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Современные промышленные приложения графов 

знаний   

Апанович З.В (Институт систем информатики СО РАН) 

Графы знаний проделали большой путь эволюции от простого множества RDF-

триплет до систем получения новых знаний. Если в прежние годы основным 

приложением графов знаний считался семантический поиск, то на современном этапе 

графы знаний проникают во все области промышленного производства. Данная работа 

представляет обзор новых вариантов графов знаний, таких виртуальные графы знаний, 

динамические графы знаний и исполняемые графы знаний, применяемые в 

современном производстве, а также основную область их применения когнитивные 

цифровые двойники. Также в работе кратко рассмотрены способы генерации графов 

знаний при помощи больших языковых моделей и повышение качества работы 

больших языковых моделей за счет применения графов знаний. 
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1. Введение 

Графы знаний (ГЗ) с момента их громкого появления под лозунгом «вещи, а не строки» 

(“things not strings”) прошли большой путь эволюции. Если первоначально граф знаний 

понимался просто как RDF-граф, то есть множество триплет в виде (субъект, предикат, 

объект), то к настоящему моменту графы знаний превратились в системы получения новых 

знаний [1]. Если в начальные годы основным приложением графов знаний считался 

семантический поиск, то сейчас в список приложений входят вопросно-ответные системы, 

рекомендательные системы, системы принятия решений и многие другие. В последние 

несколько лет графы знаний все чаще используются при разработке цифровых двойников и 

даже появился специальный термин «когнитивный цифровой двойник», означающий 

системы, совместно использующие методы семантического моделирования и глубокого 

обучения. 
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 Одним из факторов такой эволюции графов знаний является то, что графы знаний 

унаследовали от Открытых связанных данных (Linked Open Data) стандарты, входящие в 

стек технологий Semantic Web [2]. 

1. Использование глобальной идентификации ресурсов на основе 

интернационализированных идентификаторов ресурсов (Internationalised Resource 

Identifier, IRI), обеспечивает глобальную однозначность представления каждого 

ресурса.  

2. Использование Resource Description Framework (RDF) [3] позволяет 

стандартизировать представление данных в форме триплетов. 

3.  Использование онтологий для классификации ресурсов позволяет генерацию 

новых триплет как при помощи логического вывода, так и при помощи методов 

глубокого обучения на основе текстовых, визуальных и других данных. 

4. Использование специализированных систем хранения, таких как RDF-хранилища и 

графовые базы данных, позволяет использовать наиболее эффективный способ 

хранения данных. 1  

5. Язык запросов SPARQL позволяет не только осуществлять запросы, но и 

обновлять данные в хранилищах через конечную точку. Федеративные запросы 

предлагают возможность извлекать данные из нескольких источников данных и 

анализировать их одновременно, включая возможность объединения данных из 

общедоступных и частных источников данных, принадлежащих любому 

количеству различных сторон. 

6. Доступ данным при помощи Виртуальных графов знаний, ранее известный как 

Доступ к данным на основе онтологий (Ontology-Based Data Access, OBDA) 

позволяет выполнять онтологические запросы над реляционными и NoSQL базами 

данных. 

В настоящее время семантические модели внедряются в различных отраслях 

Промышленного Интернета вещей для моделирования и управления знаниями предметной 

области. Их приложения варьируются от управления следующим поколением производства 

до объяснимого транспорта и энергосбережения в зданиях, от использования семантической 

интеграции различных датчиков Интернета Вещей (IoT) до автоматизации аналитики 

созданных данных.  Количество разновидностей графов знаний значительно расширяется за 

счет новых приложений. Ведущие производители такие как Siemens, Bosh, IBM предлагают 

и внедряют новые вариации ГЗ для промышленных приложений, такие как Динамические 

графы знаний, Исполняемые графы знаний, Виртуальные графы знаний и др. В данной 
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работе будет сделан обзор современных графов знаний и их приложений, обусловленных 

потребностями четвертой и пятой промышленных революций. 

2. Виртуальные графы знаний для интеграции множественных 

источников данных 

Тенденция цифровизации в обрабатывающей промышленности приводит к огромному 

росту объема и сложности данных, генерируемых устройствами, участвующими в 

производственных процессах. Эти данные становятся важным активом для улучшения 

эффективности производства. Однако раскрытие потенциала этих данных - серьезная 

проблема для многих организаций.  Часто данные находятся в разрозненных хранилищах, 

которые не связаны между собой физически, но содержат семантически связанные данные, 

возможно с избыточной и противоречивой информацией. Поэтому эффективное 

использование данных требует интеграции данных, которая включает их очистку, 

дедупликацию и семантическую гомогенизацию. По оценке компании Bosch [4], усилия по 

интеграции данных составляют примерно 70-80 процентов по сравнению с 20-30 

процентами, необходимыми для анализа данных. В последние годы для решения этой 

проблемы используются методы семантической интеграции данных на основе виртуальных 

графов знаний (ВГЗ) [5]. 

В подходе ВГЗ онтология моделирует предметную область и определяет общий словарь 

виртуального графа знаний, который скрывает от пользователя физическую структуру 

источников данных, а также обогащает данные из источников некоторыми общими 

знаниями. Онтология связана с конкретными источниками данных через декларативные 

спецификации данных в терминах отображений (mappings), которые связывают классы и 

свойства онтологии с конкретными представлениями данных в разрозненных источниках. 

Отображения указывают, каким образом превратить значения, хранящиеся в разрозненных 

реляционных таблицах в триплеты единого графа знаний.  

 Онтология вместе с отображениями представляет собой виртуальный граф знаний, к 

которому можно осуществлять запросы SPARQL. Запросы формулируются в терминах 

онтологии, описывающей предметную область и пользователю не требуется понимание 

конкретных источников данных, знание о взаимосвязях между этими источниками или 

способе кодирования данных в отдельных источниках. Ключевой технологией является 

технология переписывания запросов (query rewriting), которая позволяет избежать 

физической материализации источников в графе знаний. Запрос SPARQL транслируется в 
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серию SQL запросов к различным источникам данных, а затем результаты запросов 

собираются в единый ответ на исходный SPARQL запрос. Схема этого подхода показана на 

рисунке 1. 

 

 

Рис. 1. Схема метода переписывания запросов для работы с виртуальным графом знаний.   

Преимущество этого подхода заключается, с одной стороны, в знаниях о предметной 

области, закодированных в онтологии. Эти знания используются для обогащения ответов на 

запросы пользователей, описывающих задачи анализа продукта. Другим ключевым 

преимуществом является использование семантически насыщенных отображений ВГЗ. Они 

устраняют несоответствие между уровнем данных и уровнем онтологии, используя 

основанный на шаблонах механизм R2RML [6] для построения уникальных 

идентификаторов (IRI) графа знаний из значений базы данных. Более того, сопоставления 

обеспечивают решение задачи интеграции, поскольку семантически однородная 

информация, поступающая из разных файлов журналов, которые используют синтаксически 

различные представления, может быть согласована на уровне ГЗ. Это упрощает выполнение 

запросов ко всем данным интегрированным образом, используя семантику извлеченной 

информации. 

В качестве примера рассмотрим использование виртуальных графов знаний для анализа 

качества поверхностного монтажа печатных плат на заводах BOSH [4]. Процесс 

поверхностного монтажа (surface mounting Process, SMT) включает четыре основных этапа 

(см. Рисунок 2): 

 (1) Нанесение паяльной пасты: этап состоит из нанесения паяльной пасты на печатные 

платы (ПП) и выполняется с помощью машины для печати паяльной пастой;  
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(2) Поверхностный монтаж: этап, где электронные компоненты фактически 

устанавливаются на печатные платы при поверхностном монтаже устройств (surface mount 

devices, SMD); по-русски говорят SMD компоненты, SMT технологи, и SMD-монтаж; 

(3) Нагрев: для правильной пайки смонтированных компонентов на этом этапе. платы 

нагреваются в печи оплавления; 

 (4) Автоматизированная оптическая инспекция (automated optical inspection, AOI.  

На заключительном этапе платы проверяются устройством AOI, чтобы выяснить, не 

произошел ли на предыдущих этапах какой-либо сбой, например, неправильная установка 

компонентов или неисправность пайки. Когда весь процесс завершен, система генерирует 

файлы, которые содержат два типа данных:  

• журналы размещения, создаваемые SMD-устройством, содержат информацию о 

том, какой компонент установлен на какой плате; 

• журналы неисправностей, генерируемые устройством AOI, показывают, где на 

плате и с какой компонентой случилась неисправность 

Проблема состоит в том, что разные этапы этого процесса реализуются при помощи 

разных устройств, а эти устройства, как правило, поставляются разными производителями и 

имеют разные форматы и схемы для управления одними и теми же данными в процессе 

поверхностного монтажа. 

Следовательно, необработанные, не интегрированные данные не дают целостного 

представления обо всем процессе SMT и затрудняют анализ выпускаемой продукции. 

 

Рис. 2. Устройства, участвующие в процессе SMD-монтажа [4]. 

Каждое из устройств генерирует свои собственные данные (журналы), регистрирующие 

детали процесса обработки. Например, устройство оптического контроля, порождает 

таблицы такие как  aoi_event, aoi_location, aoi_panel и  aoi_failures. На рисунке 3 показаны 

фрагменты таблиц устройств. Таблица aoi_failures содержит столбец failureCode, 
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принимающий различные целочисленные значения в зависимости от типа сбоя. Эти 

численные значения могут быть различными даже в рамках одного предприятия. 

 

 

 

Рис. 3. Реляционные таблицы, используемые устройствами SMD и AOI [4]. 

На рисунке 3 показаны фрагменты трех таблиц. Таблицы smd-panel smd_components 

создаются SMD-устройством, а таблица aoi_failures - AOI устройством. Можно видеть, что 

SMD-устройство обрабатывает информацию о панели (столбец panelId), монтируемых на 

этой панели компонентах (столбец boardNo), и о моменте времени, в который данная панель 

была обработана (столбец processed TS), в то время как устройство AOI генерирует 

информацию о том, была ли панель списана или нет (столбец failureCode). Значение этой 

информации закодировано в числах: значение ’1’ соответствует случаю, когда панель 

списывается, 0 - в противном случае. Кроме того, устройство AOI содержит информацию о 

различных типах сбоев, например, число 2 соответствует ситуации «ложный вызов» 

(FalseCall), а число 21 соответствует случаю «Неправильно размещенный компонент» 

(MisplacedComponent). Смысл этой информации, закодированной в числах, имеется только 

во внутренних документах предприятия и в головах его инженеров.  

Теперь предположим, что мы хотим получить ответ на следующий запрос. «Для панелей, 

обработанных в заданный период времени, получить количество отказов, связанных со 

списанными платами и сгруппированных по типам отказов». Чтобы получить эту 

информацию, необходимо семантически интегрировать данные, которые находятся на 

устройстве поверхностного монтажа SMD и на устройстве автоматического оптического 

контроля AOI. 

На рисунке 4 показана часть онтологии SMT, которая используется в качестве модели 

предметной области для интеграции семантических данных и доступа к предметной области. 

Онтология разделена на три модуля: 
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• Онтология продуктов SMT (product ontology, префикс psmt:), описывающая 

продукты SMT; 

• Онтология сбоев SMT (failure ontology, префикс fsmt:), моделирующая отказы, 

которые могут произойти во время процесса SMT;и 

• Онтология устройств SMT (machine ontology, префикс msmt:), моделирующая 

устройства SMT. Общая онтология SMT включает 76 классов, 30 объектных 

свойств и 57 свойств типов данных. 

  

Рис. 4. Онтология SMT включает в качестве подмодулей онтологию продуктов, 

онтологию устройств и онтологию сбоев [4].  

Как правило, способ кодирования отказов различается на разных предприятиях внутри 

одной и той же организации, что затрудняет идентификацию одних и тех же отказов, 

описанных в разных подсистемах. Чтобы решить эту проблему, предлагается вместо 

численных значений, принимающих различные значения в различных реляционных 

таблицах, использовать соответствующие классы в Онтологии сбоев. Например, для 

представления такого типа отказа как «неправильное размещение компонента» создается 

класс fsmt:MisplacedComponent. Этот класс является подклассом класса fsmt:Position, а также 

класса fsmt:ProductFailure, которые семантически группируют все отказы, попадающие в эти 

категории. Точно так же создается класс psmt:ScrappedBoard для семантического 

представления всех плат, которые списываются. Этот класс представлен как подкласс класса 

psmt:Board. 

На рисунке 5 показаны два примера отображений. Одно из отображений называется 

“Ложный вызов” ("FalseCall"), а второе – “Неправильно размещенная компонента” 

(“MisplacedComponent”). Оба отображения определяют, какие триплеты графа знаний 

должны быть сгенерированы в зависимости от численного значения столбца failureCode в 

таблице aoi_failures.  
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Рис. 5. Отображения FalseCall и MisplacedComponent [4]. 

Если значение failureCode равно 2, то в графе знаний должны быть сгенерированы две 

триплеты. Обе триплеты будут иметь в качества субъекта   объект, имеющий URI 

fsmt:AOIFailure/{panelId}/{boardNo}/{refDesignator}/{windowNo}/{PinNo}, где на месте 

местодержателей будут указаны конкретные идентификаторы панели, компоненты, контакта  

и т.д., например   fsmt:AOIFailure/p01/b01/rd01,wx1/p01. Cгенерированные по этому 

отображению триплеты будут иметь вид: 

fsmt:AOIFailure/p01/b01/rd01/wx1/p01 rdf:type fsmt:FalseCall. 

fsmt:AOIFailure/p01/b01/rd01/wx1/p01 fsmt:failureType “FalseCall”. 

Аналогичным образом, отображение MisplacedComponent указывает, какие триплеты 

графа знаний должны быть сгенерированы, в случае, когда таблице aoi_failures код сбоя в 

столбце failureCode равен 21. Этому случаю в сгенерированном графе знаний также будет 

соответствовать две триплеты. 

К результирующему графу знаний можно писать запросы SPARQL в терминах онтологии, 

описывающей предметную область, и пользователю не требуется понимание конкретных 

источников данных, знание о взаимосвязях между этими источниками или способе 

кодирования данных в отдельных источниках. 

В работе [8] описано применение подхода ВГЗ в норвежской многонациональной 

нефтегазовой компании Equinor (ранее Statoil ASA). Одна из обычных задач геологов Equinor 

- найти новые пригодные для эксплуатации скопления нефти или газа в заданных областях, 

своевременно анализируя данные об этих областях. Однако сбор необходимых данных не 

является тривиальной задачей, так как данные хранятся в нескольких сложных и больших 

источниках данных, таких как EPDS, Recall, CoreDB, GeoChemDB, OpenWorks, Compass и 

NPD FactPages. Построение правильных запросов ко всем этим источникам невозможно для 

геологов Equinor, поэтому они должны сообщать свои потребности в информации ИТ-

специалистам, которые затем превращают их в запросы SQL. Это резко влияет на 
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эффективность поиска правильных данных для поддержки принятия решений. Эта проблема 

была решена путем создания виртуального графа знаний, и создания каталога запросов 

SPARQL в терминах предметной области.  

Еще одно применение подхода виртуальных графов знаний, реализованное в фирме 

Siemens, описано в работе [9]. Подразделение Siemens Energy управляет несколькими 

сервисными центрами, которые удаленно контролируют и выполняют диагностику 

нескольких тысяч устройств, таких как газовые и паровые турбины, генераторы и 

компрессоры, установленные на электростанциях. Для выполнения диагностики доступ к 

данным и интеграция как статических данных (например, конфигурация и структура 

турбин), так и динамических данных (например, данные от датчиков) особенно важны, но 

очень сложны. Опять же использование виртуальных графов знаний позволяет справиться с 

этой проблемой. 

В работе [10] описано применение ВГЗ в аэрокосмической промышленности для 

извлечения и валидации информации о результатах тестирования электронных устройств, 

запускаемых в космос. 

3.  Исполняемые графы знаний для контроля качества 

точечной контактной сварки в BOSH 

Точечная контактная сварка – это пример полностью автоматизированного и 

эффективного производственного процесса, широко применяемого в самолето-, судо- и 

автомобилестроительной промышленности, в сельскохозяйственном машиностроении и 

других отраслях промышленности. Для осуществления сварки два колпачка электродов 

сварочной горелки сжимают два или три металлических листа между электродами и 

пропускают ток высокого напряжения. Материал на небольшой площади между электродами 

плавится и образует точечный сварочный шов, соединяющий рабочие листы, известный как 

литое ядро сварной точки [11]. Качество операции сварки количественно оценивается как 

диаметр литого ядра сварной точки, как предписано в международных стандартах. Для 

точного определения диаметра литого ядра сварной точки в машиностроении обычной 

практикой является разрезание сваренного кузова автомобиля и измерение размера этого 

ядра, что разрушает сваренные автомобили и является чрезвычайно дорогой операцией. В 

настоящее время Bosch [12] разрабатывает методы оценки качества сварки, основанные на 

машинном обучении, чтобы уменьшить потребность в разрушенных кузовах автомобилей.  
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Cварка — это процесс, требующий больших объёмов данных. Каждая cварочная машина 

производит одну сварную точку за несколько секунд или минут, а кузов автомобиля может 

иметь до 6000 сварных точек. Для каждой точки генерируется несколько сотен 

характеристик, включая состояние сварки, показатели качества и показания датчиков, 

которые измеряют важные физические характеристики каждую миллисекунду, такие как ток, 

сопротивление, мощность. 

