
System Informatics (Системная информатика), No. 15 (2019) 1

УДК 004.832.32

System Description: Russell - A Logical Framework for

Deductive Systems

Vlasov D.Yu. (Sobolev Institute of Mathematics, Novosibirsk State University)

Russell is a logical framework for the specification and implementation of deductive

systems. It is a high-level language with respect to Metamath language [7], so inherently

it uses a Metamath foundations, i.e. it doesn’t rely on any particular formal calculus, but

rather is a pure logical framework. The main difference with Metamath is in the proof

language and approach to syntax: the proofs have a declarative form, i.e. consist of actual

expressions, which are used in proofs, while syntactic grammar rules are separated from

the meaningful rules of inference.

Russell is implemented in c++14 and is distributed under GPL v3 license. The reposi-

tory contains translators from Metamath to Russell and back. Original Metamath theorem

base (almost 30 000 theorems) can be translated to Russell, verified, translated back to

Metamath and verified with the original Metamath verifier. Russell can be downloaded

from the repository https://github.com/dmitry-vlasov/russell

Keywords: logical framework, formal mathematics, deductive system, proof checker

1. Introduction

Recently the ambitious QED project [2] has celebrated its 20 year anniversary, while the

claimed goals of this project are still far from being reached. Several papers [10], [9], [4], [6],

[3] addressing the history of QED clearly state that yet there is no computer language, which

has all the expected features of a QED system. Summarizing these papers, it can be said that

the major barriers of QED are:

• the ’Balcanization’ of QED-like systems, i.e. when there are different languages with

different foundations and there is no simple way to share formalized proofs between them

[6]

• the lack of a powerful automation, which could seriously reduce end user efforts to prove

a theorem [4]

• the difference between the standard practical mathematical language, which is used in

papers and textbooks, and the formal language of QED-like systems [9]

Russell is another system, which is intended to reach QED goals. It was developed to address

2 Vlasov D.Yu. System Description: Russell - A Logical Framework for Deductive Systems

all these obstacles, and some of them are to some extent removed in the Russell design.

2. The Russell System

The Russell system is a general purpose framework for definition and usage of different formal

deductive systems. The variety of formal systems, which can be represented in Russell, is quite

wide, although limited. For example, non-monotonic deductive systems cannot be given in

Russell. As a high-level language with respect to Metamath [7], Russell inherits its foundations,

which are close to the notion of Post’s canonical system [8]. The approach of Metamath to

syntax of expressions is more general than that of Russell: syntactic rules in Metamath are

indistinguishable from the meaningful rules of inference and can have meaningful (essential, in

Metamath terms) premises. In Russell, the grammar of expressions must be context free by the

language definition. In all other aspects Metamath and Russell share the same foundations.

2.1. Pure Logical Framework

What distinguishes Metamath and Russell from other logical frameworks is purity: their

deduction engines don’t use any built-in logic (in the form of axioms and inference rules).

The deduction used in Metamath and Russell is concerned with making a proper substitution,

applying it to a certain expression and checking the coincidence of the result with some other

expression. From the very general point of view, such logic-neutrality is a good property,

because we want to avoid the situation when some formal deductive system has an a-priory

better fitness to the language than the other because of the propinquity with the underlying logic

of a logical framework. Similar arguments are mentioned in the paper [6], where the statement

of foundational pluralism is given. In fact, the property of logic-neutrality (or pureness) is

crucial to the desired foundational pluralism, because it gives a uniform core language for a

vast variety of deductive systems. Thus, ’Balkanization’ of formal mathematics could be at

least based on the same language (although the sharing of proofs between different foundations

is still challenging).

What distinguishes Russell from Metamath:

• Expression grammar syntax rules are separated from the general logical inference rules,

so the grammar is guaranteed to be context free.

• The Russell proof language is more human-friendly than the Metamath proof language.

• Russell uses a special syntactic construct for definitions, while in Metamath definitions

System Informatics (Системная информатика), No. 15 (2019) 3

are simply axioms with labels, starting with ’df’ prefix.

