry of

Education and Science of the Russian Federation (Project code No. 1975) and by the grant of

Russian Fund for Basic Research No. 15-58-46013 CT_a.

2. Preliminaries

An automaton S is a 5-tuple (S, X, s0, F, λS), where S is a finite nonempty set of states with s0 as

the initial state and FS as a set of final (accepting) states; X is an alphabet of actions; and

λS  SXS is a transition relation. The transition relation defines all possible transitions of the

automaton. The language LS of automaton S is the set of all sequences  in alphabet X, such that in

automaton S there is a sequence of transitions (marked by ) from the initial state to some final

state. An FSM S is a 5-tuple (S, I, O, s0, λS), where S is a finite nonempty set of states with s0 as the

initial state; I and O are input and output alphabets; and λS  SIOS is a transition relation. In

FSM all states are final.

Let ℕ be the set of natural numbers. TFSM [5] is an FSM with timeouts and output delays

S = (S, I, O, s0, λS, ΔS, S), where 5-tuple (S, I, O, s0, λS,) is underlying FSM, ΔS: S  S  (ℕ {})

System Informatics (Системная информатика), No. 8 (2016) 35

is a timeout function that determine maximal time of waiting for input symbol, S: λS  ({0}  ℕ)

is an output delay function that determine for each transition time delay for producing output

(output timeout).

Parallel composition describes a dialog between two components. The structure of the

composition is represented in Figure 1.

1

I1

2O1

U

V I2

O2

Fig. 1. Structure of binary parallel composition

We suppose that we have “slow environment” (it means that the next input can be applied to the

composition only after it produces external output to the previous input), the alphabets of different

channels don’t intersect and there are no infinite dialogs under internal inputs (it means no

livelocks). We also suppose that each component and the whole composition have timed variables.

The values of these variables are increasing synchronically, and they reset when the system gets an

input or when the state is changed.

3. Deriving an automata based on the given TFSMs

In order to derive the composition of timed FSMs we can use the corresponding automaton [5].

For deriving an automaton that corresponds to the classical FSM we need to do the following

steps [2]:

1. Derive the set of states that contains all FSM states (final, or accepting states) and a number of

intermediate (not-final) states (one new state for each transition in FSM). The initial state of the

automaton is the same as the initial state of the FSM.

2. Derive the set of actions X = IO.

3. Derive the set of transitions: for each FSM transition we add two transitions in automaton, i.e.

(s, i, o, s') generates {(s, i, s''), (s'', o, s')}, where s'' is one of the intermediate states we added at

the first step which corresponds to the transition under consideration.

So, in order to construct an FSM from the given automaton, we need to split alphabet of actions

into input alphabet and output alphabet, merge transitions and delete intermediate states.

In order to derive an automaton for the timed FSM with timeouts and output delays we first apply

steps that are described above. Then we need to add into the set of actions a new special symbol

1IO that corresponds to tick count and represents an action “to wait for one time unit”[5]. We

add in each final state a loop under 1 (in order to describe the situation that the current component is

36 Shabaldina N., Gromov M. Using BALM-II for deriving parallel composition of timed finite state machines …

waiting for input and time variable of the other component is increasing). Then, we replace the

transition under timeouts by a chain of transitions under 1 (in order to model the time delay), the

length of the chain corresponds to the value of time delay. And we do almost the same by adding

the chain of transitions under 1 between an input and output symbols (if there is an output delay for

this transition in TFSM) [5].

In Figures 2 and 3 one can see TFSMs that describe the behavior of left and right components of

the composition, correspondingly. We take this example from work [5]. In Figures 4 and 5 we show

automata for these TFSMs. In this example the structure of the composition is simpler then in

Figure 1 (left component has external input Request and external output Deliver; right component

has no external inputs and external outputs) and also TFSMs are simpler: they have output delays,

however, they have no transitions under timeouts.

Fig. 2. Left-part component (TFSM)

Fig. 3. Right-part component (TFSM)

Fig. 4. Left-part component (automaton)

Fig. 5. Right-part component (automaton)

4. Deriving automata parallel composition using BALM-II

In this section we describe how to derive a binary parallel composition of two automata using

BALM-II, and we illustrate this procedure using our example from previous Section.

 BALM-II supports AUT file format for describing automata [2]. This format is a restricted form

of BLIF_MV format. Due to the restriction of space we just mention the most important things.

First of all, we need to determine our channels, in AUT format it will be like this for the left

component:

System Informatics (Системная информатика), No. 8 (2016) 37

.inputs x v u y t E

We underline that in addition to the channels of the left component that you can see in Figure 1,

we need to mention the special time channel (channel t) that correspond to the timed variable (or to

our special action 1). As for the channel E, this is also a special channel that determine which one

from the channels x, v, u, y and t is active now (while the other channels are inactive).