Для оценки качества сварки применяется три важные направления машинного обучения 

такие как визуальная аналитика, статистическая аналитика и аналитика машинного 

обучения, основанная, например, на нейронных сетях.  

Более того, у Bosch много источников данных для схожих производственных процессов, 

поэтому возможность повторного использования решений машинного обучения очень 

желательна. Эти решения можно перенести на аналогичные данные или вопросы машинного 

обучения.  

В работе [12] предлагается закодировать решения машинного обучения при помощи графа 

знаний таким образом, чтобы графы знаний помогали в описании знаний о машинном 

обучении и решениях стандартизированным и прозрачным способом с помощью системы на 

основе графического интерфейса и визуализации графа знаний. Данный подход называется 

исполняемые графы знаний, потому что такие графы знаний могут быть преобразованы в 

скрипты машинного обучения, которые можно модифицировать и повторно использовать 

для решения похожих проблем.  

Фреймворк для исполняемого графа знаний представляет возможность создания 

различных решений на базе методов машинного обучения (конвейеров) для решения 

проблем машинного обучения. Фрэймворк поддерживает трансляцию исполняемых графов 

знаний в исполняемые скрипты машинного обучения. 

Фрэймворк исполняемого графа знаний определяет связи между такими понятиями как 

Данные (Data), Метод (Method) и Задание (Task). Данные – это множество элементов 

информации, организованные в разные структуры. Метод – это функция, реализованная в 

форме скрипта, написанного на заданном языке. Метод получает Данные, удовлетворяющие 

определенным ограничениям, и выдает в качестве результата другие Данные.  Задание – это 

способ вызова Метода, подавая ему Данные, удовлетворяющие определенным 

ограничениям. Некоторые задания имеют метод для выполнения этого задания, а некоторые 

задания не могут быть выполнены при помощи одного метода и должны быть развернуты в 

последовательность заданий, где каждое задание является частью более сложного задания в 
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этом случае можно говорить о Конвейере (Pipeline) заданий. Связи между этими понятиями 

показаны на рисунке 6. 

 

Рис. 6. Связи между основными классами фреймворка исполняемого графа знаний 

[12].  

В зависимости от типа аналитического приложения могут вызываться различные методы, 

описанные в специализированных онтологиях, и генерироваться различные конвейеры 

заданий. Общий вид исполняемого графа знаний показан на рисунке 7. 

 

Рис. 7. Общая схема исполняемого графа знаний [12].  

Архитектура системы для работы с исполняемыми графами знаний показана на рисунке 8. 

Система состоит из пяти слоев: слой данных (не граф знаний), уровень приложений, уровень 

базы данных графа знаний, уровень семантических модулей и уровень семантических 

артефактов. Модули одного уровня покрашены в один цвет. Например, самый нижний 

уровень данных содержит пять модулей, покрашенных в серый цвет. На этом уровне 

находятся входные и выходные данные системы. На вход Модуля Интеграции данных 

подаются необработанные данные сварки (нижний левый угол). Эти данные преобразуются 

Модулем Интеграции данных (с помощью онтологий предметной области) в графы знаний 
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машинного обучения для сварочных аппаратов, которые представляет собой тип графа 

знаний о данных сварки с некоторой аннотацией машинного обучения. Эти графы знаний 

используются четырьмя типами аналитических приложений на уровне приложений 

(показаны бежевым цветом). 

 

Рис. 8. Архитектура системы исполняемых графов знаний [12]. 

На самом верхнем уровне Семантических артефактов находятся две онтологии верхнего 

уровня. Это Онтология Производства (Manufacturing ontology) и Онтология 

интеллектуального анализа данных ( data science ontology, Ods). Специализацией онтологии 

производства являются онтологии предметных областей, такие как различные онтологии 

сварки, например, онтология точечной сварки. Эти онтологии создаются на основе 

онтологии производства верхнего уровня [13]. 

Онтология производства семантически связана с онтологией верхнего уровня Онтологии 

интеллектуального анализа данных (data science ontology, Ods), таким образом, что 

атрибутные свойства (DataTypeProperty) онтологии производства аннотированы некоторыми 

классами онтологии интеллектуального анализа данных Ods. 
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На рисунке 9 показаны Онтология интеллектуального анализа данных (Ods, Data Science 

Ontology) и три ее специализации Онтология статистики (StatisticalOntology), онтология 

Визуализации (Visualization Ontology) и Онтология машинного обучения (ML-Ontology). Три 

онтологии заданий StatisticalOntology, Visualization Ontology и ML-Ontology являются 

специализацией онтологии Ods, поскольку все классы этих онтологий являются подклассами 

онтологии Ods, а все свойства являются подсвойствами  Ods.  

Можно видеть, что онтология верхнего уровня содержит такие классы как Data (Данные), 

Method (Метод) и Task (Задание), в то время как онтологии-специализации содержат методы 

и задания, специфические для конкретного приложения. Например, методы, необходимые 

для выполнения статистической аналитики описаны в онтологии статистического анализа 

(Statistical_Ontology, Ostats),   методы, необходимые для выполнения визуальной аналитики, 

описаны в онтологии визуализации (Visualization_Ontology, Ovisu),   а методы, необходимые 

для выполнения аналитики, Машинного обучения, описаны в онтологии  машинного 

обучения (ML_Ontology, Oml).  

Так, например, в онтологии визуализации Visualisation_Ontology описаны специфические 

для визуализации методы такие как LineplotMethod (метод построения линейчатых 

диаграмм), ScatterplotMethod (метод построения диаграмм рассеяния BarplotMethod (метод 

построения гистограмм). Все эти методы являются экземплярами класса VisualMethod, 

являющегося подклассом класса Method. 

Аналогичным образом методы, специфические для статистической аналитики, такие как 

MeanCalculationMethod и StandardDeviationMethod являются подклассами класса 

StatisticalMethod онтологии Statistical-Ontology.  

 



14    Апанович З.В. Современные промышленные приложения графов знаний 

 

Рис. 9. Онтологии задач интеллектуального анализа данных [12].  

Эти специализированные онтологии служат схемами для Модуля Построения 

исполняемого графа знаний, который кодирует различные конвейеры исполняемых графов 

знаний. Все исполняемые графы знаний принадлежат классу Pipeline (Конвейер) и 

соответствуют конкретным решаемым проблемам. На рисунке 10 показан один из 

возможных вариантов графа знаний для визуализации. 

 

Рис. 10. Один из исполняемых графов знаний для визуализации [12]. 

Эти исполняемые графы могут быть переведены модулем Executable Knowledge Graph 

Translator в исполняемые скрипты, создавая тем самым приложения визуальной либо 

статистической аналитики или же приложения аналитики машинного обучения.   

Возможно три способа построения новых исполняемых графов знаний: Создание графа 

знаний с нуля на основе библиотеки имеющихся модулей, Модификация ГЗ и интеграция 
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нескольких ГЗ. Например, можно интегрировать конвейер статистического анализа, который 

идентифицирует выбросы, с конвейером визуализации для того, чтобы визуализировать 

результаты идентификации выбросов. 

4. Динамические графы знаний для цифровых двойников 

Одной из областей применения семантических моделей являются цифровые двойники. 

Цифровой двойник (ЦД) — это цифровое представление системы IoT, способное непрерывно 

обучаться в течение всего жизненного цикла системы и прогнозировать поведение системы 

IoT. Цифровые двойники предназначены для постоянного использования на протяжении 

всего жизненного цикла системы - от предоставления рекомендаций при создании системы, 

до автоматизации ее производства и оптимизации ее работы путем диагностики аномалий 

или улучшения контроля и прогнозирования. В последние несколько лет наблюдается 

тенденция к объединению ЦД с передовыми технологиями семантического моделирования и 

методами глубокого обучения для обеспечения ЦД когнитивными возможностями.  

Термин «когнитивные цифровые двойники» по отношению к промышленным 

приложениям впервые был предложен Адлом [14] в 2016 году, хотя и до этого в литературе 

рассматривались возможности улучшения когнитивных способностей цифровых двойников 

с помощью семантических технологий. 

 В ходе презентации на отраслевом семинаре в 2016 году Ахмед Эль Адл рассказал о 

когнитивной эволюции технологий Интернета вещей и предложил концепцию когнитивного 

цифрового двойника, а также её характеристики и категории. Она была определена как 

«цифровое представление, дополнение и интеллектуальный компаньон своего физического 

двойника в целом, включая его подсистемы на всех этапах жизненного цикла и эволюции».  

Хотя в настоящее время нет широко распространенного консенсуса по определению КЦД, 

можно выделить некоторые их общие элементы и характеристики [15]. 

(1) Основаны на ЦД: КЦД является расширенной или дополненной версией ЦД. Он 

содержит как минимум три основных элемента ЦТ, включая физическую сущность 

(системы, подсистемы, компоненты и т. д.), цифровое (или виртуальное) представление, 

связи между виртуальным и физическим пространствами. Основное отличие заключается в 

том, что КЦД обычно содержит несколько моделей ЦД с определениями топологии и 

семантики. В частности, для сложной промышленной системы КЦД должен включать 

цифровые модели подсистем и компонентов, каждая из которых имеет разный статус на 

протяжении всего жизненного цикла. Для более сложных бизнес-сценариев ожидается 

подключение большого количества связанных цифровых моделей. 
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(2) Когнитивные способности: КЦД должен обладать определенными когнитивными 

способностями, то есть он позволяет выполнять интеллектуальные действия, подобные 

человеческим, такие как внимание, восприятие, понимание, память, рассуждение, 

прогнозирование, принятие решений, решение проблем, реакция и т. д.  

(3) Управление полным жизненным циклом: КЦД должен состоять из цифровых моделей, 

охватывающих различные этапы всего жизненного цикла системы, включая начало 

жизненного цикла (например, проектирование, сборка, тестирование), середину жизненного 

цикла (например, эксплуатация, использование, техническое обслуживание) и конец 

жизненного цикла (например, разборка, переработка, восстановление). КЦД также должен 

быть способен интегрировать и анализировать все доступные данные, информацию и знания 

из различных этапов жизненного цикла. 

 (4) Способность к автономности: КЦД должен выполнять автономные действия без 

помощи человека или минимального уровня человеческого вмешательства. Эта способность 

частично перекрывается и подкрепляется когнитивными способностями КЦД. Например, 

основываясь на результатах восприятия и прогнозирования, КЦД может автономно 

принимать решения и адаптивно реагировать на проектирование, производство или 

эксплуатацию. 

(5) Непрерывное развитие: КЦД должен иметь возможность развиваться вместе с 

реальной системой на протяжении всего жизненного цикла. Существует три уровня 

развития. Во-первых, для одной цифровой модели она обновляется в соответствии с 

изменением соответствующих данных, информации и знаний, полученных из реальной 

системы; во-вторых, благодаря взаимодействию между различными цифровыми моделями, 

содержащимися в одной и той же фазе жизненного цикла, каждая модель динамически 

развивается в соответствии с влиянием других моделей; в-третьих, благодаря обратной связи 

от других фаз жизненного цикла. 

Одной из интересных моделей КЦД является World Avatar [16], использующий в качестве 

основного инструмента динамический граф знаний, который задуман как универсальный и 

всеобъемлющий. Универсальность Мирового Аватара основана на значительном количестве 

различных модульных онтологий предметных областей и экосистеме автономных агентов, 

способных модифицировать граф знаний.  

Схематическое устройство World Avatar показано на рисунке 11. В основании 

конструкции находятся расширяемое множество модульных онтологий предметных 

областей. Это множество прямоугольников голубого цвета. Реальные экземпляры графа 

знаний, изображенные при помощи эллипсов, описываются при помощи этих онтологий 
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(зеленый слой). В зеленом слое также имеются красные эллипсы, изображающие экземпляры 

агентов. Агенты имеют разные типы (атомарный, составной и композитный) и являются 

частью графа знаний, управляемой Онтологией Агентов (OntoAgent) [17]. Агенты действуют 

автономно и непрерывно на графе знаний, постоянно обновляя его и, таким образом, 

заставляя его развиваться во времени.  

 
Рис. 11: Иллюстрация основных принципов Мирового Аватара (World Avatar) на основе 

динамического графа знаний [16]. 

 

В верхней части схемы World Avatar показаны активные агенты (красные треугольники), 

действующие над графом знаний и взаимодействующие друг с другом. 

Понятие «Агент» может соответствовать программному обеспечению, методам, 

приложениям, сервисам и т. д., которые используют семантические веб-технологии и 

работают с графом знаний для чтения/записи, оценивания, моделирования, оптимизирования 

и/или запросов и т. д. для достижения конкретных целей.  

Кроме того, чтобы облегчить использование агентов и упростить идентификацию агента, 

подходящего для конкретной задачи в среде с большим количеством агентов (где доступно 

множество сервисов), был создан рынок агентов на основе технологии блокчейн и смарт-

контрактов [18]. 

World Avatar позволяет подключение к различным подграфам облака открытых связанных 

данных (LOD, lod-cloud.net), и, таким образом, может использовать богатство всех данных, 

доступных в Интернете. Благодаря своей универсальной конструкции, основанной на 

онтологиях и автономных агентах, World Avatar улучшает совместимость между 
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разнородными форматами данных, а также программным обеспечением и, таким образом, 

позволяет использовать междоменные приложения в более широком контексте.  

Текущее онтологическое покрытие World Avatar включает:  

• онтологию механизмов химических кинетических реакций OntoKin [19]; 

• технологических процессов OntoCAPE[20]; 

• погоды Weather Ontology [21];  

• онтологию 3D моделей городов и ландшафтов OntoCityGML[22];  

• систем электроснабжения OntoPowerSys, [23].  

 

В области химии используются такие онтологии как 

• онтология для квантовой химии OntoCompChem,  [24]; 

• видов химических веществ OntoSpecies,[25]; 

• экспериментов по горению OntoChemExp [26]; 

• Онтологию выделяемых при сгорании веществ в зависимости от типа двигателя 

корабля OntoShip [27].  

Далее будет показано два варианта использования принципиально разных аспектов 

фреймворка World Avatar – управление и проектирование.  

Первый вариант демонстрирует, как цифровые двойники на основе динамического графа 

знаний могут сократить затраты и потребляемую энергию посредством интеллектуальных 

стратегий управления.  

Второй вариант показывает, как можно использовать структуру параллельного мира для 

создания «живого» цифрового мира, т.е. сценария, который позволяет исследовать 

различные технологические альтернативы и эффект политики по переходу к 

энергосберегающим технологиям. 

4.1 Кросc-доменное вычисление качества воздуха 

В Сингапуре расположен один из самых загруженных портов в мире. Естественно, 

возникает вопрос о том, как выбросы углеводородов из такого трудно поддающегося 

сокращению сектора, такого как судоходство, влияют на такие факторы как качество воздуха 

в разных районах Сингапура.  

Рисунок 12 иллюстрирует, каким образом интероперабельность World Avatar позволяет 

оценивать в режиме реального времени вклад выбросов от судоходства в качество воздуха в 

Сингапуре. Он демонстрирует, чего можно достичь с точки зрения совместимости, как 

между моделями и данными из разных предметных областей (погода, расположение зданий в 
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городе, корабли в гавани и топливо, которое они используют, выбросы вредных веществ и их 

рассеяние в атмосфере) и между различными масштабами размеров (от масштаба атомной 

длины в расчетах вычислительной химии до километровых масштабов моделирования 

атмосферной дисперсии).  

Агенты, работающие над World Avatar, обновляют в графе знаний в режиме реального 

времени информацию о погоде и о кораблях, находящихся в окрестностях Сингапура. Агент 

по выбросам способен использовать информацию о судах для оценки выбросов несгоревших 

углеводородов, CO, NO2, NOx, O3, SO2, PM2,5 и PM10 с каждого корабля. Агент 

Атмосферной дисперсии может использовать информацию о погоде, выбросах каждого 

корабля и расположении зданий Сингапура для моделирования рассеивания выбросов.  

Агенты виртуальных датчиков сообщают результирующие оценки качества воздуха в 

разных локациях. 
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Рис. 12. Междоменная оценка в режиме реального времени вклада выбросов от 

судоходства в качество воздуха в Сингапуре [25].  

4.2.  Интеллектуальные стратегии проектирования систем 

электроснабжения 

Этот вариант использования иллюстрирует, как цифровое дублирование и анализ 

сценариев «что, если» с использованием динамического графа знаний может помочь лицам, 

принимающим решения, понять взаимное влияние различных вариантов использования 

источников энергии и инструментов политики. 