2.2. Brief Description and Сomparison of Metamath and Russell

At first, let’s get familiar with Metamath (the complete description of Metamath syntax and

semantics may be found in [7]). Metamath is a very simple language, and the complete list of

Metamath keywords is: $c $v $d $f $e $a $p $= $. ${ $}

The syntax of expressions in Metamath is not distinguished from the syntax of axioms and

inference rules. The latter assertions are treated differently inside proofs, but on the syntax

level there is no difference between these two kinds of assertions. This feature makes language

simpler, as the same mechanism is used for syntactic inferences and for the logical inference.

For example, the definition of well-formed-formula with → and ¬ logical connectives in

Metamath looks like:

$c () -> -. $.

$v ph ps $.

${

wph $f wff ph $.

wn $a wff -. ph $.

$}

${

wph $f wff ph $.

wps $f wff ps $.

wi $a wff (ph -> ps) $.

$}

Here we define constants with $c <c_1> .. <c_n> $. construction. Here -> stands for →

(implication) and -. stands for ¬ (negation), and this is how implication and negation are rep-

resented in the original Metamath theorem base. All constants are used as a terminal grammar

symbols. Note, that brackets are also treated as definable symbols, not pre-defined ones. Vari-

ables, symbols which may be substituted with, are also defined with $v <v_1> .. <v_n> $.

construction. Two constructions with labels wi and wn are essentially grammar rules with a

single non-terminal wff, in BNF notation:

wff ::= -. wff | (wff -> wff)

The definition of axioms of the Hilbert-style propositional calculus looks like:

4 Vlasov D.Yu. System Description: Russell - A Logical Framework for Deductive Systems

${

wph $f wff ph $.

wps $f wff ps $.

ax-1 $a |- (ph -> (ps -> ph)) $.

$}

${

wph $f wff ph $.

wps $f wff ps $.

ax-mp.1 $e |- ph $.

ax-mp.1 $e |- (ph -> ps) $.

ax-mp $a |- ps $.

$}

${

a1i.1 $e |- ph $.

a1i $p |- (ps -> ph) $=

wph wps wph wi a1i.1 wph wps ax-1 ax-mp $.

$}

The first two are classical axiom (ϕ→ (ψ → ϕ)) and a rule of inference (modus ponens):

ϕ (ϕ→ ψ)

ψ

Now let’s describe the Metamath syntactic construction in details. Technically the con-

struction <id> $f <type> <var> $. is called a ’floating’ hypothesis, and means that <var>

has a type <type>. Since Metamath semantics is based on a stack machine, when id la-

bel is executed, the expression (pair of symbols) <type> <var> is pushed on a stack. The

<id> $e <s_1> ... <s_n> $. construction is called an ’essential’ hypothesis, and has a clas-

sical meaning of a premise of a proposition. When met in a proof (which essentially is an

reverse polish notation (RPN) program for the stack machine), its expression (i.e. sequence of

symbols <s_1>...<s_n>) is pushed on a stack.

The propositions may be axiomatic or provable, and axiomatic ones are designated as

<id> $a <s_1>...<s_n> $. Provable propositions are written as a syntactic construction

<id> $p <s_1>...<s_n> $= <l_1>...<l_n> $. and the sequence of labels <l_1>...<l_n>

here is a proof of the proposition, i.e. the program for a stack machine, written in RPN form.

System Informatics (Системная информатика), No. 15 (2019) 5

The braces ${ and $} are used to define a scope of an assertion as a whole, with hypotheses

(both, floating and essential) and proposition. When met in a proof, the label of an assertion

acts as an operation on the stack: it fetches the appropriate number of expressions from stack,

accordingly to its arity (here arity is a sum of the number of floating and essential hypotheses),

then it matches floating hypothesis with the corresponding expressions from stack, checks their

type and forms a substitution. Then this substitution is applied to the essential hypotheses of

the assertion, and proof checker verifies, that the corresponding expressions on the stack are

symbol-wise the same. After all these checks, the substitution is applied to the statement of

an assertion and the result is pushed on a stack.

What is left to finish the verification of a Metamath proof, when a proof of some provable

assertion (i.e. theorem) is executed on a stack, is to ensure, that exactly one expressoin is left

on the stack and it coincides with the proposition of the theorem symbol-wise.