For the time channel t we need to introduce in addition to the input 1 one more input (due to the

fact that we need at least two values for the channel alphabet in BALM-II):

.mv t 2 1 none

When we have our automata in AUT format, the first thing we need to do is synchronizing

channels of the composing automata:

chan_sync x|v|u|y|t|E u|v|t|E left_timed.aut right_timed.aut

left_t_sync.aut right_t_sync.aut

Then, according to the algorithm of deriving the composition of two automata [1,2], we need to

extend the alphabet of the right-component automaton to the channels X and Y:

expansion E0,E3 right_t_sync.aut right_t_exp_aut

support x,v(3),u,y,t,E(5) right_t_exp.aut right_t_support.aut

The next step is deriving an intersection of two automata:

product left_t_sync.aut right_t_support.aut product_timed.aut

Now we have an automaton that describes common behavior of left and right components, but its

behavior does not always correspond to our “slow environment” restriction, and in this case we

need to intersect derived automaton with the automaton that represent the language

(X(UT*V)*T*Y)*. In our example we don’t need to do this. So the next step is to restrict the

automaton to external channels and special timed channel:

restriction E0,E3,E4 product_timed.aut restriction_timed.aut

support x,y,t,E(3) restriction_timed.aut comp_timed.aut

The result is shown in Figure 6 (a). One can see that after Request there can be output Deliver

after 3 + 5t or 4 + 5t tick counts, where t is arbitrary non-negative integer number. So in Figure 6

(b) you can see corresponding TFSM.

38 Shabaldina N., Gromov M. Using BALM-II for deriving parallel composition of timed finite state machines …

a

b

Fig. 5. The composed automaton (a) and Timed FSM (b)

5. Deriving parallel composition of two TFSMs with output delays:

two approaches for extracting output delays functions

In this section we propose two approaches for extracting a set of linear functions from the

derived automaton.

5.1. Using BALM-II for extracting output delays functions

The idea of this approach is to intersect consequently the resulting automaton with the automata

that correspond to the languages X1b(1k)*Y, i.e., the languages with the following property: they

contain sequences that start with any external input symbol, the end of the sequences is any external

output symbol, and between these input and output there is subsequence that corresponds to the

function {b + k t | b, k {0,1,..,n}.

We need to mention that in this case we need to intersect not only the composition automaton,

but also its modifications that can be derived by making each accepting state as an initial state (one

by one). So we fix b and k and intersect automaton with the language X1b+k(1k)*Y with the

composition, fixing in the composition automaton an initial state (we consider the automaton with

the language X1b+k(1k)*Y instead of the language X1b(1k)*Y in order to avoid the case when in the

composition automaton there is a chain that corresponds to 1b and then no loop, i.e. the case when t

can only be equal to zero). Then we test the intersection using check_nb BALM-II command.

This command allows answering the question: whether we can extract output delays function for the

fixed b and k or not. If in the composition automata between input and output there is a subsequence

that corresponds to the function b + k· t, then the corresponding intersection will be nonblocking, it

means it has no deadlocks; otherwise, it will be blocking, so, the intersection will contain no

external output after some sequence under 1. For our example the intersection (product) of

composition automaton and the automaton with the language X13(15)*Y will be nonblocking, the

intersection with the automaton with the language, for example, X12(15)*Y will be blocking.

System Informatics (Системная информатика), No. 8 (2016) 39

5.2. Getting output delays procedure based on analyzing cycles in automaton

Let us notice some properties of automata, derived from TFSMs:

1. Every transition, marked with input symbol, starts at final state and ends at non-final state.

2. Every transition, marked with output symbol, starts at non-final state and ends at final state.

3. Every transition, marked with 1 (a tick count), starts at non-final state and ends at non-final state.

4. If there are several non-final states s1, …, sk, such that (si, 1, si + 1)  S, i = 1, …, k – 1

(continuous non-final chain of transitions marked by 1), then si  sj, for every i and j, i  j (there

are no time loops, Figure 7 (a)).

However, as it was shown with the example in previous Sections, when we have parallel

composition of two TFSMs, the resulting automaton may have continuous non-final time chain with

a loop (Figure 7 (b)). Nevertheless, there cannot be intermediate time loops, i.e. loops with outgoing

edge that is marked by 1 (Figure 7(d)) or several (Figure 7(e)) time loops. We shall prove this by

the following proposition.

1 1

1

i o
1

u

1

1
a

a b c

d e

Fig. 7. Time chains. Here i – input symbol, o, u, a – output symbols, final states marked gray and

non-final are blank

Proposition 1. Given automaton A, describing parallel compositions of two TFSMs P and Q.

There are no states with more than one outgoing transition, marked by 1.