Возможности параллельных миров World Avatar поддерживают принятие решений в 

сложной среде, позволяя исследовать различные сценарии и связанные с ними результаты. 



System Informatics (Системная информатика), No. 29 (2025)   21 

Параллельные миры используют структуру динамического графа знаний для использования 

агентов сценариев для группировки новых экземпляров любых сущностей, которые 

изменяются в сценарии, и сохраняют их в специфичной для сценария части графа знаний. 

Доступ, запросы и обновления экземпляров, специфичных для сценария, осуществляются 

через агентов сценария. 

Специфическую для сценария информацию в параллельном мире можно рассматривать 

как наложение на базовый мир, поэтому неизмененные сущности остаются связанными с 

базовым миром, и любые изменения в базовом мире отражаются в сценарии. И наоборот, 

любые изменения в параллельном мире остаются изолированными в рамках специфической 

для конкретного сценария части графа знаний и поэтому не мешают базовому миру. 

Основанные на идее, очень похожей на системы контроля версий, широко используемые 

среди разработчиков программного обеспечения, контейнеры параллельного мира хранят 

различия с базовым миром в именованных графах, где сценарий предоставляет контекст. 

Технические подробности можно найти в [28]. 

Рисунок 13 иллюстрирует использование концепции параллельного мира для 

исследования влияния введения налога на выбросы углерода в результате процессов 

производства электроэнергии, чтобы мотивировать переход от ископаемого топлива на 

экологически чистые энергетические технологии. Рассматриваются следующие вопросы: 

• Какая сумма налога на выбросы углерода необходима для того, чтобы сделать переход 

на малые модульные ядерные реакторы (Small Modular Reactor, SMR) выгодным для 

заданного набора условий (например, срок службы проекта, нормы амортизации, профили 

электрической нагрузки и характеристики генератора)? 

• Какой завод(ы) следует заменить, и где следует расположить новые SMR(ы)? 
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Рис. 13. Концепция параллельного мира для анализа сценариев «что, если» [28]. 

В верхней части рисунка показана электрическая сеть из реального мира (слева) и 

оптимизированная сеть, облагаемая налогом на выбросы углерода (справа). Сеть из 

реального мира описана в базовом мире. Изменения в сети в параллельном мире описаны в 

специфичной для сценария части графа знаний. Розовые треугольники обозначают 

генераторы на природном газе, которые присутствуют как в базовом мире, так и в 

параллельном мире. Синий квадрат обозначает масляный генератор, который присутствует 

только в базовом мире. Символ радиации обозначает небольшой модульный ядерный 

реактор (SMR), который присутствует только в параллельном мире. 

Параллельный мир показывает, что нефтяные генераторы будут заменяться на SMR, как 

только налог на выбросы углерода будет увеличен с пяти до ста семидесяти сингапурских 

долларов за тонну. Типы имеющихся генераторов и соответствующие оценки выбросов CO2 

автоматически обновляются в параллельном мире, чтобы отразить эти изменения, и Агент 

оптимальной мощности потока (optimal power flow, OPF) вызывается для минимизации 

общих эксплуатационных затрат сценария в параллельном мире [28, 27]. 

В этом примере проблема, решаемая параллельным миром, достаточно проста, и ее можно 

было сформулировать как классическую задачу оптимизации с четко определенной целевой 

функцией. Однако многие сценарии будут слишком сложными для того, чтобы это 
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произошло.  Как решить эту проблему, обсуждается в контексте цифрового двойника 

Великобритании на основе графа знаний [30].  

The World Avatar можно рассматривать как пример новой парадигмы для 

информационных систем GeoWeb, выходящих за рамки Web 2.0. Основанный на базе 

Semantic 3D City Database [31], он переносит существующие стандарты ГИС в новую 

графовую базу данных и использует преимущества концепции открытого мира (Open World 

Assumption), которая отсутствует в аналогичных реляционных геопространственных базах 

данных. Сочетание её с системой интеллектуальных автономных агентов, основанных на 

когнитивной архитектуре, расширяет и масштабирует существующие инструменты 

преобразования геопространственных данных. Её агенты, как оказалось, способны 

автоматически создавать семантическую модель Берлина, состоящую в общей сложности из 

419 909 661 утверждений типа «субъект–предикат–объект». Помимо традиционно 

трудоёмкого и подверженного ошибкам процесса создания модели, агенты также автономно 

создали представление модели, пригодное для взаимодействия с ней через веб-интерфейсы. 

Более того, агенты продемонстрировали способность отслеживать взаимодействие 

пользователя с моделью в сети, создавать новые знания и также автономно отображать их 

пользователю [31]. Данные работы положили начало большому множеству исследований по 

цифровым двойникам для моделирования умных городов, интегрирующим информацию о 

потреблении энергии, траффике, землепользовании, и др. [32, 33]. 

5. Взаимное обогащение ГЗ и больших языковых моделей 

Появление Больших Языковых Моделей таких как Gemini от Google и серии GPT от 

OpenAI привело к повышению качества работы многих приложений, таких как 

автоматический перевод между разными языками, генерация контента и виртуальные 

помощники.  Большие Языковые Модели используются в чатботах и сервисах клиентской 

поддержки, они прекрасно справляются с резюмированием текстов и анализом тональности 

документов для изучения общественного мнения. К сожалению, знание языковых моделей 

«замораживается» в их параметрах во время обучения, что приводит к определенным 

ограничениям. Прежде всего они способны генерировать неточную или бессмысленную 

информацию (галлюцинации), испытывают недостаток специфических знаний, а также 

нехватку знаний, появившихся после обучения, более того, не всегда их ответы возможно 

интерпретировать. Поэтому в последние несколько лет активно исследуются возможности 

повышения качества работы Больших Языковых моделей при помощи Графов Знаний. 

Недавние обзоры [34, 35] рассматривают возможность включения знаний из ГЗ в Большие 
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Языковые Модели. Наиболее простой способ включения знаний из ГЗ состоит генерации 

текстовых промптов на основе ГЗ, как это показано на рисунке 14 (вариант 1). Например, в 

работе [36] описан метод KAPING (Knowledge-Augmented language model PromptING, 

подсказки, расширенные знаниями для языковой модели), который извлекал факты из ГЗ и 

использовал их для создания подсказок LLM, чтобы получить быстрый ответ на вопросы.  

 

Рис. 14 Варианты введения знаний их графов знаний в большие языковые модели. 

Возможны и другие варианты. Например, Knowledge Solver [37] вместо того, чтобы 

включать факты из ГЗ в промпты для БЯМ, обучает БЯМ многошаговому обходу ГЗ для 

поиска ответа на вопрос. Таким образом, ГЗ могут предоставлять факты, на основе которых 

БЯМ могут рассуждать, обосновывая эти факты. С другой стороны, ГЗ могут внести 

больший вклад в БЯМ, чем просто предоставляя факты для обоснования знаний. Для задачи 

ответа на вопросы QA-GNN (вопросно-ответная графовая нейронная сеть) [38] выполняла 

совместный вывод над векторными представлениями (embeddings) контекста вопроса, 

полученным при помощи БЯМ, и ГЗ для объединения двух представлений. Для лучшей 

интерпретируемости модели использовалась графовая нейронная сеть (GNN), вычислявшая 

веса между вершинами графа, предоставляя путь рассуждений, который модель прошла в ГЗ, 

чтобы получить ответ. Другим примером является LMExplainer [39], который использовал ГЗ 

и графовую нейронную сеть с механизмом внимания для понимания ключевых сигналов 

принятия решений в БЯМ, которые были преобразованы в объяснения на естественном 

языке для лучшей объяснимости. Таким образом, ГЗ также могут обеспечить лучшую 

интерпретируемость БЯМ и дать представление о процессах вывода БЯМ, что, в свою 

очередь, повышает доверие людей к БЯМ. 

ГЗ также могут применяться для добавления семантического понимания или встраивания 

сущностей в БЯМ. Например, LUKE (Language Understanding with Knowledge-based 

Embeddings) [40], как расширение BERT, является механизмом само-внимания, осознающим 
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сущности, который может помочь модели обрабатывать слова и сущности в заданном тексте 

как независимые токены и выводить их контекстуализированные представления.  

Что касается добавления семантического понимания, то недавняя методология, 

называемая «Правильное по правильным причинам» (Right for Right Reasons, R3) [41] для 

выполнения запросов на естественном языке к контенту графов знаний (KGQA) с 

использованием БЯМ, представляет проблему поиска ответов на такие запросы  здравого 

смысла как древовидную структуру поиска для полного использования выявленных аксиом 

здравого смысла – ключевого свойства, делающего процедуру вывода проверяемой, так что 

семантическое понимание из ГЗ может быть добавлено в БЯМ. Эти более продвинутые 

возможности обогащения БЯМ при помощи ГЗ показаны на рисунке 14 (вариант 2). 

Несмотря на вышеуказанные достоинства графов знаний, одной существенной проблемой 

остается весьма дорогостоящий, трудозатратный и затратный по времени процесс создания 

графов знаний. Он требует значительного количества промежуточных шагов, таких как 

извлечение сущностей и отношений в соответствии с заданной онтологией, разрешение ко-

референций, слияние знаний. Более того, ГЗ специфичны для разных предметных областей, 

поэтому для разных приложений создаются разные графы знаний, а уже созданные графы 

знаний могут устаревать, если знание не обновляется. 

 Поэтому появление больших языковых моделей породило огромное количество 

исследований автоматической или полуавтоматической генерации графов знаний при 

помощи Больших Языковых Моделей. БЯМ обучаются на больших и разнообразных наборах 

данных и хранят эти знания неявно. В работе [42] описан полуавтоматический конвейер 

построения ГЗ при помощи ChatGPT-3.5, который побуждал эту модель генерировать 

высокоуровневые вопросы компетентности (competence questions) о данных. LLM было 

поручено извлекать сущности и отношения из этих вопросов для формирования онтологии, а 

затем отображать полученную информацию из документов в онтологию для построения ГЗ. 

Аналогичным примером является платформа AutoRD [43], недавно представленная для 

извлечения информации о редких заболеваниях и построения соответствующих графов 

знаний. Эта система может обрабатывать неструктурированный медицинский текст в 

качестве входных и выходных результатов извлечения, а также граф знаний, где БЯМ 

используется для извлечения сущностей и отношений из медицинских онтологий. Совсем 

недавно неконтролируемый фреймворк, называемый TKGCon (построение тематически-

специфичного графа знаний) [44], использовал БЯМ для построения как онтологий, так и 

тематически-специфичных ГЗ, полагаясь на БЯМ для генерации и определения отношений 

между сущностями и построения ребер графа. 
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Эти методы свидетельствуют о том, что БЯМ способны на большее, чем извлечение 

знаний из неструктурированных данных. Они также могут обрабатывать и анализировать 

данные для построения и заполнения графов знаний. Кроме того, в работе [45] описаны 

другие методы, которые используют БЯМ для конкретных задач построения групп знаний, 

таких как сопоставление текста с онтологиями, извлечение сущностей и выравнивание 

онтологий. БЯМ также использовались для валидации групп знаний посредством проверки 

фактов и обнаружения несоответствий. Варианты введения информации из больших 

языковых моделей в графы знаний показаны на рисунке 15. 

 

Рис. 15. Варианты введения информации из больших языковых моделей в графы знаний. 

6. Заключение 

В данной работе представлен обзор по современным приложениям различных вариаций 

графов знаний, таких как Виртуальные графы знаний, Исполняемые графы знаний и 

Динамические графы знаний. В работе сделан акцент именно на промышленных 

приложениях графов знаний, таких как цифровые двойники и их более современная версия 

когнитивные цифровые двойники. Также рассмотрено взаимное влияние графов знаний и 

больших языковых моделей, позволяющее создавать все более продвинутые приложения на 

основе ИИ. Приведенные примеры демонстрируют, что роль графов знаний при создании 

промышленный приложений в ближайшем будущем будет только возрастать. 
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Тестовые эквивалентности с обратимостью для

временных сетей Петри

Боженкова Е.Н. (Институт систем информатики СО РАН)

В статье определяется и исследуется семейство тестовых эквивалентностей в

контексте непрерывно-временных безопасных сетей Петри (ВСП) с возможностью

отмены (обратимости) выполненных действий. Тестовые эквивалентности

рассматриваются в интерливинговой и шаговой семантиках, семантике частичного

порядка и комбинации этих семантик. Для представления вычислений

ВСП используется частично-упорядоченная семантика временных причинных

сетей-процессов. Обратимость действий рассматривается как возможность

отмены в вычислении одиночных или параллельных действий, максимальных

в данном вычислении относительно отношения причинной зависимости. В

статье устанавливается иерархия взаимосвязей между рассматриваемыми

эквивалентностями.

Ключевые слова: временные сети Петри, тестовые эквивалентности, отмена

действий, обратимые вычисления

1. Введение

При моделировании и изучении поведения вычислительных процессов было введено

значительное количество поведенческих эквивалентностей. При этом также активно ис-

следовались и взаимосвязи эквивалентностей в разных семантиках от интерливинговой до

семантик частичного порядка (см., например, классический обзор Р. ван Глаббека [34]).

При интерливинговом подходе невозможно различить процессы с паралелльным и по-

следовательным поведением. Для увеличения мощности эквивалентностей были введены

шаговая семантика, в которой сравнение поведения происходит относительно выполнения

множества независимых действий, и семантика частичного порядка, при которой в ка-

честве подпроцессов выполнения берутся уже частично-упорядоченные множества.

В множестве известных подходов к определению понятия эквивалентности, от трас-

совой до бисимуляционной, большой подкласс занимают тестовые эквивалентности. По-

нятие тестовой эквивалентности параллельных процессов было предложено М. Хеннесси

и Р. де Николой в статье [15]. Тест — это специальный процесс, который выполняется
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параллельно с тестируемым процессом. Такое выполнение считается успешным, если

тест достигает выделенного успешного состояния, и процесс проходит тест, если каждое

его совместное выполнение с процессом является успешным. Два процесса считаются

тестово эквивалентными, если они проходят одни и те же наборы тестов. Для облегчения

применения тестовой эквивалентности обычно используются определения на основе най-

денных альтернативных характеризаций, в одном из наиболее распространенных опреде-

лений тест состоит из процесса-эксперимента и допустимого множества возможных его

продолжений вместо единственного действия ([4, 11]). Так, альтернативные характериза-

ции временных тестовых эквивалентностей с использованием понятия допустимых мно-

жеств в работах [12] и [23] были даны для систем переходов с дискретным временем, в

[5] — для непрерывно-временных структур событий. Другой подход к альтернативной

характеризации был предложен в статьях [19] и [13], в них авторы нашли характеризации

тестовых предпорядков для алгебр процессов с временными ограничениями через трассы

отказов.

Для модели сетей Петри интерливинговые тестовые отношения были исследованы в

работе [9], в которой кроме альтернативной характеризации получены результаты по дис-

кретизации временных характеристик модели, сопоставленных фишкам и дугам.

Для представления семантики частичного порядка в модели сетей Петри обычно ис-

пользуются причинные сети-процессы ([20, 28, 35]), в которых выполнениям переходов

соответствуют события, разметке — условия, частичный порядок моделируется отноше-

ниями причинной зависимости и параллелизма. Сравнение разновидностей тестовой экви-

валентности в частично-упорядоченной семантике сетей Петри было проведено в статье

[32].

Для сетей Петри с временными характеристиками частично-упорядоченная cемантика

была предложена для дискретно-временных сетей Петри в работах [2, 33], где время в

модель введено как длительность срабатывания перехода; для непрерывно-временных

безопасных сетей Петри (ВСП) — в работе [6], где переходам сопоставлены интервалы

временных задержек их срабатывания. В работе [8] сравнение моделей временных авто-

матов и временных сетей Петри проведены с использованием интерливинговой трассовой

и бисимулиционной эквивалентностями.

Иерархия трассовых и бисимуляционных эквивалентностей в частично-упорядоченной

семантике ВСП изучалась в работе [37]. Для этой же модели исследования тестовых
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эквивалентностей в семантиках причинных сетей-процессов и причинных деревьев про-

ведены в работах [1, 10], при этом установлено совпадение данных семантик в контексте

тестовых эквивалентностей.

Для увеличения выразительной мощности в вычислительные модели стали вводить

возможность отменить выполнение некоторых действий. Такие модели с обратимостью

нашли применение в моделировании биохимических реакций, отладке микропроцессоров

и программных систем. В ходе исследований выделилось три основные способа введения

отмены действий: обратный ход; причинная обратимость и произвольная обратимость.