As a note on Metamath language, we can imagine, that hypothetically one could add sub-

stantial (i.e. essential, in the Metamath terminology) hypotheses to the syntactic grammar

rules, but of course, it would make little sense, since the common practice is to use context-free

grammars for a language.

Now let’s look, how the same rules and axioms look like in Russell syntax:

constant { symbol (;; }

constant { symbol) ;; }

constant { symbol -> ;; ascii -> ;; latex \rightarrow ;; }

constant { symbol -. ;; ascii -. ;; latex \lnot ;; }

type wff ;;

rule wn (ph : wff) {

term : wff = # -. ph ;;

}

rule wi (ph : wff, ps : wff) {

term : wff = # (ph -> ps) ;;

}

axiom ax-1 (ph : wff, ps : wff) {

prop 1 : wff = |- (ph -> (ps -> ph)) ;;

}

axiom ax-mp (ph : wff, ps : wff) {

6 Vlasov D.Yu. System Description: Russell - A Logical Framework for Deductive Systems

hyp 1 : wff = |- ph;;

hyp 2 : wff = |- (ph -> ps);;

prop 1 : wff = |- ps;;

}

theorem a1i (x : wff, y : wff) {

hyp 1 : wff = |- x ;;

prop 1 : wff = |- (y -> x);;

}

proof of a1i {

step 1 : wff = ax-1 () |- (x -> (y -> x));;

step 2 : wff = ax-mp (hyp 1, step 1) |- (y -> x);;

qed prop 1 = step 2 ;;

}

At first, the constant symbols are defined, just as in Metamath. Note, that in Russell a

symbol may have a unicode representation (in UTF-8 encoding), ascii representation and latex

representation. The ascii representation is used for correct translation of Russell sources to

Metamath. Latex representation may be used for the latex sources generation, and unicode

representation is used in Russell sources in order to represent mathematical symbols as close

to the real mathematical practice as possible.

Then we define a type wff - a non-terminal symbol of grammar of expressions of propositional

logic (in Metamath wff is just a constant and is not treated specifically). The next two syntactic

constructions are the rules (productions) of a corresponding context-free grammar and are read

as: if ph and ps are of type wff (i.e. are well formed formulas), then the expressions -. ph

and (ph -> ps) are also of type wff, i.e. are also well formed formulas. Context-freeness

here is obligatory by design, because it is impossible to use any kind of hypothesis other then

floating (typing) ones. The term keyword in the definition of the rule body means, that the

following sequence of symbols is just a raw expression, any may not be directly inferable. For

example, the expression term : set = # { a , b } is a set, and therefore has no truth-value

semantics. The keyword ;; is a symbol sequence terminator, like $. in Metamath.

Then there are two axioms: ax-1 and ax-mp (rules of inference are considered a non-zero-ary

System Informatics (Системная информатика), No. 15 (2019) 7

axiomatic assertions, so are called also ’axioms’). The typing hypotheses here are represented in

a common for many programming languages manner: a comma-separated list of variable-type

pairs, separated by colon, like ph : wff, ps : wff. The proposition of assertion is marked up

with prop keyword, while hypotheses are marked up by hyp keyword and are separated from the

propositions (there may be several propositions) by a -------- keyword (not less then 5 minus

symbols), which mimics the separation line in the classical representation of rules of inference

as H1,...,Hn

P
. The expressions in assertions have a sequence starter symbol ` (a turnstile), which

means, that these expressions are logical, i.e. directly used in inferences.

Then the theorem a1i and its proof follows. The syntactic form of a theorem is just the

same as the form of an axiomatic assertion, except for the heading keyword theorem instead

of axiom. A theorem must have at least one proof. The proof has a classical linear structure,

with explicit links, showing, from which previously proven step or hypothesis the current one

follows and by which assertion. Also each step is provided with the appropriate expression,

which is essentially what is proved in this step. The qed statements shows, which step (usually

the last one) is symbol-wise the same as the proposition of a theorem.

So, if we compare the proof languages of Metamath and Russell, we can see, that Russell

proofs are much closer to the human mathematical practice and may be understood without any

external program tools. Metamath proof is an RPN programm, so the only way to understand

the Metamath proof is to compute it as an RPN program, which demands a proof assistant

(except for some trivial cases).

