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Developing formal temporal requirements to distributed

program systems

Shoshmina I. V. (Peter the Great Saint-Petersburg Polytechnic University)

Developing temporal requirements to distributed program systems an engineer should
determine and systemize event sequences caused by system processes interleaving. A num-
ber of such sequences grow exponentially that makes the requirement development pro-
cedure nontrivial. This is why engineers prefer not to construct or construct elementary
formal requirements. As result powerful formal verification methods become unavailable
or some important properties of distributed systems leaved unexpressed. While it is well-
known, that development of formal requirement even without verification improves an
quality of a distributed system structure and functions.

In this paper we suggest a method for formal temporal systems development which is
easy-to-use. The method is based on scalable patterns of linear temporal logic formulas.

Using this method we developed formal temporal requirements to a practical program
control system (a vehicle power supply control system). Verifying the requirements with
the model checking method we found 3 critical errors that were missed by developers of
the vehicle power supply control system during design and testing.

Keywords: software requirement specification, requirement patterns, model checking,

linear temporal logic
1. Introduction

Developing temporal requirements to distributed asynchronous program system is compli-
cated in practice. Because an engineer should systemize an exponential number of system
behaviour sequences resulting as process interleaving.

The wide-spread approach to solve this problem is to use formulas patterns for requirements:
an engineer tries to find a requirement close to a pattern. Dwyer et al. in [1| developed the
specification pattern system (SPS). They analyzed 500 temporal requirements to systems from
different application fields and suggested patterns for the most typical ones. The main SPS
drawback it is too strict: patterns aren’t scalable to different events number.

De-facto SPS has become the standard [2], [8], [9], [10]. Later it was modified by different
way. In [2], [3] patterns were extended by real time and probabilistic requirements. In [4],

[5] there were suggested nested patterns for interval logic, in [6] — nested patterns for linear
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temporal logic. In [2], [7] authors described patterns in limited English.

In spite of these modifications the strict structure of SPS formulas has left unchanged. In
this research we develop patterns that, on one hand, could be scalable and, on another hand,
we give an easy way how to use these patterns to develop significant temporal requirements. As
a base for our patterns we use the temporal relation “leads-to” [11] where after an environment
stimulus somewhen in the future there should follow a system reaction. Our patterns are
formalised in the linear temporal logic (LTL).

Using our patterns we developed and verified formal temporal requirements to a power
vessel supply control system (PVSS). The PVSS were developed and provided to us by a
Russian ship control systems manufacturer. The original PVSS code was written on C+-+ and
contained 20000 code strings (not counting external libraries). One of the most complicated
PVSS characteristics was an asynchronous work of its modules. Verification allows us to find 3
critical errors that developers did not find neither during design nor during bench and program

testing.
2. Patterns of events sequences

Temporal requirements of program systems are often some event sequences. The most
suitable and concise temporal logic for describing event sequences is the linear temporal logic
(LTL). LTL—formulas consist of atomic propositions p € AP, Boolean operations and temporal
operations: Until — & and the Next time — X (NextTime). This is grammar for a LTL-

formula ¢:
pu=plop|leVel|Xeo|eUep (1)

To short fomulas we will use some extra operations, Boolean (=, A, etc.) and temporal ones:
Future — F, Globally — G, Release — R, Weak Until - W, where Fp = TUp; G p = ~F —p,
YR = (U —); oW b = GV oUY, and the true constant: T = pV —p. We use a
common formal semantics of LTL formulas defined on infinite sequences (i. e. [12]).

A lot of formulas decribing different temporal requirements could be constructed with LTL.
We consider one that has very practical application, when a system environment gives a stimulus
by an event s and then the system guarantees an event—reaction p somewhen in the future (p
is after s). We call the relation as the “unconditional response”. It’s a LTL formalization
Resp(s,p):

Resp(s,p) = s = Fp. (2)
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The requirement “If someone from a floor calls an elevator then in the future the elevator will
stop at that floor”is an example of a requirement with the unconditional response. The response
relation in the form (2) is well-known as “leads—to” [11].