Метод обратного хода подразумевает, что отмена действий производится в том же порядке,

в котором действия происходили (см., например, [14]). При отмене действий в методе

причинной обратимости выбор происходит среди максимальных действий в текущем вы-

числении, т.е действия, для которых они являются необходимыми предшественниками,

уже отменены или еще не были соверешны (см. [24]). Такой метод используется для

моделирования систем, протоколов, при отладке программ ([21, 22, 36]). При методе

произвольной обратимости, правила отмены действий задаются в самой модели (см.,

например, [3, 25, 31]). Расширение таких вычислительных моделей как сети Петри и

структуры событий возможностью отмены действий и их взимосвязи исследовались для

разных подходах к обратимости. Так в [24] найдено соответствие между подклассом

обратимых первичных структур событий с причинной обратимостью и обратимыми О-

сетями. В [25] предложен подкласс сетей Петри, в котором реализована произвольная

обратимость, и для него установлено соответствие с произвольно-обратимыми структу-

рами событий. Среди других исследований проводились поиски способов построения сетей

с обратимостью из обычных (см., например, [7, 24]).

Для моделей с обратимыми вычислениями также изучаются и поведенческие экви-

валентности. Иерарахия эквивалентностей с причинной обратимостью в интерливин-

говой, шаговой семантиках, семантиках частичного порядка и сохраняющих историю

исследована И.Филипсом и И.Улидовски для стабильных структур конфигураций с при-

чинной обратимостью в работе [29]. Авторами установлено, что бисимуляции с обрати-

мостью сильнее обычных бисимулиций, так интерливинговая бисимуляция с интерливин-

говой обратимостью сильнее сохраняющей историю бисимуляции без обратимости. Эти

же авторы ввели логику EIL в работе [30], расширив логику HML ([18]) модальностями

обратимости, что позволило дать логическую характеризацию подклассу сохраняющих
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историю бисимуляций.

Отметим, что исследования эквивалентнтостей с учетом прошлого поведения делались

и без введения в модель отмены действий. Например, в [16] подход к исследованию

прошлого вычислений совпадает с методом обратного хода, интерливинговые (back-forth)

бисимуляции определены на последовательностях вычислений. При таком определении

бисимулиции введение обратимости не привнесло дополнительных возможностей, т.е. они

оказазались слабее бисимуляций с причинной обратимостью из [29]. В работе [27] исследо-

валась δ-бисимуляция на путях с использованием максимальных независимых элементов,

что дало некоторое усиление, но такой подход отличается от причинной обратимости и

слабее нее.

Цель данной работы — изучить тестовые эквивалентности с возможностью отмены

выполненных действий в контексте безопасных ВСП, в которых переходы помечены вре-

менными интервалами и каждый переход, имеющий достаточное количество фишек во

входных местах, должен срабатывать в момент времени, когда значение его счетчика

принадлежит его временному интервалу.

Для представления вычислений ВСП используется частично-упорядоченная семантика

причинных сетей-процессов. Тестовые эквивалентности для обычных прямых вычислений

рассматриваются в семантиках от интерливинга до семантики частичного порядка, а обра-

тимость действий рассматривается как прошлое вычислений с точки зрения причинной

обратимости в интерливинговой и шаговых семантиках. Материал статьи разбит на части

следующим образом. В первых двух главах будут рассмотрены основные определения

ВСП и причинных сетей-процессов. Далее, в гл. 4, будут введены понятия обратимости

действий. Гл. 5 посвящена определению тестовых эквивалентностей в разных семантиках

с обратимостью. В гл. 6 будут исследованы взаимосвязи тестовых эквивалентностей.

Заключительные замечания будут приведены в гл.7.

2. Временные сети Петри: синтаксис и шаговая семантика

В этой главе рассмотрим базовую терминологию непрерывно-временных сетей Петри

и их шаговую семантику. Сначала напомним определения структуры и поведения сетей

Петри. Пусть Act — множество действий.
Определение 1. (Помеченная над Act) сеть Петри (СП) — это набор N = (P , T , F ,

M0, L), где P — конечное множество мест, T — конечное множество переходов (P ∩ T = ∅
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и P ∪T ̸= ∅), F ⊆ (P ×T )∪ (T ×P ) — отношение инцидентости, ∅ ̸= M0 ⊆ P — начальная

разметка, L : T → Act — помечающая функция. Для элемента x ∈ P ∪ T определим

множество •x = {y | (y, x) ∈ F} входных и множество x• = {y | (x, y) ∈ F} выходных

элементов, которые для подмножества X ⊆ P ∪ T элементов обобщаются соответственно

до множеств •X =
⋃

x∈X
•x и X• =

⋃
x∈X x•.

Разметка M СП N — это произвольное подмножество P . Переход t ∈ T готов

сработать при разметке M , если •t ⊆ M . Обозначим через En(M) множество всех

переходов, готовых сработать при разметке M .

Непустое множество переходов ∅ ̸= U ⊆ T называется шагом, готовым сработать при

разметке M , если ∀t ∈ U ⋄ t ∈ En(M) и (∀t ̸= t′ ∈ U : •t ∩ •t = t• ∩ t′• = ∅1. Если

шаг U готов сработать при разметке M , то его срабатывание приводит к новой разметке

M ′ = (M \ •U) ∪ U• (обозначается M
U−→M ′).

Под непрерывно-временной сети Петри (ВСП) [6] понимается СП, в которой с каждым

переходом связан временной интервал, указывающий возможные временные моменты

срабатывания перехода, готового по наличию фишек в его входных местах; готовый пере-

ход может сработать, только когда достигнута нижняя граница и не превышена верхняя

граница его интервала, и, если он еще не сработал, то обязан сработать, когда достигнута

верхняя граница его интервала.

Область T временных значений — множество неотрицательных рациональных чисел.

Считаем, что [τ1, τ2] — замкнутый интервал между двумя временными значениями τ1, τ2 ∈
T. Также, бесконечность может появляться как правая граница в открытых справа

интервалах. Пусть Interv — множество всех таких интервалов.
Определение 2. (Помеченная над Act) временная сеть Петри (ВСП) — это пара T N =

(N , D), где N — (помеченная над Act) базовая сеть Петри и D : T → Interv — статическая

временная функция, сопоставляющая каждому переходу временной интервал. Границы

временного интервала D(t) ∈ Interv называются ранним (Eft) и поздним (Lft) временами

срабатывания перехода t ∈ T .

Состояние ВСП T N — это пара S = (M, I), где M — разметка СПN и I : En(M) −→ T

— динамическая временная функция. Начальное состояние ВСП T N — это пара S0 =

(M0, I0), где M0 — начальная разметка СП N и I0(t) = 0 для всех t ∈ En(M0).

1Для удобства последующего определения временных сетей Петри требование M ∩U• = ∅, необходимое для обеспечения

безопасности сети, будет введено в определении свойства свободы от контактов.
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Шаг U , готовый сработать при разметке M , готов сработать в состоянии S = (M, I)

в относительный момент времени θ ∈ T, если (Eft(t) ≤ I(t) + θ) для всех t ∈ U и

(I(t′) + θ ≤ Lft(t′)) для всех t′ ∈ En(M). Срабатывание шага U приводит к новому

состоянию S ′ = (M ′, I ′) (обозначается S
(U,θ)−→ S ′), при этом M

U−→M ′ и ∀t′ ∈ T ⋄

I ′(t′) =


I(t′) + θ, если t′ ∈ En(M \ •U),

0, если t′ ∈ En(M ′) \ En(M \ •U),

не определено, в остальных случаях.

Будем писать S
(A,θ)−→ S ′ для A = L(U) = Σt∈UL(t) ∈ ActN, т.е. A является мультимножест-

вом над {a ∈ Act | a = L(t) и t ∈ U}. Также будем использовать запись S0
σ−→ S ′, если

σ = (U1, θ1) . . . (Uk, θk) и S0
(U1,θ1)−→ S1 . . . Sk−1 (Uk,θk)−→ Sk = S ′ (k ≥ 0). Тогда σ называется

последовательностью срабатываний в T N из S0 (в S ′), а S ′ — достижимым состоянием

T N из S0. Множество всех последовательностей срабатываний в T N из S0 обозначим

FSs(T N ) и множество достижимых состояний T N из S0 — RS(T N ). Для σ = (U1, θ1) . . .

(Uk, θk) L(σ) = (A1, θ1) . . . (Ak, θk), если Ai = L(Ui) для всех 1 ≤ i ≤ k.

Если | Ui |= 1 для всех 1 ≤ i ≤ k, т.е. σ = (t1, θ1) . . . (tk, θk), то σ будем называть

интерливинговой последовательностью срабатываний. Подмножество таких последова-

тельностей в FSs(T N ) будем обозначать FS i(T N ). Для интерливинговых последова-

тельностей срабатываний L(σ) = (a1, θ1) . . . (ak, θk), если ai = L(ti) для всех 1 ≤ i ≤ k.

ВСП T N называется T -ограниченной, если •t ̸= ∅ ̸= t• для всех переходов t ∈ T ;

свободной от контактов, если для любого состояния S ∈ RS(T N ) и любого шага U ,

готового сработать в состоянии S в относительный момент времени θ верно: (M \ •U) ∩
U• = ∅; прогрессирующей по времени, если для любой последовательности переходов

{t1, t2, . . . , tn} ⊆ T такой, что t•i ∩• ti+1 ̸= ∅ (1 ≤ i < n) и t•n ∩• t1 ̸= ∅, выполняется

неравенство
∑

1≤i≤nEft(ti) > 0. В дальнейшем будем рассматривать только T -ограничен-

ные, свободные от контактов и прогрессирующие по времени ВСП.

Пример 1. Пример помеченной над Act = {a, b, c, d} ВСП T N показан на рис. 1, где

места представлены окружностями, переходы — барьерами; рядом с элементами ВСП

размещены их имена; между элементами, включенными в отношение инцидентности,

изображены стрелки; каждое место, входящее в начальную разметку, отмечено наличием

в нем фишки (жирной точки); значения помечающей и статической временной функций

указаны рядом с переходами. Нетрудно проверить, что шаг U = {t1, t3} готов сработать

при начальной разметке M0 = {p1, p2}, а также готов сработать в начальном состоянии
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S0 = (M0, I0), где I0(t) =

 0, если t ∈ {t1, t3},
не определено иначе,

в относительный момент времени

θ ∈ [2, 3]. При этом, σ = (U, 3) (t2, 2) (U, 2) ({t5, t4}, 2) — последовательность срабатываний

из S0 в ВСП T N , L(σ) = ([b : 2], 3)(a, 2)([b : 2], 3)([d : 1, c : 1], 2). Кроме того, T N является

T -ограниченной, свободной от контактов и прогрессирующей по времени.iq iq
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Рис. 1. Пример временной сети Петри.

3. Причинно-зависимые семантики временных сетей Петри
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Рис. 2. Пример временной причинной сети.

Для анализа поведения ВСП используется семантика временных причинных сетей-

процессов. Прежде чем перейти к рассмотрению данной семантики напомним базовые

определения и обозначения, связанные с временными сетями.
Определение 3. (Помеченной над Act) временной сетью называется конечная, ацикли-

ческая сеть TN = (B,E,G, l, τ), где B — множество условий, E — множество событий,

G ⊆ (B×E)∪(E×B) — отношение инцидентости (причинной зависимости TN) такое, что

{e | ∃b ∈ B (e, b) ∈ G} = {e | ∃b ∈ B (b, e) ∈ G} = E, l : E → Act — помечающая функция

и τ : E → T — временная функция такая, что (e, e′) ∈ G+ ⇒ τ(e) ≤ τ(e′), т.е. событие не

может произойти раньше своих предшественников относительно причинной зависимости

TN .
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В дальнейшем будут полезны следующие обозначения для временной сети TN = (B,

E, G, l,τ). Пусть ≺= G+, ⪯= G∗ и τ(TN) = max{τ(e) | e ∈ E}. Определим множества:
•x = {y | (y, x) ∈ G} и x• = {y | (x, y) ∈ G} для x ∈ B ∪ E; •X =

⋃
x∈X

•x и X• =
⋃

x∈X x•

для X ⊆ B ∪ E; •TN = {b ∈ B | •b = ∅} и TN• = {b ∈ B | b• = ∅}.
TN = (B,E,G, l, τ) называется (помеченной над Act) временной причинной сетью,

если |•b| ≤ 1 и |b•| ≤ 1 для всех условий b ∈ B.

Введем дополнительные определения и обозначения для временной причинной сети

TN = (B, E, G, l, τ):

• ↓ e = {x | x ⪯ e} — множество предшественников события e ∈ E, Earlier(e) = {e′ ∈
E | τ(e′) < τ(e)} — множество временных предшественников события e ∈ E;

• E ′ ⊆ E — левозамкнутое подмножество E, если ↓ e′ ∩ E ⊆ E ′ для каждого e′ ∈ E ′.

Для такого подмножества будем использовать обозначение Cut(E ′) = (E ′• ∪ •TN)\
•E ′. E ′ ⊆ E — непротиворечивое по времени подмножество E, если τ(e′) ≤ τ(e) для

всех e′ ∈ E ′ и e ∈ E \ E ′;
• e ⌣ e′ ⇐⇒ ¬((e ≺ e′) ∨ (e′ ≺ e)). Множество ∅ ̸= V ⊆ E называется шагом, если

e ⌣ e′ и τ(e) = τ(e′) для всех пар e ̸= e′ ∈ V . Обозначим ↓ V = {↓ e ⊆ E | e ∈ V }
множество предшественников V и τ(V ) = τ(e) для произвольного e ∈ V — время

V . Тогда шаг V является предшественником шага V ′(V ≺ V ′), если выполняется

(↓V ′ ∩ V ̸= ∅) ∧ (V ′∩ ↓V = ∅); V ⌣ V ′ ⇐⇒ (↓V ∩ V ′ = ∅) ∧ (V ∩ ↓V ′ = ∅).
• последовательность шагов ρ = V1 . . . Vk (k ≥ 0) — s-линеаризация TN , если⋃

1≤i≤k Vi = E,
∑

1≤i≤k | Vi |=| E | и для всех Vi, Vj (1 ≤ i, j ≤ k, i ̸= j) выполняются

условия: ((Vi ⌣ Vj) ∨ (Vi ≺ Vj) ∨ (Vi ≺ Vj)) и ((Vi ≺ Vj ∨ τ(Vi) < τ(Vj)) ⇒ i < j).

Очевидно, τ(Vk) = τ(TN).

• s-линеаризация TN ρ = V1 . . . Vk (k ≥ 0) — будет i-линеаризацией TN , если для всех

1 ≤ i ≤ k | Vi |= 1, т.е. ρ = e1 . . . ek.
Заметим, что η(TN) = (ETN ,⪯TN ∩(ETN × ETN), lTN , τTN) является (помеченным над

Act) временным частично-упорядоченным множеством (ВЧУМ)2.

Обозначим через T P(Act) множество всех ВЧУМов, помеченных над Act, T Pe(Act) =

{η ∈ T P(Act) | | Xη |= 1} — подмножество ВЧУМов, состоящих из одного элемента.

2(Помеченый над Act) ВЧУМ — это набор η = (X,⪯,λ, τ), состоящий из конечного множества элементов X;

рефлексивного, антисимметричного и транзитивного отношения ⪯; помечающей функции λ : X → Act и временной функции

τ : X → T такой, что e ⪯ e′ ⇒ τ(e) ≤ τ(e′). Пусть τ(η) = max{τ(x) | x ∈ X}.
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Для двух ВЧУМов η = (E,⪯, l, τ) и η′ = (E ′,⪯′, l′, τ ′) ∈ T P(Act) и ⋆, ∗ ∈ {i, s, p}
введем дополнительные обозначения: η′ является ∗-расширением η (η ⊏∗ η′), если E —

левозамкнутое и непротиворечивое по времени подмножество E ′, ⪯=⪯′ ∩(E × E), l =

l′ |E; если ∗ = i, то должно выполняться дополнительное требование | E ′ \ E |= 1, и

если ∗ = s, то для любой пары e ̸= e′ ∈ E ′ \ E должно выполняться e ⌣ e′. Тогда

для отношения ⊏⋆−∗= (⊏∗ ∪ ⊏−1⋆ ) η′ является ⋆ − ∗-расширением η. Обозначим через

T P⊏
⋆−∗(Act) = {P1P2 . . . Pk, 0 ≤ k | Pj ∈ T P(Act)(1 ≤ j ≤ k), Pj ⊏⋆−∗ Pj+1, 1 ≤ j < k)}

множество последовательностей ВЧУМов, в которых соседние ВЧУМы являются ⋆ − ∗-
расширениями.