Note, that the exact substitution are not explicitly presented in Russell proof, while they are

in Metamath. The substitutions for each proof step may be obtained by matching appropriate

expressions from the proof with the expressions from an assertion of the step. In the example

above, the substitutions for the first and second steps will be {x/ph, y/ps} (in real mathematics

substitutions may be much more complex then just a variable replacement). Technically, the

proof in Russell as a sequence of steps is a stack trace obtained from executing a proof in an

RPN form, which is stripped off all intermediate steps related to the syntax formation. When a

Russell proof is verified or translated to Metamath, these intermediate steps are restored from

the syntax tree of an expression and corresponding matching substitutions.

Thus, the Russell proof language is natural and simple, which imposes minimum restrictions

and allows for user-defined grammars for expressions. Together with the possibility to use the

conventional set theory it bridges the gap between the computer-based mathematics and the

8 Vlasov D.Yu. System Description: Russell - A Logical Framework for Deductive Systems

common practice mathematics from textbooks.

2.3. Definitions in Metamath and Russell

One of the most important features of any computer-based deductive system (framework)

is safety and reliability [1]:

to what extent one can trust computer proofs ?

Reliability of a formal system is a complex subject, which involves several aspects. One of these

aspects is the size of the axiomatic base used by a theory. If it is large then there can be some

(unintentionally) hidden inconsistency inside of it, and if so, this will lead to the triviality of

the whole theory (in case of an explosive logic). On the other hand, if the set of the true axioms

is small and well-known (like some variant of ZF set theory) then its degree of reliability is very

high.

If each definition is introduced as a new axiom, like it is done in Metamath, then the number

of axioms increases fast as the theory grows, and at some point there is no guarantee that all

of these axioms are consistent. To address this issue, definitions in Russell are introduced as a

special syntactic construct and certain properties are checked for each definition to ensure that

adding the underlying axiom will give a conservative extension of the theory. Conservativity

here means that if something can be proved with the help of some definition, it can also be

proved without it. This property is strictly proven, so it gives some more certainty about

correctness of Russell theories.

Example of a definition in Russell:

definition df-or (ph : wff, ps : wff) {

defiendum : wff = # (ph \/ ps) ;;

definiens : wff = # (-. ph -> ps) ;;

prop : wff = |- (defiendum <-> definiens) ;;

}

Here we define a logical ’or’ connective on the basis of negation and implication. Keyword

defiendum denotes what is defined (the disjunction of two formulas), and definiens denotes

the extension of the notion ’or’ - its definition as a formula. So far as both constructions are

terms, and Russell semantics (as well as Metamath semantics) doesn’t provide a mechanism

for internal term rewriting (since it is a pure inference engine), we cannot just ’substitute’

System Informatics (Системная информатика), No. 15 (2019) 9

any occurrence of disjunction with the appropriate negation and implication. Instead, we

make a new axiom out of the definition, which allows us to replace disjunction with its def-

inition indirectly, by common logical rules. The proposition of this axiom is obtained from

the prop expression of the definition by replacing defiendum and definiens meta-variables

by the corresponding terms. For this particular definition this axiom’s proposition will be:

((ph \/ ps) <-> (-. ph -> ps))

The fact that all Russell sources can be translated back to Metamath and checked with

its original proof checker shows that Russell at least as reliable as Metamath. Moreover, the

declarative format of proofs in Russell makes it possible for a human to do an independent veri-

fication of proofs. Of course, it would look strange to exploit human ability of checking a formal

proof in a QED system, but still, from the philosophical point of view, human understanding

is an ultimate judge, and is very important.

3. Implementation

Currently the Russell language is implemented as a translator from / to Metamath and is

written in c++14. The Russel repository includes test scripts, which run a chain of translations:

Metamath -> Russell -> Metamath

The translation of the whole Metamath base (about 30 000 theorems) is rather fast in all

directions. The most problematic from the performance point of view is expression parsing

in Russell. Metamath uses an explicit construction of expressions in proofs, so it does not

require any parsing or matching algorithm when checking its source. Unlike Metamath, Russell

must parse expressions in order to get syntax trees and such parsing takes the most of time in

comparison to all other steps, like matching or translation.