Now we require that a system should remember receiving a stimulus s until emitting a
reaction p by setting a condition ¢. So we get a “conditional response” relation denoted it as
Resp(s,p,t):

Resp(s,p,t) = s = tUp. (3)

Similarly we define a conditional precedence relation (before an event-reaction p should be

an event—stimulus s which sets a condition t), denoted as Prec(s,p,t) :
Prec(s,p,t) = —p= (tUp = —pUs). (4)

The requirement “If a fire fighting system switched on then before that a duty officer gave its a
corresponding command” is an example of a requirement with the precedence relation.
Formulas (3) and (4) describe local temporal relations between a stimulus and a reaction
in sense that a temporal relation is satisfied in a current state of a system behaviour. To
develop requirements we should consider temporal relations (3) or (4) in all states of a system
behaviour. Let’s consider 4 typical systems work phases: start, global, reqular, final. In a global
phase a temporal relation should be satisfied in all system states. Other phases define a scope
where a temporal relation is satisfied. In a final phase a temporal relation should be true
after the final phase started; in a start phase — before the phase finished; in a regular phase a
temporal relation should be satisfied during the phase. Defining phases bounds by events we

get following LTL formulas for temporal requirements:

global(s,p,t;0) = G@(s,p,1),

fin(s,p.tiq;9) = FGq= F global(s,p,t; ),

start(s,p,t;r; ) = —r = @(s,p,t) Wr,
)

reg(s,p,t;q,ri0) = G(q= start(s,p,t;r;p)), (5)

when ¢ is substituted by a formula Resp or Prec from (3)—(4), the formula global defines a
requirement in a global phase, formulas fin, start and reg — for final, start and regular phases
respectively. The variable ¢ defines an event of starting a final phase in fin, r — an event
ending a start phase in start, and variables ¢ and r — events starting and ending a regular

phase respectively.
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The suggested temporal relations (3)—(4) are so that they are easily scalable to stimuli
and reactions consisting from event sequences (not from one event): § = {sy,$2, ..., Sm},
7 = {p1,p2,...,pn} with sequences of conditions ¥ = {vy,va, ..., U1}, T = {t1,t0,... 10},

restricting stimuli and reactions respectively:

w(s ) = st AU (oo Smo1 A (VU Sm) .. .),

X(_’,f) = tUPIN. .ty U (P ANt Upy)) - ),
Resp(5,7,0,t) = u(5,0) = vold (sg A ... (vjU (5, A X(P, 1)) ...),
Prec(5,7,7,8) = —p1 = (x(7,) = —p1U u(5,7)) (6)

In this case requirements expressed in LTL formulas (5) aren’t changed except substituting ¢
by formulas Resp or Prec from (6) and adding .
If requirements depended on an infinite behaviour of environment we describe them by the

following LTL formula:
=, (7)

when ¢ is a formula from (5), ¢ — a formula defining an infinite environment behavior. Common
fairness requirements is a particular case of the formula (7).

Comparing patterns of [1] with ours ones by temporal relations structure we could resume
that 83 formulas from 217 LTL-formulas of [1] have a response relation Resp, 13 formulas —
a precedence relation Prec, while other 121 don’t contain relations between a stimulus and
a reaction. So our LTL—pattern coincide with existing practical requirements and even allow

scaling them to represent wider temporal dependencies.

3. Developing requirements to the power vessel supply control

system

The considered power vessel supply system (PVSS) consists of two power supply stations
(PS) while a power supply station contains a diesel, a generator, a generator cutout switch
(GCS). The power vessel supply control system coordinate the work of these PSs. Its structure
is shown at the fig. 1 inside the bold frame. We will use the abbreviation PVSS for the
power vessel supply system and for its control system. All PVSS controllers have independent
asynchronous behaviors coordinated by passing messages. Environment modules/devices the

PVSS works with are drawn outside the frame. The PVSS monitors and controls these devices
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@ users: marine engineers, technicians, sailors
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sensors sensors Sensors sensors sensors sensors

diesel 1 generator 1 GCS1 diesel 2 generator 2 GCS2

Puc. 1. The PVSS Structure

by reading sensors values and setting signals. A diesel has the utmost number of sensors (12
pieces).

The PVSS provides electricity power to all vessel consumers. For that it dynamically switches
on/off power stations depending on loading. The PVSS activity could be quite complicated.
For example, to start a power station the PVSS starts a diesel at first. When the diesel rotation
becomes stable, PVSS starts a generator, after that it starts a generator cutout switch. And
only after that consumers get the electricity power. Moreover, procedures of switching power

stations on/off depend on PVSS modes and could be different.