Временные причинные сети TN = (B, E, G, l, τ) и TN ′ = (B′, E ′, G′, l′, τ ′) изоморфны

(обозначается TN ≃ TN ′), если существует биективное отображение β : B ∪ E → B′ ∪ E ′

такое, что: (а) β(B) = B′ и β(E) = E ′; (б) x G y ⇐⇒ β(x) G′ β(y) для всех x, y ∈ B ∪ E;

(в) l(e) = l′(β(e)) и τ(e) = τ ′(β(e)) для всех e ∈ E. Кроме того, будем говорить,что для

∗ ∈ {i, s, p} TN ′ является ∗-расширением TN (обозначается TN −→∗ TN ′), если η(TN ′)

является ∗-расширением η(TN), B ⊆ B′ и G = G′ ∩ (B × E ∪ E ×B).
Пример 2. На рис. 2 показана временная причинная сеть TN = (B, E, G, l, τ), где

условия представлены окружностями, а события — барьерами; рядом с элементами сети

размещены их имена; между элементами, включенными в отношение инцидентности,

изображены стрелки; значения функций l и τ указаны рядом с событиями. Определим

временные причинные сети TN ′ = (B′, E ′, G′, l′, τ ′), где B′ = {b1, b2}, E ′ = ∅, G′ = ∅,
l′ = ∅, τ ′ = ∅ и TN ′′ = (B′′, E ′′, G′′, l′′, τ ′′), где B′′ = {b1, b2, b3, b4}, E ′′ = {e1, e3},
G′′ = G∩ (B′′ ×E ′′ ∪E ′′ ×B′′)}, l′′ = l |E′′ , τ ′′ = τ |E′′ . Легко проверить, что TN ′′ является

s-расширением TN ′.

3.2. Временные причинные сети-процессы временных сетей

Петри

В этом разделе рассмотрим понятие временных причинных сетей-процессов ВСП, пред-

ложенное в статье [6], и использованное при исследовании временных тестовых эквива-

лентностей в работах [1, 10].

Определение 4. Пусть T N = ((P , T , F , M0, L), D) — ВСП и TN = (B,E,G, l, τ) —

временная причинная сеть. Отображение φ : B ∪ E → P ∪ T называется гомоморфизмом

из TN в T N , если выполняются следующие условия:
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• φ(B) ⊆ P , φ(E) ⊆ T ;

• ограничение φ на •e является биекцией между •e и •φ(e) и ограничение φ на e•

является биекцией между e• и φ(e)• для всех e ∈ E;

• ограничение φ на •TN является биекцией между •TN и M0;

• l(e) = L(φ(e)) для всех e ∈ E.

Пара π = (TN,φ) называется временным причинным сетью-процессом ВСП T N , если

TN — временная причинная сеть и φ — гомоморфизм из TN в T N .

Пусть π = (TN,φ) — временной причинный сеть-процесс ВСП T N , B′ ⊆ BTN и t ∈
En(φ(B′)). Тогда глобальный момент времени, когда фишки появляются во всех входных

местах перехода t, определяется следующим образом: TOEπ(B
′, t) = max

(
{τTN(

•b) | b ∈
B′[t] \ •TN} ∪ {0}

)
, где B′[t] = {b ∈ B′ | φTN(b) ∈ •t}.

Для того, чтобы значения временных функций временных причинных сетей-процессов

ВСП соответствовали временным интервалам срабатывания сетевых переходов, вводится

понятие корректных временных причинных сетей-процессов ВСП.

Определение 5. Временной причинный сеть-процесс π = (TN,φ) ВСП T N называется

корректным, если для каждого e ∈ E выполняются следующие условия:

• τ(e) ≥ TOEπ(
•e, φ(e)) + Eft(φ(e)),

• ∀t ∈ En(φ(Ce)) ⋄ τ(e) ≤ TOEπ(Ce, t) + Lft(t), где Ce = Cut(Earlier(e)).

Пусть CP(T N ) — множество корректных временных причинных сетей-процессов ВСП

T N , а π0 = (TN0 = (B0, ∅, ∅, ∅, ∅), φ0) ∈ CP(T N ) с φ0(B0) = M0 — начальный временной

причинный сеть-процесс ВСП T N .

Через T Pos(T N ) = {TP | ∃π = (TN,φ) ∈ CP(T N ) : TP ≃3η(TN)} обозначим

множество ВЧУМов, изоморфных ВЧУМам, полученным из корректных временных при-

чинных сетей-процессов ВСП T N .

Пример 3. Определим отображение φ из временной причинной сети TN (см. рис. 2) в

ВСП T N (см. рис. 1) следующим образом: φ(bi) = pi (1 ≤ i ≤ 6), φ(bi) = pi−6 (7 ≤ i ≤ 10)

и φ(ei) = ti (1 ≤ i ≤ 5), φ(e6) = t1, φ(e7) = t3. Легко видеть, что π = (TN,φ) является

корректным временным причинным сетью-процессом ВСП T N .

Будем говорить, что π = (TN,φ) и π′ = (TN ′, φ′) из CP(T N ) изоморфны (обозначается

π ≃ π′), если существует изоморфизм f : TN ≃ TN ′ такой, что φ(x) = φ′(f(x)) для всех

3Два ВЧУМ η = (X,⪯, λ, τ) и η′ = (X′,⪯′, λ′, τ ′) изоморфны (обозначается η ≃ η′), если существует биекция β : X → X′

такая, что (а) x ⪯ y ⇐⇒ β(x) ⪯′ β(y) для всех x, y ∈ X; (б) λ(x) = λ′(β(x)) и τ(x) = τ ′(β(x)) для всех x ∈ X.
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x ∈ B ∪ E; π′ является ∗-расширением π в T N , (обозначается π −→∗ π′) (∗ ∈ {i, s, p}),
если TN −→∗ TN ′ и φ = φ′|B∪E.

В дальнейшем понадобятся дополнительные обозначения для расширений временных

причинных сетей-процессов. Для π, π′ ∈ CP(T N ) будем писать:

• π
(a,θ)−→i π

′, если π′ является i-расширением π и {e} = E ′ \ E, lπ′(e) = a, τπ′(e) = θ;

• π
(A,θ)−→s π

′, если π′ является s-расширением и E ′\E является шагом в π′, A = L(φ(E ′\
E)) и θ = τ(E ′ \ E);

• π
P−→p π

′, если π′ является p-расширением π и ВЧУМ P ∼ η(π′) \ η(π).

Для π = (TN,φ) ∈ CP(T N ) определим функцию FSπ, которая отображает s-лине-

аризацию ρ = V1 . . . Vk TN в последовательность вида: FSπ(ρ) = (φ(V1), τ(V1) − 0) . . .

(φ(Vk), τ(Vk)− τ(Vk−1)).

Следующие утверждение и лемма являются обобщениями результатов из [1] (Утвер-

ждение 1 и Лемма 2), которые устанавливют взаимосвязи между последовательностями

срабатываний и корректными временными причинными сетями-процессами ВСП,

Утверждение 1. Пусть T N — ВСП. Тогда

(а) если π = (TN,φ) ∈ CP(T N ) и ρ — s(i)-линеаризация TN , то существует единст-

венная последовательность срабатываний FSπ(ρ) ∈ FSs(i)(T N );

(б) если σ ∈ FSs(i)(T N ), то существует единственный (с точностью до изоморфиз-

ма) временной причинный сеть-процесс πσ = (TN,φ) ∈ CP(T N ) и единственная

s(i)-линеаризация ρσ TN такие, что FSπσ(ρσ) = σ.

Лемма 1. Пусть σ ∈ FSs(i)(T N ) и π ∈ CP(T N ) такие, что σ = FSπ(ρ), где ρ —

s(i)-линеаризация TNπ. Тогда

(а) если σ(U, θ) ∈ FSs(i)(T N ), то существует π̃ ∈ CP(T N ) такой, что π →s(i) π̃ в

T N и σ(U, θ) = FSπ̃(ρV ), где ρV — s(i)-линеаризация TNπ̃;

(б) если π →s(i) π̃ в T N , то существует σ(U, θ) ∈ FSs(i)(T N ) такая, что σ(U, θ) =

FSπ̃(ρV ), где ρV — s(i)-линеаризация TNπ̃.

Пример 4. Для временного причинного сети-процесса π = (TN,φ) ВСП T N (см. при-

мер 3) и s-линеаризации ρ = {e1, e3} {e2} {e7, e6} {e5, e4} временной причинной сети TN

получаем, что FSπ(ρ) = ({t1, t3}, 3) (t2, 2) ({t1, t3}, 2) ({t5, t4}, 2) является последователь-

ностью срабатываний ВСП T N (см. пример 1).
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4. Обратимые вычисления

При исследовании поведения вычислительных систем появилась необходимость отме-

нять часть уже выполненных действий. При введении понятий тестовых эквивалентностей

с учетом обратимых действий в дальнейшем будет использоваться подход причинной обра-

тимости. Будем определять обратимые вычисления как вычисления в которых возможна

отмена выполненного действия, если действие не является причиной для других действий

процесса.

Введем обозначения для множества отменяемых действий
←−
Act = {←−a | a ∈ Act}, ←→Act =

←−
Act ∪ Act, при этом выполняется условие что

←−
Act ∩ Act = ∅, и биекцию J←−· K : Act → ←−Act,

такую что J←−· K(a) =←−a .

Аналогичным образом вводятся обозначения для отменяемых ВЧУМов.
←−−T P(Act) =

{←−P | P ∈ T P(Act)}; ←−−T Pe(Act) = {
←−
P | P ∈ T Pe(Act)},

←→T P(Act) = ←−−T P(Act) ∪ T P(Act), и

биекция J←−· K расширяется на T P(Act).
Через ←→a и

←→
P будем обозначать элементы множеств

←→
Act и

←→T P(Act) соответственно.

Отметим, что отменяемые действия используются только в качестве обозначения дейст-

вий для отмены, а не являются самостоятельными действиями. Отменяемое действие

означает что для текущего процесса можно найти процесс, который может быть расширен

до текущего, и расширение будет содержать событие, помеченное выбранным для отмены

действием. Для простоты восприятия далее под←−a и
←−
P подразумеваются J←−· K(a) и J←−· K(P )

для a ∈ Act, P ∈ T P(Act) соответственно.

Пусть π = (TN,φ), π′ = (TN ′, φ′) ∈ CP(T N ), a ∈ Act, A ∈ ActN, θ ∈ T, P ∈ T P(Act).
Введем обозначения для выполнения отмены действий и обратимых вычислений.

• Если π′
P−→p π (π′

(a,θ)−→i π, π′
(A,θ)−→s π ), будем писать π

←−
P−→p π

′ (π
(←−a ,θ)−→ i π

′, π
(
←−
A,θ)−→s π

′ ),

• Для ⋆, ∗ ∈ {i, s, p} будем писать π
←→
P−→⋆−∗ π′, если π

P−→∗ π′ или π′
←−
P−→⋆ π. Аналогич-

ным образом определяются обозначения π
(←→a ,θ)−→ i−i π′ и π

(
←→
A ,θ)−→ s−s π′.

Если нет необходимости в уточнении или смысл понятен из контекста, символы
←→
P и/или

⋆, ∗ будут опускаться.

Если π
←→
P−→ π′, обозначим E ′≬E =

 E ′ \ E, если π
P−→ π′,

E \ E ′, если π
←−
P−→ π′.

Кроме того, введем обозначения для вычислений во временных сетях-процессах с сохра-

нением истории. Пусть TP = P1P2 . . . Pk ∈ T P⊏
⋆−∗(Act) при ⋆, ∗ ∈ {i, s, p}, тогда π

TP
↪→⋆−∗ π′,

если существуют πj ∈ CP(T N ) (1 ≤ j ≤ k) такие что π0
Pj−→ πj, π′ = πk и πj−1 −→⋆−∗ πj.
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В дальнейшем, при определении тестовых эквивалентностей с обратимостью понадо-

бятся обозначения отменяемых действий в последовательностях срабатываний в ВСП T N .

Для обратимых вычислений в корректных временных сетях-процессах введем связанные

с ними обозначения для последовательностях срабатываний.

Пусть ⋆, ∗ ∈ {i, s}. Если существуют πj ∈ CP(T N )(1 ≤ j ≤ k) такие, что π0
(A1,θ1)−→ π1

(
←→
A 2,θ1)−→ π2 . . . πk−1

(
←→
A k,θk)−→ πk обозначим Uj = φ(Ej≬Ej−1), где El = ETNπl

(0 ≤ l ≤ k). Тогда

последовательность ←→σ = U1

←→
U2 . . .

←→
Uk с L(←→σ ) = A1(θ1)

←→
A2(θ2) . . .

←→
Ak(θk) будем называть

обратимой ⋆− ∗-последовательностью срабатываний T N .

Обозначим через FS⋆−∗(T N ) множество обратимых ⋆ − ∗-последовательностей сра-

батываний в ВСП T N из S0. Определим обратимые языки ВСП T N , ⋆, ∗ ∈ {i, s}
следующим образом:

L⋆−∗(T N ) = {L(←→σ ) | ←→σ ∈ FS⋆−∗(T N )};

T Pomi−p(T N ) = {←→P 1
←→
P 2 . . .

←→
P k0 ≤ k | Pj ∈ T P(Act) ∪

←−−T Pe(Act)(1 ≤ j < k), ∃πj(1 ≤
j ≤ k) ∈ CP(T N ) πl

←→
P l−→i−p πl+1, 0 ≤ l < k)};

T Posi−p(T N ) = {TP = P1P2 . . . Pk ∈ T P⊏
i−p(Act)(0 ≤ k) | Pj ∈ T Pos(T N ), ∃π ∈

CP(T N ) π0
TP
↪→i−p π(1 ≤ j ≤ k)}.

5. Тестовые эквивалентности

При интерливинговом и шаговом подходах к определению тестовой эквивалентности

в качестве тестов рассматриваются последовательности w выполняемых действий или

мультмножеств независимых действий (вычисления процесса) и множества W возможных

дальнейших действий или шагов. Процесс проходит тест, если после выполнения каждой

последовательности w дальше может выполниться хотя бы один из элементов из W . Два

процесса тестово эквивалентны, если они проходят одно и то же множество тестов. Во

временном варианте добавляется информация о временах выполнения действий. Для

сравнения поведения процессов с обратимыми вычислениями в тестовые последователь-

ности включаются отменяемые действия.

Определение 6. Пусть T N и T N ′ — ВСП, ⋆, ∗ ∈ {i, s}. Для последовательности w ∈
(ActN × T)∗ (w ∈ (

←→
ActN × T)∗) и множества W ⊆ ActN × T, (W ⊆ ←→ActN × T), T N after w

MUST∗(⋆−∗) W , если для любой σ ∈ FS∗(T N ) (←→σ ∈ FS⋆−∗(T N )) такой, что L(σ) = w

(L(←→σ ) = w), существуют (A, θ) ∈ W и σ(U, θ) ∈ FS∗(T N ) ((
←→
A , θ) ∈ W и ←→σ (

←→
U , θ) ∈

FS⋆−∗(T N )) такие, что L(σ(U, θ)) = w (A, θ) (L(←→σ (
←→
U , θ)) = w (

←→
A , θ)).
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T N и T N ′ называются ∗−(⋆−∗)-тестово эквивалентными (обозначается T N ∼∗ TN ′

(T N ∼⋆−∗ TN ′)), если для любой последовательности w ∈ (ActN×T)∗ (w ∈ (
←→
ActN×T)∗) и

любого множества W ⊆ ActN×T (W ⊆ ←→ActN×T), T N after w MUST∗(⋆−∗) W ⇐⇒ T N ′

after w MUST∗(⋆−∗) W .
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Рис. 3.

Пример 5. ВСП T N 2, T N 3 и T N 4, изображенные на рис. 3, i-тестово эквивалентны,

тогда как T N 1 и T N 2 не являются таковыми. Легко проверить, что T N 2 after w =

(b, 0)(b, 0) MUSTi W = {(a, 3.9)}. Однако в FS i(T N 1) существует последовательность

срабатываний, которая помечена w и после которой невозможно срабатывание перехода,

помеченного a, в относительный момент времени 3.9. Таким образом, не выполняется

T N 1 after w MUSTi W .

T N 5 :

a[1,1] b[1, 1]a[1, 1]

b[0, 0]

T N 6 :

a[1, 1] b[1, 1]

Рис. 4. Пример s-, но не i− i-тестово эквивалентных ВСП.

Пример 6. Рассмотрим ВСП T N 5 и T N 6, изображенные на рис. 4. ВСП i- и s-тестово

эквивалентны, но не i−i-тестово эквивалентны.

Нетрудно проверить, что T N 6 after w = (a, 1)(b, 0) MUSTi−i W = {(←−a , 1)}. Но в

FS i−i(T N 5) существует обратимая последовательность срабатываний, которая помечена

w и в которой невозможна отмена действия (a, 1). Таким образом, не выполняется T N 5

after w MUSTi−i W .
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Исследования тестовых эквивалентностей в семантике частичного порядка были впер-

вые проведены Асето и др. в статье [4] в контексте моделей структур событий. При

таком подходе в качестве вычислений процесса рассматриваются частично-упорядочен-

ные мультимножества выполняемых действий (ЧУММы), и вместо множеств дальнейших

действий могут использоваться непосредственные расширения выполняемых

ЧУММов ([17]). Также, в качестве вычислений использовались и ЧУМы выполняемых

действий, как в работе [17] при определении одной из версий причинной тестовой эквива-

лентности.

Далее определяются временные тестовые эквивалентности в семантике частичного по-

рядка для ВСП с использованием ее корректных временных причинных сетей-процессов.

Сначала рассмотрим тестовые эквивалентности со слабо-сохраняющей историю семанти-

кой.