One of the features implemented in the toolchain of translators is that it can automatically

divide the original Metamath source (the single file of almost 150 megabytes) into reasonably

small parts following the internal layout inside the source file. After breaking it into pieces, one

can browse the source file tree with the standard desktop navigation tools and watch source

files in the standard desktop editors without the necessity to handle a single 150 Mb file.

Russell is not considered by the author as an experimental or model language. It is supposed

to be a useful, universal, and convenient tool for all kinds of activity in the field of formal

deduction. To achieve this, the language of implementation (c++), quality of source code,

efficiency of algorithms, and usefulness to the end user are of a great importance. Russell

10 Vlasov D.Yu. System Description: Russell - A Logical Framework for Deductive Systems

implementation should be able to work with hundreds of thousands of assertions in a reasonable

time, which is the subject of ongoing research and development.

4. Conclusion and Future Work

The Russell logic framework is a robust, fast, and reliable general purpose tool for rep-

resentation of formal deductive systems. The Russell language is designed to be simple and

easy-to-learn and provides proofs in a declarative form (which is a standard practice in informal

mathematical texts).

Essentially, powerful automation is the only one blocking property left in the list of the

desirable QED features. Therefore, the next challenge is to implement the automated proving

feature so that the process of formal proof design would be easier. The first step to making

an automated proof engine for Russell has been already taken and it showed the potential

feasibility of such a goal. Since the proof search space suffers from an extreme combinatorial

explosion, some extraordinary means are needed to cope with it. Standard techniques will not

work here, since the nature of the underlying deductive system is apriori unknown to the prover

(which is a consequence of the logic-neutrality property). For example, in general we can not

assume, that the underlying logic is cut free (and actually it is not in the case of the Metamath

theorem base).

To create a powerful prover for Russell we plan to use advanced machine earning techniques

to make the prover use the experience of the already proven theorems. Ideally, it should be

able to generate human-like proofs, formed as a combination of previously obtained proofs.

The other important goal is to support importing of other bases of formalized mathematics

into Russell. Some successful attempts of importing HOL theorem base into Metamath have

been already undertaken [5], so there is a hope that it would possible to join a large part of

the already formalized mathematical knowledge under a common logical framework, but with

different foundations. A more ambitious goal is to join these bases upon a common foundation.

Список литературы

1. Adams M. Proof Auditing Formalized Mathematics, Journal of Formalized Reasoning Vol. 9, No.

1, (2016), pages 3 – 32

2. Anonymous. The QED Manifesto, in: A. Bundy (ed.), Automated Deduction - CADE 12, LNAI

814, Springer-Verlag, pages 238 – 251. (1994)

System Informatics (Системная информатика), No. 15 (2019) 11

3. Barendregt H., Wiedijk F., The Challenge of Computer Mathematics, Transactions A of the Royal

Society 363 no. 1835, pages 2351 – 2375, (2005)

4. Blanchette J. C., Kaliszyk C., Paulson L. C., Urban J. Hammering towards QED, Journal of

Formalized Reasoning Vol. 9, No. 1, (2016), pages 101 – 148.

5. Carneiro M.M. Conversion of HOL Light proofs into Metamath, Journal of Formalized Reasoning

Vol. 9, No. 1, (2016), pages 187 – 200.

6. Kohlhase M., Rabe F. QED Reloaded: Towards a Pluralistic Formal Library of Mathematical

Knowledge, Journal of Formalized Reasoning Vol. 9, No. 1, (2016) pages 201 – 234.

7. Megill N. Metamath: A Computer Language for Pure Mathematics, Lulu Press, Morrisville, North

Carolina, (2007)

8. Post E. Formal Reductions of the General Combinatorial Decision Problem, American Journal of

Mathematics 65 (2), pages 197 – 215, (1943).

9. Wiedijk F. The QED Manifesto Revisited. In: From Insight to Proof, Festschrift in Honour of

Andrzej Trybulec. (2007), pages 121 – 133.

10. Wiedijk F. The Seventeen Provers of the World, Volume 3600 of Lecture Notes in Computer Science,

(2006) Springer-Verlag.

12 Vlasov D.Yu. System Description: Russell - A Logical Framework for Deductive Systems