“PSSV requirement specification” provided us by PVSS developers was written quite poor
and did not contain enough information about PVSS to develop formal temporal requirements.
So we used mainly “Bench testing program and technique”. The test from this manual is cited
at the fig. 2. To resolve ambiguity and uncertainty we used “Operating guide’, the PVSS code
too, and sometimes consulted with experts developed the PSSV.

At first we identified input/output events from tests in natural language (like at the fig. 2).
We will use some of them in requirements below.

To combine events into temporal requirements sequences we will use the patterns (5)—(6). If
someone would like to avoid the direct usage of formulas he/she could use the modified problem
frame approach and translate requirements to formulas from graphical problem frames [13]. In
general modified problem frames allow to construct temporal requirements unlike the original

one developed by M. Jackson [14].

The test at the fig. 2 describes the PVSS transition to a remote automated mode. Analysing
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D.1.2.1 Before start:

e DGI1 and DG2 stopped (banners “DG1 is ready to start” and “DG2 is ready to start” lighten in the ACP
window “Power Supply Station”);
e the SCP switch “PS mode” is in the position AUT;

D.1.2.2 Testing transition to the PS remote automated control mode.

D.1.2.2.1 Switch on the test bench “Testing PS control algorithms” buttons “DG1: ready to start”, “DG2: ready
to start”, “DG1: remote control on”, “DG2: remote control on”, “SCP control”.
D.1.2.2.2 That should have the following effects:
e on the ACP display the message “PS control mode — remote” received and indicators “Control mode
— remote”, “DG1 is ready to start”, “DG2 is ready to start” changed to yellow;
e on SCP lamps “DG1: SCP control”, “DG2: SCP control”, “DG1: ready to start”, “DG2: ready to start”

lighted up.

D.1.2.3 Testing results are accepted when all effects described above happened.

Puc. 2. Testing transition to a PVSS remote automated mode. Abbreviations: DG — diesel generator, ACP — automated

control panel, SCP — skipper control post, AUT — automated.

other tests of “Bench testing program and technique” we found out that the PVSS could transfer
to the remote automated mode independently of diesels state. This is why the test at the fig. 2
splits to few temporal requirements, in particular: “Transition to a remote automated mode”,
“Diesel 1 activation in the remote automated mode”, “Absence of a diesel 1 misactivation in the
remote automated mode” and symmetrical for the diesel 2.

Transition to a remote automated mode. Always when the PVSS is not in the remote
automated mode and it would be in this mode in the future then before that an operator gives
commands “DG1: remote control on”, “DG2: remote control on” on the ACP and changes the
switch “PS mode” in the position AUT on the SCP.

The requirement is written in LTL so:
G (ndist N\ F dist = —distU autosig), (8)

where autosig — the signal to set the remote automated mode (commands “DG1: remote
control on”, “DG2: remote control on” and the switch “PS mode” in the position AUT), dist —
the signal that the remote automated mode is set.
The other temporal requirement describes an absence of an unwanted diesel 1 activation.
Absence of a diesel 1 misactivation in the the remote automated mode. Always in
the remote automated mode the lamp “DG1: ready to start” wouldn’t light up until the diesel 1

15 ready to start.
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The temporal relation in this requirement corresponds to the precedence pattern (6), so as

result we get:

G (dist = ((-readylamp A —=handU readylamp) =
—readylampU ready) W hand), (9)

where ready — the signal from sensors that the diesel 1 is ready to start (simulated at the fig. 2
as the ACP banner “DG1 is ready to start”), readylamp — the lamp “DG1: ready to start”
lights, hand = —dist — manual or local modes is set, dist — as in (8).

The diesel 1 in the test at the fig. 2 activated (becomes ready to start) if the remote auto-
mated mode is set enough long. This is modelled in LTL as “somewhen forever”.

The diesel 1 activation in the the remote automated mode. If somewhen forever
the remote automated mode is set up then somewhen forever the lamp “DG1: ready to start”
would light up to the sensors signal that the diesel 1 is ready to start.

Formally:

FGdist = F G (ready = —handU readylamp), (10)

where dist, hand, readylamp, ready — the same are in (9).