Определение 7. Пусть T N и T N ′ — ВСП. Для последовательности w ∈ (Act × T)∗

(w ∈ (
←→
Act × T)∗) и множества TP ВЧУМов T N after w MUSTwh(i−wh) TP, если для

любого π = (TN,φ) ∈ CP(T N ) такого что π0
w−→ π существуют TP ′ ∈ TP и π′ =

(TN ′, φ′) ∈ CP(T N ) такие, что π −→p(i−p) π′ и η(TN ′) ∼ TP ′.

T N и T N ′ называются wh−(i− wh)-тестово эквивалентными (обозначается

T N ∼i−wh T N ′), если для любой последовательности w ∈ (Act × T)∗ (w ∈ (
←→
Act × T)∗) и

любого множества TP ВЧУМов выполняется условие: T N after w MUSTwh(i−wh) TP′

⇐⇒ T N ′ after w MUSTwh(i−wh) TP′.

Далее для ВЧУМ TP ∈ T P(Act) будем обозначать TPp
TP ⊆ T P(Act) множество i-

расширений TP , TPi−p
TP ⊆ T P(Act) множество i− p-расширений TP .

Определение 8. Пусть T N и T N ′ — ВСП. Для последовательности ВЧУМов TP =

P1 . . . Pk ∈ T P(Act)∗ (TP =
←→
P 1 . . .

←→
P k ∈ (T P(Act) ∪ ←−−T Pe(Act))

∗) и множества TP ⊆
T P(Act) (TP ⊆ T P(Act)∪←−−T Pe(Act)) T N after TP MUSTpom(i−pom) TP, если для любого

π = (TN,φ) ∈ CP(T N ) такого что π
TP−→ π′ (π0

TP−→i−p π′) существуют TP ′ ∈ TP и

π′ = (TN ′, φ′) ∈ CP(T N ) такие, что π
TP ′
−→ π′ (π TP ′

−→i−p π′).

T N и T N ′ называются pom− (i− pom)-тестово эквивалентными (обозначается

T N ∼pom(i−pom) TN ′), если для любой последовательности ВЧУМов TP = P1 . . . Pk ∈
T P(Act)∗ (TP =

←→
P 1 . . .

←→
P k ∈ (T P(Act)∪←−TP e(Act))

∗) и множества TP ⊆ T P(Act) (TP ⊆
T P(Act)∪←−TP e(Act)) выполняется условие: T N after TP MUSTpom(i−pom) TP′ ⇐⇒ T N ′

after TP MUSTpom(i−pom) TP′.
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Пример 7. ВСП T N 7 и T N 8, изображенные на рис. 5, pom-тестово эквивалентны. Про-

верим, что они не i− pom-тестово эквивалентны.

Определим ВЧУМы TP1 = ({x1, x2}, ⪯1, λ1, τ1), где ⪯1= {(xi, xi) | 1 ≤ i ≤ 2} ∪
{(x1, x2)}, λ1(x1) = a, λ(x2) = b, τ1(x1) = τ ′(x2) = 1; TP2 = ({x1}, ⪯2, λ2, τ2), где

⪯2= {(x1, x1)}, λ2(x1) = b, τ2(x1) = 1; и ВЧУМ TP ′ = ({x3}, ⪯3, λ3, τ3), где ⪯3= {(x3, x3)},
λ3(x3) = c, τ3(x3) = 1. Для единственного временного причинного сети-процесса π1

8 =

(TN1
8 , φ

1
8) ∈ CP(T N 8), в котором ETN1

8
состоит из двух событий с пометками a и b,

находящихся в причинной зависимости, существует временной причинный сеть-процесс

π2
8 = (TN2

8 , φ
2
8) ∈ CP(T N 8), в котором ETN2

8
состоит из события с пометкой a, такой

что π2
8

TP2−→i π
1
8, т.е. π0

8
TP1−→i−p π1

8

←−
TP 2−→i−p π2

8. И для π2
8 существует временной причинный

сеть-процесс π3
8 = (TN3

8 , φ
3
8) ∈ CP(T N 8), в котором ETN3

8
состоит из двух событий с

пометками a и c, такой, что π2
8

TP ′
−→i π

3
8. Однако, в случае ВСП T N 7 не верно,что T N 7 after

TP1

←−
TP 2 MUSTi−pom {TP ′}, а именно для временного сети-процесса, элементы которого

отображаются в элементы ВСП T N 7, выделенные на рисунке красным цветом.

Также легко убедиться, что ВСП T N 2 и T N 4 (рис. 3) являются i − wh-, но не pom-

тестово эквивалентными.

T N 7 :

a[1, 1] a[1, 1]

b[0, 0] c[0, 0] b[0, 0]

a[1, 1] b[1, 1]
T N 8 :

a[1, 1] b[1, 1]

b[0, 0] c[0, 0]

a[1, 1]

Рис. 5. Пример i− i-, pom-, не wh-, не i− pom-тестово эквивалентных ВСП.

Определение 9. Пусть T N и T N ′ — ВСП. Для ВЧУМ TP и множества TP ВЧУМов

такого, что TP ⊆ TPp
TP , T N after TP MUSTpos TP, если для любого π = (TN,φ) ∈

CP(T N ) и для любого изоморфизма f : η(TN) −→ TP существуют TP ′ ∈ TP, π′ =

(TN ′, φ′) ∈ CP(T N ) и изоморфизм f ′ : η(TN ′) −→ TP ′ такие, что π →p π
′ и f ⊆ f ′.

T N и T N ′ называются pos-тестово эквивалентными (обозначается T N ∼pos TN ′),

если для любого ВЧУМ TP и любого множества TP ВЧУМов такого, что TP ⊆ TPp
TP ,

выполняется условие: T N after TP MUSTpos TP′ ⇐⇒ T N ′ after TP MUSTpos TP′.
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Введем обозначение для двух изоморфизмов: f ≷ f ′, если f ⊂ f ′ или f ′ ⊂ f .

Определение 10. Пусть T N и T N ′ — ВСП. Для последовательности ВЧУМов TP =

P1 . . . Pk ∈ T P⊏
i−p(Act) и множества ВЧУМов TP такого, что TP ⊆ TPi−p

Pk
, T N after TP

MUSTi−pos TP, если для любого π = (TN,φ) ∈ CP(T N ), такого что π0
TP
↪→i−p π′, и для

любого изоморфизма f : η(TN) −→ Pk существуют TP ′ ∈ TP, π′ = (TN ′, φ′) ∈ CP(T N )

и изоморфизм f ′ : η(TN ′) −→ TP ′ такие, что π −→i−p π′ и f ≷ f ′.

T N и T N ′ называются i − pos-тестово эквивалентными (обозначается T N ∼i−pos

TN ′), если для любой последовательности ВЧУМов TP = P1 . . . Pk ∈ T P⊏
i−p(Act) и любого

множества TP ВЧУМов такого, что TP ⊆ TPi−p
Pk

, выполняется условие: T N after TP

MUSTi−pos TP ⇐⇒ T N ′ after TP MUSTi−pos TP.

Пример 8. Рассмотрим ВСП T N 2, T N 3 и T N 4, изображенные на рис. 3. Легко про-

верить, что T N 2 и T N 3 pos-тестово эквивалентны, тогда как T N 3 и T N 4 не являются

таковыми. Убедимся в последнем. Определим ВЧУМ TP = ({x1, x2}, ⪯, λ, τ), где ⪯=
{(xi, xi) | 1 ≤ i ≤ 2}, λ(x1) = λ(x2) = b, τ(x1) = τ ′(x2) = 0; и ВЧУМ TP ′ = ({x1, x2, x3},
⪯′, λ′, τ ′), где ⪯′= {(xi, xi) | 1 ≤ i ≤ 3} ∪ {(x2, x3)}, λ′(x1) = λ′(x2) = b, λ′(x3) = a,

τ ′(x1) = τ ′(x2) = 0 и τ ′(x3) = 3.9. Для любого временного причинного сети-процесса π3 =

(TN3, φ3) ∈ CP(T N 3), в котором ETN3 состоит из двух параллельных событий с пометками

b и временными значениями, равными 0, и для любого изоморфизма f3 : η(TN3) −→ TP

можно найти временной причинный сеть-процесс π′3 = (TN ′3, φ
′
3) ∈ CP(T N 3), в котором

ETN ′
3

состоит из двух параллельных событий с пометками b и временными значениями 0

и третьего события с пометкой a и временным значением 3.9, находящегося в отношении

причинной зависимости с одним из b, и изоморфизм f ′3 : η(TN
′
3) −→ TP ′ такие, что π3 →p

π′3 и f3 ⊂ f ′3. Однако, это не так в случае ВСП T N 4. Таким образом, T N 3 after TP

MUSTpos {TP ′}, но не верно, что T N 4 after TP MUSTpos {TP ′}.

6. Взаимосвязи тестовых эквивалентностей

Следующая лемма устанавливает взаимосвязь между совпадением обратимых языков

ВЧУМов для ВСП с наличием между ними временных тестовых эквивалентностей с

интерливинговой и шаговой обратимостью.

Лемма 2. Пусть T N 1 и T N 2 — ВСП, ⋆, ∗ ∈ {i, s}. Тогда

T N 1 ∼⋆−∗ T N 2 ⇒ L⋆−∗(T N 1) = L⋆−∗(T N 2),
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T N 1 ∼pom T N 2 ⇒ T Pos(T N 1) = T Pos(T N 2),

T N 1 ∼i−pom T N 2 ⇒ T Pomi−p(T N 1) = T Pomi−p(T N 2),

T N 1 ∼i−pos T N 2 ⇒ T Posi−p(T N 1) = T Posi−p(T N 2).

Далее представлена иерархия введенных временных тестовых эквивалентностей в раз-

личных семантиках без обратимости и с обратимостью.
∼pos

∼pom

∼wh

∼s

∼i

∼i−s

∼i−i

∼s−s

∼s−i

Рис. 6.

Теорема 1. Пусть ⋆, ∗ ∈ {i, s, pos, pom,wh} и †, ‡ ∈ {i, s, ◦}, где ◦ означает "пусто".

Если ∼†−∗ и ∼†−∗ представлены на рис. 6, то для ВСП T N 1 and T N 2 выполняется:

T N 1 ∼†−∗ T N 2 =⇒ T N 1 ∼‡−⋆ T N 2 ⇐⇒ существует путь из ∼†−∗ в ∼‡−⋆ на рис. 6.

Доказательство. (⇐=) Очевидным образом следует из определений временных тесто-

вых эквивалентностей.

(=⇒) Для доказательства отсутствия на рис. 6 других прямых стрелок и стрелок в обрат-

ном направлении рассмотрим следующие контрпримеры.

1) ВСП T N 5 и T N 6, рассмотренные ранее в примере 6 s-тестово эквивалентны, и легко

проверить, что данные ВСП ни i− i-, ни pom-, ни pos-тестово эквивалентны.

T N 9 :

a[1, 1]

a[0, 0]

T N 10 :

a[1, 1] a[1, 1]

T N 11 :

a[1,1] a[1, 1]a[1, 1]

a[0, 0]

Рис. 7. Примеры i− i-тестово эквивалентных ВСП.

2) ВСП T N 9 и T N 10, изображенные на рис. 7, i− i-тестово эквивалентны, но ни s-, ни

s−i-тестово эквивалентны. Нетрудно проверить, что T N 10 after w = (a, 1)(a, 0)MUSTs−i
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W = {([←−−a : 2], 1)}. Однако в T N 9 после последовательности срабатываний, помеченной w,

невозможно срабатывание обратного шага, помеченного ([
←−−
a : 2], 1). Таким образом, не

выполняется T N 9 after w MUSTs−i W .

3) ВСП T N 10 и T N 11, изображенные на рис. 7, i− s-тестово эквивалентны. Но данные

ВСП не s−i-тестово эквивалентны, так как ВСП T N 11 не проходит тест, описанный выше

в п. 2.

T N 12 :

a[1, 1] a[1, 1]

a[0, 0] a[0, 0] a[0, 0]

a[1, 1]

T N 13 :

a[1, 1] a[1, 1]

a[0, 0]

Рис. 8. Пример s− s-, не wh, не pom-тестово эквивалентных ВСП.

4) ВСП T N 12 и T N 13, изображенные на рис. 8, s−s-тестово эквивалентны, но ни pom-,

ни wh-тестово эквивалентны. Проверим последнее.

Определим последовательность w = (a, 1)(a, 0) ∈ (Act×T)∗ и ВЧУМ TP ′ = ({x1, x2, x3},
⪯′, λ′, τ ′), где ⪯′= {(xi, xi) | 1 ≤ i ≤ 3} ∪ {(x1, x2)}, λ′(x1) = λ′(x2) = λ′(x3) = a,

τ ′(x1) = τ ′(x2) = τ ′(x3) = 1. Для любого временного причинного сети-процесса π13 =

(TN13, φ13) ∈ CP(T N 13), в котором ETN13 состоит из двух событий с пометками a и

временными значениями, равными 1, т.е. π0
13

w→ π13, существует его i-расширение, единст-

венный временной причинный сеть-процесс π′13 = (TN ′13, φ
′
13) ∈ CP( T N 13), в котором

ETN ′
13

состоит из трех событий: двух параллельных событий с пометками a и третьего

события с пометкой a, находящегося в отношении причинной зависимости с одним из a,

и временными значениями 1, т.е. π13 →i π
′
13, η(TN ′13) ≃ TP ′ и T N 13 after w MUSTwh

{TP ′}. В случае ВСП T N 12, например, для временного сети-процесса, элементы которого

отображаются в элементы ВСП T N 12, выделенные на рисунке красным цветом, не сущест-

вует необходимого i-расширения.

5) ВСП T N 7 и T N 8, изображенные на рис. 5 и рассмотренные ранее в примере 7,

i − i- и pom-тестово эквивалентны, но ни pos-, ни wh-тестово эквивалентны. Убедимся в

последнем.

Определим последовательность w = (a, 1) ∈ (Act × T)∗ и ВЧУМы TP1 = ({x1, x2}, ⪯1,
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λ1, τ1), где ⪯1= {(x1, x1), (x2, x2), (x1, x2)}, λ1(x1) = a, λ(x2) = c, τ1(x1) = τ1(x2) = 1; TP2 =

({x′1, x′2}, ⪯2, λ2, τ2), где ⪯2= {(x′1, x′1), (x′2, x′2)}, λ2(x
′
1) = a, λ2(x

′
2) = b, τ2(x′1) = τ2(x

′
2) = 1.

Легко видеть, что T N 8 after w MUSTwh {TP1, TP2}. Однако, это не так для ВСП

T N 7, так как, например, для временного сети-процесса, элементы которого отображаются

в элементы ВСП T N 7, выделенные на рисунке красным цветом, не существует i-расши-

рения, которому бы соответствовало ВЧУМ, изоморфное TP1 или TP2.

T N 14 :

a[1, 1]

a[1, 1]

b[0, 0]

b[0, 0]

c[0, 0]

d[1, 1]

f [1, 1] T N 15 :

a[1, 1] c[0, 0]

a[1, 1] b[0, 0]

d[1, 1]

f [1, 1]

a[1, 1]

c[0, 0]

b[0, 0]

d[1, 1]

a[1, 1]
c[0, 0]

b[0, 0] f [1, 1]

Рис. 9. Пример pos-, не i− i-тестово эквивалентных ВСП.

6) ВСП T N 14 и T N 15, изображенные на рис. 9, pos-тестово эквивалентны, но не i− i-

тестово эквивалентны. T N 14 after w = (a, 1)(b, 0)(d, 1)(
←−
d , 1)(f, 1) MUSTi−i W = {(e, 1)},

так как в ВСП T N 14 не существует обратимой i − i-последовательности срабатываний,

которая помечена w. Однако в ВСП T N 15 существует такая обратимая i − i-последова-

тельность срабатываний, входящие в нее переходы выделены на рисунке красным цветом,

и для неё невозможно расширение посредством срабатывания шага, помеченного (e, 1).

Таким образом, не выполняется T N 15 after w MUSTi−i W .

7) ВСП T N 16 и T N 17, изображенные на рис. 10, s − i-тестово эквивалентны, но не

s-тестово эквивалентны.

Нетрудно проверить, что T N 16 after w = (a, 1)MUSTs W = {([d1, d2], 1); (d3, 1)}. Но в

T N 17 после последовательности срабатываний, помеченной w и соответствующей средней

части ВСП на рисунке (переход выделен красным цветом), невозможны срабатывания ни
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T N 16 :

a[1, 2]

d2[1, 1] d1[0, 0]

d1[1, 1] d2[0, 0]

d3[1, 2]

a[1, 2]

d2[1, 1]

d1[1, 1]
T N 17 :

a[1, 2]

d2[1, 1] d1[0, 0]

d1[1, 1] d2[0, 0]

d3[1, 2]

a[1, 2]

d2[1, 1] d1[0, 0]

d1[1, 1] d2[0, 0]

a[1, 2]

d2[1, 1]

d1[1, 1]

Рис. 10. Пример s− i-, не s-тестово эквивалентных ВСП

шага, помеченного ([d1, d2], 1), ни шага (d3, 1). Таким образом, не выполняется T N 17 after

w MUSTs W .