Proof. Indeed, suppose there is such a state (Figure 7(c)), reachable by sequence . It means,

that by construction in automaton AP there is state p reachable by  and automaton AQ there is

state q reachable by  as well, such that either p has two different outgoing transitions marked by

40 Shabaldina N., Gromov M. Using BALM-II for deriving parallel composition of timed finite state machines …

1, or q has two different outgoing transitions marked by 1, or both of them have such transitions.

Neither of listed is possible. □

Corollary 1.1. There cannot be intermediate time loop in any continuous time chain of an

automaton, describing TFSM parallel composition.

Corollary 1.2. There cannot be more than one time loop in in any continuous time chain of an

automaton, describing TFSM parallel composition.

Corollary 1.3. There cannot be more than one state in continuous time chain with more than one

ingoing transitions, and the number of ingoing transitions is not more than two (Figure 7(b)).

Now we describe a procedure for counting output delays. In this procedure we shall use sets

Qsiop. Each set Qsiop contains functions (constant or linear) of output delays for transition (s, i, o, p).

We notice that the estimation of the procedure is N, where N is the number of states in automaton

A, describing parallel composition of two TFSMs.

Procedure 1. Getting output delays.

Input. Automaton A, describing parallel composition of two TFSMs.

Output. Set of sets of output delays for every input-output pair possible in composition.

1. Get next final state s of automaton A. IF they are over, THEN

END.

2. Get next outgoing transitions of s. IF they are over, THEN

GOTO Step 1. Let outgoing transition be marked with input

symbol i, and the next state of the transition be s1.

3. scurr := s1; b := 0; k := 0.

4. IF scurr has more than one ingoing transition THEN

k := countLoopLength(A, scurr)(Procedure 2).

5. FOR every transition (scurr, o, p)  S, where S is

transition relation of A, o is output symbol, and p is final

state of A, DO put function b + k*t in Qsiop.

6. IF there is transition (scurr, 1, s’)  S, THEN scur := s’.

7. GOTO Step 2.

Procedure 2. countLoopLength

Input. Automaton A and non-final state s of A.

Output. Length of a loop, containing s, or N + 1, if there is no such loop, where N – number of

all states in A.

System Informatics (Системная информатика), No. 8 (2016) 41

1. scurr := s; k := 0.

2. IF there exists transition (scurr, 1, s’)  S, THEN scurr := s’,

k := k + 1.

ELSE RETURN N + 1. END.

3. IF scurr == s, THEN RETURN k, END.

6. Conclusion and Future Research Work

In this paper, we consider the procedure of parallel composition construction of TFSMs using

BALM-II and investigate different ways of extraction the set of linear functions (that describe an

infinite set of output delays) from the composition of corresponding automata. This is work in

progress, so we represent here just the first step of our investigation, considering only the case of

deriving the composition of TFSMs with output delays that are natural number or zero. We suggest

two approaches for getting output delays from the composition of corresponding automata: first

deals with BALM-II once again, and the second is based on analyzing time loops in automaton. In

our future work we’ll consider the composition of TFSMs with transitions under timeouts and the

composition of TFSMs when the output delays are infinite and represented by the set of linear

functions; this can happen in cascade composition.

References

1. N. Yevtushenko, T. Villa, R. Brayton, A. Petrenko, and A. Sangiovanni-Vincentelli. Solution of

parallel language equations for logic synthesis // In The Proceedings of the International Conference

on Computer-Aided Design. 2001. P. 103–110.

2. G. Castagnetti, M. Piccolo, T. Villa, N. Yevtushenko, A. Mishchenko, Robert K. Brayton. Solving

Parallel Equations with BALM-II // Technical Report No. UCB/EECS-2012-181, Electrical

Engineering and Computer Sciences University of California at Berkeley. 2012. [Electronic resource]

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-181.pdf (date of access: 21.04.2016).

3. R. Alur and D. L. Dill. A theory of timed automata // Theoretical computer science. 1994. Vol.126,

Iss. 2. P. 183–235.

4. K. El-Fakih, M. Gromov, N. Shabaldina, N. Yevtushenko. Distinguishing Experiments for Timed

Non-Deterministic Finite State Machines // Acta Cybernetica. 2013. Vol. 21, № 2. P. 205–222.

5. O. Kondratyeva, N. Yevtushenko, and A. Cavalli. Parallel composition of nondeterministic finite state

machines with timeouts // Journal of Control and Computer Science. Tomsk State University, Russia.

2014. Vol. 2(27). P. 73–81.

6. O. Kondratyeva, N. Yevtushenko, A. Cavalli. Solving parallel equations for Finite State Machines

with Timeouts // Trudy ISP RАN [The Proceedings of ISP RAS]. 2014. Vol. 26, Iss. 6. P. 85–98.

42 Shabaldina N., Gromov M. Using BALM-II for deriving parallel composition of timed finite state machines …

7. http://www.uppaal.com/