At the tab. 1 we compare our formal temporal requirements development to PVSS and
“Bench testing program and technique”. As result, we described more events explicitly than it
was in an events table of “Bench testing program and technique”. We found out requirements
that unnecessary repeated in different tests. We defined requirements that were formulated
implicitly, for example, the requirement (9) is implicit in the test at the fig. 2. So we resume
that developing formal temporal requirements with the patterns (5)—(6) gives a better structure
of requirement specification than informal procedures. But some requirements described by

quite complicated LTL formulas containing 10-15 events.
4. Verifying the power vessel supply control system

We claim that our patterns allow to describe important requirements to distributed pro-
grams. To approve that we verified the PVSS with respect to developed formal temporal
requirements using SPIN [15]. At first we constructed a PVSS model in Promela, the input
language of SPIN. A PVSS module algorithm was modeled as an independent asynchronous

process. Processes coordinated their work transferring messages by asynchronous channels.
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Table 1

Comparing formal requirement development method and bench testing program on the PVSS

Formal requirement develop-

ment method

Testing program

Number of explicitly enu- | 71 20
merated events
Number of requirements or | 36 requirements 23 tests

tests

Average size of a require-

ment or a test

10-15 subformulas (prece-
dence relation), 30-36 sub-

formulas (response relation)

2 pages (A4)

Development time

2 weeks

unknown

Because the PVSS model was large we reduced it manually.

To check our temporal require-

ments we used 4 reduced models of the PVSS model. Correctness of reduced models is proved

by correspondence of counterexamples traces in Promela with traces in the original C++ code.

Let’s consider one of the critical error found out in the PVSS verification. Because this error

obviously shows problems that developers of program systems meet with, and such errors are

quite difficult to analyze and understand without verification.

Starting a reserve diesel-generator while another one crashed If the power station 2

hardware failures infinitely often, and the power station 1 hardware works properly infinitely

long, and always in case of failure of the power station 1 hardware the protection would be reset

and the remote automated mode with the power station 2 priority is set, then somewhen in the

future for every reserve response the diesel-generator 1 would start.

Formally the requirement is so:

/\g]:l;i/\/\]:g—'bi/\]:g—meset/\

J

/\ G (bj = Freset) N FGprior2l =

F G (reserv = prior21U lampon),

(11)

when b; — sensors data of the diesel-generator 2, b; — sensors data of the diesel-generator 1,

reset — reset a protection, prior2l — the remote automated mode with the power station 2

priority is set, reserv — the signal to starting a reserve diesel-generator, lampon — the lamp
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signalling the diesel-generator 1 started lights up. The requirement part “infinitely often” allow
to model cases when hardware failures happen regular, but messages about these failures come
with some delays.

SPIN found out a counterexample violated the formula (11) at the depth 29915. The re-
quirement violated because the message which the generator cutout switch 1 controller sent to
the power station 1 controller came with delay and blocked starting a reserve diesel-generator.

This error is impossible to detect while bench testing, because it’s impossible to produce
unknown quantity of hardware failures with unknown delay. And it’s difficult to detect while
program testing because it happens in a very seldom set of circumstances. But because of this
error a vessel loses the electrical power control at all.

Interesting that developers observed such a behaviour in vessel sea trials, but they were
sure that the error was caused by hardware (not by controllers coordination). So they tried
to solve it by adding checks of the generator cutout switch data. And this obviously didn’t
help. Developers were not beginners: they specialize in power vessel supply control systems
development. Except 23 bench tests they checked the PVSS with 841 program tests. But they
didn’t determine the error reason without the requirement formalization and verification.

During verification we detected about 141 errors. Most of them were minor and could be
easily fixed, but 3 of them were critical. One of them were discussed above. Second one was
about an uncontrollable start of a power station. As result of third critical error hardware could
be under the electrical voltage in a PVSS protection mode.

To solve these critical problems it’s required to change controllers algorithms for some modes
and add few new modes more. This solution is time consuming, and takes about 80% of the
PVSS time design. So we get the well-known consequence that using formal verification methods
at first stages of a control program design could allow to avoid subtle, expensive errors at late

design stages.
5. Conclusion

We suggested scalable LTL formulas patterns which describe many practical temporal re-
quirements. We show that developing formal temporal requirements with them gives a well-
structured requirement specification. The development allows to avoid redundant repeating of
temporal requirements and to find out implicit requirements by organizing input-output events

and their temporal relations.
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Verifying the power vessel supply control system with developed requirements we found out

three critical errors. These errors were not found developers by testing. The result of one

critical error were observed by developers but they could not determine errors reasons correctly

without the requirement formalization and verification. Fixing such critical and subtle errors

at late stages of a control program design sometimes could be compared starting a program

development from the scratch.
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