Вопросы о взаимосвязях тестовых эквивалентностей с обратимостью в частично-упо-

рядоченной семантике в основном пока остаются открытыми. Как следствие Теоремы 1 и

примера 7 на рис. 11 представлена иерархия рассмотренных в статье временных тестовых

эквивалентностей с обратимостью. Стрелки с белыми наконечниками обозначают оста-

вшиеся открытыми вопросы о взаимосвязях.

∼pos

∼pom

∼wh

∼s

∼i

∼i−pos

∼i−pom

∼i−wh

∼i−s

∼i−i

∼s−s

∼s−i

Рис. 11.
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7. Заключение

В данной статье была сделана попытка расширить тестовые эквивалентности введением

тестов с возможностью отмены выполненных действий. В контексте непрерывно-времен-

ных сетей Петри были введены понятия тестовых эквивалентностей в интерливинговой,

шаговой и частично-упорядоченной семантиках с обратимостью в интерливинговой и ша-

говой семантиках. Для введения отмены действий применялся метод причинной обрати-

мости, который хорошо поддерживается использованной для представления вычислений

ВСП частично-упорядоченной семантикой причинных сетей-процессов. Были исследова-

ны взаимосвязи между изученными ранее ([1, 10]) и введенными тестовыми эквивалент-

ностями. Установлено, что тестовая эквивалентность в частично-упорядоченной семанти-

ке слабее интерливинговой тестовой эквивалентности с обратимостью в интерливинговой

семантике. Также в полученной иерархии показано, что, в отличие от бисимуляций с обра-

тимостью ([29]), интерливинговая тестовая эквивалентность с шаговой обратимостью не

сильнее шаговой тестовой эквивалентности с интерливинговой обратимостью. Заметим,

что и для вариантов эквивалентностей с "расширенным будущим", тестовые эквивалент-

ности для случаев с "единичным будущим" и "расширенным будущим" различаются,

в отличие от бисимуляционной эквивалентности, для которых установлено совпадение

([10]). Также остался открытым вопрос о взаимоотношении некоторых тестовых экви-

валентностей в частично-упорядоченной семантике. Поэтому в дальнейшем планируется

продолжить изучение тестовых эквивалентностей с шаговой обратимостью, а также иссле-

довать тестовые эквивалентности с обратимостью в частично-упорядоченной семантике.
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Теоретико-категорная характеризация семантик систем

переходов первичных структур событий с отменяемыми

событиями при сохранении причинной зависимости

Грибовская Н.С. (Институт систем информатики СО РАН)

Вирбицкайте И.Б. (Институт систем информатики СО РАН)

Реверсивные (обратимые) вычисления, широко изучаемые в последние годы, пред-

ставляют собой нетрадиционную форму вычислений, которые могут быть выполнены

как в прямом, так и в обратном направлении. Любая последовательность действий,

выполняемых системой, впоследствии может быть отменена по какой-либо причине

(например, в случае ошибки), что позволяет восстановить предыдущие состояния си-

стемы, как если бы отмененные действия вообще не выполнялись. Структуры событий

– это основополагающая модель теории параллелизма, позволяющая понять парал-

лельные процессы путем описания происходящих событий и взаимосвязей между ни-

ми. В литературе выделяются два структурно отличающихся подхода к построению

семантики систем переходов для моделей структур событий. Один подход основан на

конфигурациях, т.е. наборах уже выполненных событий, а другой — на остаточных

структурах, т.е. невыполненных фрагментах модели. Системы переходов, основанные

на конфигурациях, в основном используются для представления семантики и эквива-

лентностей моделей параллелизма. Системы переходов, построенные на остаточных

структурах, активно применяются для демонстрации согласованности операционной и

денотационной семантик алгебраических исчислений параллельных процессов и для

визуализации поведения моделей. В настоящей статье дается теоретико-категорная

характеризация двух типов семантик систем переходов для обратимых первичных

структур событий, учитывающих при отмене событий их причинно-следственные за-

висимости, и устанавливается взаимосвязь таких семантик, что может помочь при

построении алгебраических описаний композиций обратимых параллельных процес-

сов.

Ключевые слова: структуры событий, отменяемые события, системы переходов,

бисимуляция, функторы, теория категорий

1. Введение

В последние годы концепция ‘обратимости’ вычислений широко изучалась в поисках

механизмов, позволяющих отменять некоторые выполняемые в вычислительном процессе
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действия, которые по какой-либо причине необходимо аннулировать (например, в случае

ошибки). ‘Обратимые’ вычисления могут выполняться не только в традиционном прямом

направлении, но и в обратном, восстанавливая прошлые состояния и вычисляя входные

данные из выходных. ‘Обратимость’ вычислений находит свое применение в различных об-

ластях, включая абстракции в программировании для разработки надежных и безопасных

систем [31, 36], анализ и отладку программ [33], моделирование биохимических процессов

[29], разработку аппаратного обеспечения и квантовые вычисления [13] и т.д.

В теории параллельных систем и процессов был изучен ряд аспектов ‘обратимых’ вы-

числений, связанных с различными моделями параллелизма: клеточными автоматами [26],

алгебраическими исчислениями процессов [11, 32], сетями Петри [5, 14, 38, 41], структу-

рами событий [37, 45, 47], мембранными системами [46] и т.д. Эти исследования приве-

ли к выявлению трех основных методов обращения параллельных процессов: обратное

отслеживание [12, 42], причинная обратимость [11, 38, 42] и внепричинная обратимость

[31, 41, 42], которые отличаются порядком выполнения действий в обратном направле-

нии. Под обратным отслеживанием обычно понимается возможность отменять действия в

порядке, обратном тому, в котором они были выполнены. Причинная обратимость пред-

полагает, что действие может быть отменено при условии, что все действия, причинно

зависящие от данного действия, (если таковые имеются) уже были отменены. Внепри-

чинная обратимость — это форма обращения вычислений, не сохраняющая причинную

зависимость и наиболее характерная для моделирования биохимических систем.

Структуры событий, предложенные Винскелем в его диссертации [48], являются од-

ной из центральных моделей параллельных недетерминированных процессов. Структуры

событий использовались для установления связей между различными моделями паралле-

лизма [15, 17, 39, 48], для определения денотационной и операционной семантик алгебраи-

ческих исчислений и языков спецификации параллельных процессов [9, 18, 27, 28, 30, 48],

для определения поведенческих эквивалентностей между процессами [16], для моделиро-

вания квантовых стратегий и игр [49].

Известно, что установление связей между моделями систем переходов и структур со-

бытий способствует изучению и решению различных проблем анализа и верификации па-

раллельных систем. Различают два метода построения семантики систем переходов для

структур событий. В первом методе (см. [2, 15, 16, 25, 27, 48] среди прочих) состояния си-

стемы переходов — это конфигурации (наборы уже произошедших событий), а переходы
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между состояниями создаются, начиная с начальной (как правило, пустой) конфигура-

ции, посредством расширения конфигураций за счет добавления событий, которые проис-

ходят в предыдущем состоянии. Во втором, более ‘структурно-композиционном’, методе

(см. [4, 8, 10, 27, 28, 30, 34, 40] среди прочих) начальное состояние системы переходов

— это заданная структура событий, состояния — это остаточные структуры, получае-

мые посредством удаления событий, уже произошедших и конфликтующих с ними в ходе

выполнения структуры, а переходы между состояниями создаются по мере построения

остаточных структур. В литературе системы переходов, основанные на конфигурациях,

преимущественно применяются для определения семантики и эквивалентностей парал-

лельных моделей, а системы переходов, основанные на остаточных структурах, — для по-

строения операционной семантики алгебраических исчислений параллельных процессов

и демонстрации согласованности операционной и денотационной семантик. Взаимосвязи

между двумя типами систем переходов впервые изучались в статье [35] для наиболее про-

стой модели — первичных структур событий, а затем в статьях [6] и [7] — для широкого

спектра моделей структур событий с асимметричным и симметричным конфликтом.

Обратимые структуры событий расширяют структуры событий с целью представления

параллельных недетерминированных процессов, способных отменять выполненные дей-

ствия, позволяя конфигурациям изменяться посредством удаления событий, а не только

добавления их. В работах [45, 47] Филлипс и др. определили причинные и внепричинные

обратимые формы первичных [45], асимметричных [45, 47] и обобщенных [47] структур

событий и показали соответствие между их конфигурациями и конфигурациями тради-

ционных (без отменяемых событий) моделей. В статье [20] Граверсен и др. представили

категории различных классов обратимых структур событий, включая упомянутые выше,

и построили функторы между этими категориями. В работе [3] Обер и Кристеску разрабо-

тали в терминах структур конфигураций ‘истинно’ параллельную семантику обратимого

расширения CCS, RCCS (без автопараллелизма, автоконфликта и рекурсии). В статье

[21] Граверсен и др. построили категорию обратимых структур событий с расслоением

и симметричным конфликтом и использовали подкатегорию, учитывающую причинно-

следственную зависимость между событиями, для моделирования семантики другого об-

ратимого расширения CCS, CCSK. В работе [22] те же авторы представили π-исчисления

со статической обратимостью, при которой выполнение действия не изменяет структуру

процесса, и с динамической обратимостью, при которой выполнение действия перемещает
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его в отдельную историю. Для статического исчисления денотационная семантика опреде-

лена в терминах структур событий с расслоением [27], которая индуктивно генерируется

на основе структуры процесса. Для динамического исчисления операционная семанти-

ка построена на первичных структурах событий, которая генерируется из асинхронных

систем переходов. Показано соответствие между результирующими структурами собы-

тий. В статье [44] логика идентификатора событий (EIL) была введена для расширения

логики Хеннесси-Милнера с помощью обратных модальностей. EIL-эквивалентность соот-

ветствует эквивалентности наследуемой бисимуляции с сохранением истории (hereditary

history-preserving bisimulation) в контексте стабильных структур конфигураций. В работах

[19, 43] изучаются взаимосвязи различных поведенческих эквивалентностей в обратимых

моделях.

Цель данной статьи — дать теоретико-категорную характеризацию двух типов семан-

тик систем переходов, основанных на конфигурациях и на остаточных структурах, для

обратимых первичных структур событий, учитывающих при отмене событий их причинно-

следственные зависимости, и понять взаимосвязи этих семантик, что может помочь в по-

строении алгебраических исчислений для описания композиций обратимых параллельных

процессов.

Эта статья построена следующим образом. В разделе 2 рассматриваются синтаксис

обратимых первичных структур событий и их шаговая семантика в терминах конфигу-

раций/трасс. В разделе 3 определяется оператор удаления событий, который использует-

ся для построения остаточных структур, и демонстрируется корректность оператора. В

разделе 4 разрабатывается два типа семантик систем переходов для обратимых первич-

ных структур событий. В разделе 5 показываются различия между этими семантиками с

теоретико-категорной точки зрения. В разделе 6 приводятся заключительные замечания.

Приложение А содержит краткую справку по базовым определениям теории категорий, а

в приложении Б представлены доказательства лемм и утверждений.

2. Обратимость в первичных структурах событий

В этом разделе сначала определяется модель первичных структур событий (ПСС) [48],

а затем формулируется понятие обратимых первичных структур событий (ОПСС) [45], а

также рассматривается их (шаговая) семантика и свойства.

Для формального описания поведения параллельных систем используются модели струк-
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тур событий, в которых элементы поведения представлены событиями. Существуют раз-

личные способы определения отношений между событиями. В ПСС причинно-следствен-

ная зависимость между событиями задается частичным порядком, а несовместимость со-

бытий определяется отношением конфликта. Два события, которые не находятся ни в

причинно-следственной зависимости, ни в конфликте, считаются независимыми (парал-

лельными).

Определение 1. (Помеченная) первичная структура событий (ПСС) (на множестве

L = {a, b, c, . . .} действий) — это кортеж E = (E,<, ♯, l, C0), где

• E — счетное множество событий;

• < ⊆ E × E — иррефлексивный частичный порядок (причинно-следственная зависи-

мость (ПСЗ)), удовлетворяющий принципу конечности причин: для каждого e ∈ E

верно, что ⌊e⌋< = {e′ ∈ E | e′ < e} — конечное множество. Для подмножества

X ⊆ E событий будем писать ⌊X⌋<, чтобы обозначать множество {e′ ∈ E | e′ < e

для некоторого e ∈ X} предшественников событий в X;

• ♯ ⊆ E ×E — иррефлексивное симметричное отношение конфликта, удовлетворяю-

щее принципу наследования конфликта: для всех e, e′, e′′ ∈ E верно, что если e < e′

и e ♯ e′′, то e′ ♯ e′′;

• l : E → L — помечающая функция.

Итак, ПСС — это модель, основанная на событиях параллельных и недетерминирован-

ных процессов, в которой события, помеченные действиями, рассматриваются как ато-

марные, неделимые и мгновенные действия, некоторые из которых могут происходить

только после других (т.е. существует ПСЗ, представленная иррефлексивным частичным

порядком < между событиями) и некоторые из которых не могут происходить вместе (т.е.

между событиями существует конфликт ♯). Кроме того, необходимы принцип конечности

причин и принцип наследования конфликта.

ПСС выполняется по мере того, как происходят события, начиная с начального состоя-

ния и переходя из одного состояния в другое. Состояние в ПСС называется конфигурацией

и представляет собой множество уже произошедших событий. Подмножество X ⊆ E собы-

тий является лево-замкнутым относительно <, если для всех e ∈ X верно, что ⌊e⌋< ⊆ X;

является бесконфликтным, если для всех e, e′ ∈ X верно, что ¬(e ♯ e′), запись CF (X) обо-

значает, что множество X бесконфликтно. Подмножество C ⊆ E является конфигурацией

в ПСС E , если C конечно, лево-замкнуто относительно < и бесконфликтно.
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Обратимые первичные структуры событий (ОПСС) [45, 47] основаны на более слабой

форме ПСС, поскольку принцип наследования конфликта может не сохраняться при до-

бавлении обратимости. Кроме того, в ОПСС некоторые события рассматриваются как

отменяемые, а также добавляются два отношения между событиями: обратная ПСЗ и

отношение предотвращения. Первое отношение — это ПСЗ в обратном направлении, т.е.

чтобы отменить событие в текущей конфигурации, в ней должны присутствовать события,

от которых это событие обратимо зависит. Второе отношение, напротив, идентифицирует

те события, присутствие которых в текущей конфигурации предотвращает отмену собы-

тия.

Определение 2. (Помеченная) обратимая первичная структура событий (ОПСС) (на

множестве L) — это кортеж E = (E,<, ♯, l, F,≺,�, C0), где

• E — счетное множество событий;

• ♯ ⊆ E × E — иррефлексивное и симметричное отношение конфликта;

• <⊆ E × E — иррефлексивный частичный порядок (причинно-следственная зависи-

мость), удовлетворяющая условию: для каждого e ∈ E верно, что ⌊e⌋< — конечное и

бесконфликтное множество, а также для каждых e, e′ ∈ E верно, что если e < e′,

то ¬(e ♯ e′);

• l : E → L — помечающая функция;

• F ⊆ E — отменяемые события, обозначаемые через F = {u | u ∈ F};

• ≺⊆ E×F — обратная причинно-следственная зависимость такая, что для каждого

u ∈ F верно, что u ≺ u и ⌞u⌟≺ = {e | e ≺ u} — конечное и бесконфликтное

множество;

• � ⊆ E × F — отношение предотвращения такое, что для каждого u ∈ F верно:

если e ≺ u, то ¬(e� u);

• ≪ — транзитивная устойчивая причинно-следственная зависимость такая, что

e ≪ e′, если и только если e < e′, а также e′ � e, если e ∈ F . Отношение

конфликта ♯ наследуется по устойчивой ПСЗ ≪: если e ♯ e′ ≪ e′′, то e ♯ e′′;

• C0 ⊆ E — начальная конфигурация, которая является конечным, лево-замкнутым

относительно < и бесконфликтным множеством.

ОПСС с ∅-компонентами обозначается O.

Несложно проверить, что любая ПСС также является ОПСС, имеющая F = ∅ и C0 = ∅.

Тогда любое понятие, определенное для ОПСС, применимо и к ПСС.
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При графическом представлении ОПСС используются следующие обозначения. Дей-

ствия, связанные с событиями, изображаются рядом с самими событиями. Если не возник-

нет двусмысленности, будем использовать действия, а не имена событий для обозначения

событий. Неотменяемые события рисуются в квадратиках, а отменяемые — в кружоч-

ках. Отношение ПСЗ изображается сплошными стрелками (за исключением тех, которые

выводятся по транзитивности), отношение обратной ПСЗ — пунктирными стрелками, а

также показываются отношения конфликта и предотвращения. События, относящиеся к

начальной конфигурации, окрашены в темно-серый цвет. Очевидно, что если начальная

конфигурация представляет собой пустое множество, то никакие события не будут окра-

шены в темно-серый цвет.

E1:
a b c

d e

♯1 ♯1

(а)

E2:

a

b

�
2

(б)

E3:

b

a c♯3

(в)

E4:

a

b c

♯4

(г)

Рис. 1. Примеры ОПСС

Пример 1. Рассмотрим показанную на рис. 1(а) структуру E1 с компонентами: E1 =

{a, b, c, d, e}; <1= {(b, d), (c, e)}; ♯1 = {(a, b), (b, a), (b, c), (c, b)}; l1 — идентичная функция;

F1 = {b, c}; ≺1= {(b, b), (c, c)}; �1 = ∅; C1
0 = ∅. Легко убедиться в том, что компоненты

структуры E1 удовлетворяют соответствующим пунктам определения 2. В частно-

сти, видим, что для каждого события f ∈ E1 (для каждого события u ∈ F1) множество

⌊f⌋<1 (⌞u⌟≺1) конечно и бесконфликтно; <1= {(b, d), (c, e)} и (b, d), (c, e) ̸∈ ♯1, а также

≺1= {(b, b), (c, c)} и (b, b), (c, c) ̸∈ �1. Заметим, что ♯1 не наследуется по <1, поскольку

a ♯1 b <1 d и ¬(a ♯1 d). Кроме того, пары (b, d) и (c, e) находятся в причинно-следственной

зависисмости <1, а отношение предотвращения �1 пусто. Тогда отношение устойчивой

ПСЗ тоже пусто. Поэтому конфликт ♯1 наследуется по ≪1. Таким образом, структура

E1 является ОПСС. 3

ОПСС выполняется по мере того, как происходят и/или отменяются события, начиная

с начальной конфигурации и переходя от одной конфигурации к другой. Множества собы-

тий, которые происходят/отменяются при таком переходе, называются шагами в ОПСС.
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Достижимые конфигурации — это подмножества событий, которые могут быть получе-

ны из начальной конфигурации путем выполнения шагов. Последовательность шагов —

трасса в ОПСС.

Определение 3. Пусть E = (E,<, ♯, l, F,≺,�, C0) — ОПСС и C ⊆ E — конечное, ле-

возамкнутое и бесконфликтное множество. Тогда

• для множеств A ⊆ E и B ⊆ F будем говорить, что шаг A ∪ B возможен из C,

если выполнены следующие условия:

а) A ∩ C = ∅, B ⊆ C, (C ∪ A) — конечное и бесконфликтное множество;

б) ∀e ∈ A, ∀e′ ∈ E : e′ < e ⇒ e′ ∈ (C \B);

в) ∀e ∈ B, ∀e′ ∈ E : e′ ≺ e ⇒ e′ ∈ (C \ (B \ {e}));

г) ∀e ∈ B, ∀e′ ∈ E : e′ � e ⇒ e′ ̸∈ (C ∪ A).

Если шаг A ∪ B возможен из C, то C
A∪B−→ C ′ = (C \ B) ∪ A. Будем писать l(A ∪

B) = M , если M — мультимножество на множестве L действий, определяемое

следующим образом: M = l(A ∪ B) = l(A) ∪ l(B), где мультимножество l(X) =∑
a∈L | {e ∈ X | l(e) = a} |.

• C — (достижимая (из C0)) конфигурация в E , если существуют множества Ai ⊆ E

и Bi ⊆ F для всех i = 1, . . . , n (n ≥ 0) такие, что Ci−1
Ai∪Bi−→ Ci и Cn = C. В этом

случае t = (A1 ∪ B1) . . . (An ∪ Bn) (n ≥ 0) — трасса в E и last(t) = Cn. Множество

(достижимых) конфигураций в E обозначается как Conf(E), а множество трасс

в E — как Trace(E). Понятно, что C ∈ Conf(E) — бесконфликтное множество.

• Две трассы t = (A1 ∪ B1) . . . (An ∪ Bn) (n ≥ 0) и t′ = (A′
1 ∪ B′

1) . . . (A
′
m ∪ B′

m) (m ≥

0) в E называются эквивалентными (обозначается t ∼ t′), если last(t) = last(t′).

Эквивалентный класс для трассы t обозначается [t].

Пример 2. Сначала вспомним пример 1 с ОПСС E1 с компонентами: E1 = {a, b, c, d, e};

<1= {(b, d), (c, e)}; ♯1 = {(a, b), (b, a), (b, c), (c, b)}; l1 — идентичная функция; F1 = {b, c};

≺1= {(b, b), (c, c)}; �1 = ∅; C1
0 = ∅. Рассмотрим возможные шаги из начальной конфигу-

рации в E1.

Так как события a, b и c не имеют предшественников по ПСЗ, то возможны следую-

щие вперед-переходы: ∅ ({a}∪∅)→ {a}, ∅ ({b}∪∅)→ {b} и ∅ ({c}∪∅)→ {c}. Поскольку пара (b, d) ((c, e))

принадлежит отношению <1, то событие d (e) не может произойти перед тем, как

событие b (c) произойдет. Тогда получаем следующий вперед-переход: {b} ({d}∪∅)→ {b, d}
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({c} ({e}∪∅)→ {c, e}). Из конфигураций {b} и {b, d} ({c} и {c, e}) возможен назад-шаг (∅∪{b})

((∅ ∪ {c})), поскольку (b, b) ∈≺1 ((c, c) ∈≺1), т.е. единственный предшественник по об-

ратной ПСЗ для события b (c) — само это событие, а также �1 = ∅, т.е. нет событий,

которые могли бы предотвратить отмену события b (c). Далее может иметь место

вперед-переход {d} ({c}∪∅)→ {c, d} ({e} ({b}∪∅)→ {b, e}), так как событие c (b) не имеет пред-

шественников по ПСЗ и события c и d (b и e) независимы (параллельны). Поскольку

пара (c, e) ((b, d)) принадлежит отношению <1 и события d и e параллельны, получаем

вперед-переход {c, d} ({e}∪∅)→ {c, d, e} ({b, e} ({d}∪∅)→ {b, e, d}). Затем возможен назад-переход

{c, d, e} (∅∪{c})→ {d, e} ({b, d, e} (∅∪{b})→ {d, e}), так как (b, b) ∈≺1 ((c, c) ∈≺1) и �1 = ∅. Таким

образом, видим, что ∅, {a}, {b}, {c}, {d}, {e}, {b, d}, {c, e}, {c, d}, {b, e}, {d, e}, {b, d, e},

{c, d, e} — конфигурации в E1. Исходя из того, что событие a параллельно с событи-

ями c, d, e, имеем такие конфигурации: {a, c}, {a, d}, {a, e}, {a, c, e}, {a, c, d}, {a, d, e},

{a, c, e, d}. Так как пара (a, b) ((b, c)) принадлежит отношению ♯1, события a и b (b и

c) не могут быть вместе в какой-либо конфигурации. Следовательно, все достижимые

конфигурации в E1 перечислены выше. Заметим, что следующие конфигурации дости-

жимы только посредством комбинации вперед- и назад-шагов: {d}, {e}, {b, e}, {c, d},

{d, e}, {b, d, e}, {c, d, e}, {a, d}, {a, e}, {a, c, d}, {a, d, e}, {a, c, e, d}.

Рассмотрим на рис. 1(б) ОПСС E2 с компонентами: E2 = {a, b}; <2= ∅; ♯2 = ∅; l2

— идентичная функция; F2 = {a}; ≺2= {(a, a)}; �2 = {(b, a)}; C2
0 = ∅. Поскольку отно-

шения <2 и ♯2 пусты, события a и b параллельны и поэтому они могут присходить в

любом порядке или одновременно. Тогда возможны вперед-шаги: ∅ ({a}∪∅)→ {a} ({b}∪∅)→ {a, b},

∅ ({b}∪∅)→ {b} ({a}∪∅)→ {a, b} и ∅ ({a,b}∪∅)→ {a, b}. Так как верно, что b �2 a, событие b предот-

вращает отмену события a, т.е. a не может быть отменено, если b присутствует

в конфигурации. Тогда можем идти назад из {a} в ∅ посредством шага (∅ ∪ {a}) и не

можем идти назад из {a, b}. Конфигурации в E2 — это множества ∅, {a}, {b}, {a, b}.

Трассы в E2 — это префиксы последовательностей:

(({a} ∪ ∅)(∅ ∪ {a}))∗({a} ∪ ∅)({b} ∪ ∅),

(({a} ∪ ∅)(∅ ∪ {a}))∗({a, b} ∪ ∅),

(({a} ∪ ∅)(∅ ∪ {a}))∗({b} ∪ ∅)({a} ∪ ∅).

Посмотрим, как выполняется показанная на рис. 1(в) ОПСС E3 с компонентами: E3 =

{a, b, c}; <3= ∅; ♯3 = {(a, c), (c, a)}; l3 — идентичная функция; F3 = {b}; ≺3= {(a, b), (b, b)};



64 Грибовская Н.С., Вирбицкайте И.Б. Теоретико-категорная характеризация семантик систем переходов ОПСС

�3 = ∅; C3
0 = ∅. Так как отношение <3 пусто, то все события в ОПСС E3 не имеют

предшественников по ПСЗ и поэтому из начальной конфигуации C3
0 возможны такие

вперед-шаги: ∅ ({a}∪∅)→ {a}, ∅ ({b}∪∅)→ {b} и ∅ ({c}∪∅)→ {c}. Поскольку события a и b (b и c)

параллельны, то имеем вперед-шаги: ∅ ({a,b}∪∅)→ {a, b}, {a} ({b}∪∅)→ {a, b} и {b} ({a}∪∅)→ {a, b}

(∅ ({b,c}∪∅)→ {b}, {b} ({c}∪∅)→ {b, c} и {c} ({b}∪∅)→ {b, c}). Так как события a и c конфликтуют, они

не могут вместе присутствовать ни в какой конфигурации. Тогда конфигурации {a, b} и

{b, c} не могут быть расширены соответственно событием c и событием a. Отношение

≺3= {(a, b), (b, b)} говорит о том, что событие b может быть отменено только, если

оба события a и b уже произошли. Так как отношение �3 пусто, то получаем {a, b} (∅∪{b})→

{a}. Таким образом, ∅, {a}, {b}, {c}, {a, b}, {b, c} — конфигурации в E3. Трассы в E3 —

это префиксы последовательностей:

({b} ∪ ∅)({c} ∪ ∅), ({c} ∪ ∅)({b} ∪ ∅), ({b, c} ∪ ∅),

({a} ∪ ∅)(({b} ∪ ∅)(∅ ∪ {b}))∗({b} ∪ ∅)((∅ ∪ {b})({b} ∪ ∅))∗,

({b} ∪ ∅)({a} ∪ ∅)((∅ ∪ {b})({b} ∪ ∅))∗(∅ ∪ {b})(({b} ∪ ∅)(∅ ∪ {b}))∗({b} ∪ ∅),

({a, b} ∪ ∅)((∅ ∪ {b})({b} ∪ ∅))∗(∅ ∪ {b})(({b} ∪ ∅)(∅ ∪ {b}))∗({b} ∪ ∅).

В конце построим конфигурации и трассы изображенной на рис. 1(г) ОПСС E4 с ком-

понентами: E4 = {a, b, c}; <4= ∅; ♯4 = {(a, c), (c, a)}; l4 — идентичная функция; F4 = {b};

≺4= {(b, b)}; �4 = ∅; C4
0 = ∅. Поскольку отношение <4 пусто и отношение ♯4 содержит

только пары (a, c) и (c, a), события a и b (b и c) параллельны и поэтому могут происхо-

дить в любом порядке или одновременно. Следовательно, имеем следующие вперед-шаги:

∅ ({a}∪∅)→ {a} ({b}∪∅)→ {a, b}, ∅ ({b}∪∅)→ {b} ({a}∪∅)→ {a, b} и ∅ ({a,b}∪∅)→ {a, b} (∅ ({b}∪∅)→ {b} ({c}∪∅)→

{b, c}, ∅ ({c}∪∅)→ {c} ({b}∪∅)→ {b, c} и ∅ ({b,c}∪∅)→ {b, c}). Единственное событие, необходимое для

отмены события b ∈ F4, — само это событие, поскольку ≺4= {(b, b)}. Так как �4 = ∅,

событие b может быть отменено в любой конфигурации, где оно присутствует. Кон-

фигурации в E4 — это множества ∅, {a}, {b}, {c}, {a, b}, {b, c}. Трассы в E4 — префиксы

последовательностей:

(({b} ∪ ∅)(∅ ∪ {b}))∗({b} ∪ ∅)({x} ∪ ∅)(∅ ∪ {b})(({b} ∪ ∅)(∅ ∪ {b}))∗({b} ∪ ∅),

(({b} ∪ ∅)(∅ ∪ {b}))∗({x} ∪ ∅)(({b} ∪ ∅)(∅ ∪ {b}))∗({b} ∪ ∅),

(({b} ∪ ∅)(∅ ∪ {b}))∗({x, b} ∪ ∅)(∅ ∪ {b})(({b} ∪ ∅)(∅ ∪ {b}))∗({b} ∪ ∅),

где x ∈ {a, c}. 3

ОПСС способны моделировать такую особенность обратимых вычислений, как согла-

сованность отношения обратимости с отношением ПСЗ: событие может быть отменено
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при условии, что все его последователи по ПСЗ были отменены. Это понятие обратимости

естественно для надежных параллельных систем, поскольку при возникновении ошибки

система пытается корректно вернуться к предыдущему состоянию.

Определение 4. ОПСС E = (E,<, ♯, l, F,≺,�, C0) называется

• учитывающей причино-следственную зависимость (со свойством УПСЗ), если для

событий e, e′ ∈ E верно, что e < e′ ⇒ e ≪ e′;

• сохраняющей причино-следственную зависимость (со свойством СПСЗ), если для

событий e ∈ E и u ∈ F верно, что e ≺ u ⇔ e = u, а также e� u ⇔ u < e.

Неформально говоря, в ОПСС со свойствами УПСЗ и СПСЗ предшественники по ПСЗ

могут быть отменены в текущей конфигурации только, если их последователи по ПСЗ

не присутствуют в этой конфигурации. Понятно, что ОПСС со свойством СПСЗ также

является ОПСС со свойством УПСЗ.

Пример 3. Сначала вспомним ОПСС E1 из примеров 1 и 2 с компонентами: E1 =

{a, b, c, d, e}; <1= {(b, d), (c, e)}; ♯1 = {(a, b), (b, a), (b, c), (c, b)}; l1 — идентичная функция;

F1 = {b, c}; ≺1= {(b, b), (c, c)}; �1 = ∅; C1
0 = ∅. Известно из примера 1, что отношение

устойчивой ПСЗ ≪1 пусто, потому что отношение ПСЗ <1 содержит пары (b, d) и

(c, e), а отношение предотвращения �1 пусто. Поскольку имеем ≪1 ̸=<1, E1 не обладает

свойствами УПСЗ и СПСЗ.

Проверим свойства ОПСС E2 из примера 2 с компонентами: E2 = {a, b}; <2= ∅; ♯2 = ∅;

l2 — идентичная функция; F2 = {a}; ≺2= {(a, a)}; �2 = {(b, a)}; C2
0 = ∅. ОПСС E2 имеет

свойство УПСЗ, поскольку отношение <2 пусто и, следовательно, отношение ≪2 пусто,

т.е. <2=≪2. С другой стороны, ОПСС E2 не обладает свойством СПСЗ, потому что

есть события a и b такие, что b�2 a и a ≮2 b.

Расссмотрим ОПСС E3 из примера 2 с компонентами: E3 = {a, b, c}; <3= ∅; ♯3 =

{(a, c), (c, a)}; l3 — идентичная функция; F3 = {b}; ≺3= {(a, b), (b, b)}; �3 = ∅ и C3
0 = ∅.

Так как множество последователей по ПСЗ для единственно отменяемого события b в

E3 пусто, то E3 имеет свойство УПСЗ, но она не обладает свойством СПСЗ, поскольку

имеем (a, b) ∈ ≺3 и a ̸= b.

В конце проанализируем свойства ОПСС E4 из примера 2 с компонентами: E4 =

{a, b, c}; <4= ∅; ♯4 = {(a, c), (c, a)}; l4 — идентичная функция; F4 = {b}; ≺4= {(b, b)};

�4 = ∅; C4
0 = ∅. ОПСС E4 обладает свойством СПСЗ, а значит, и свойством УПСЗ.
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Это потому, что верно следующее: <4= ∅ и �4 = ∅, а также предшественник по об-

ратной ПСЗ для отмены единственного отменяемого события b — само это событие,

поскольку имеем F4 = {b} и ≺4= {(b, b)}. 3

Следующая лемма говорит об особенности конфигураций в ОПСС со свойсвом УПСЗ,

которые остаются лево-замкнутыми относительно ПСЗ при выполнении ОПСС. Благодаря

определениям 2 и 3, истинность леммы следует из леммы 13(i) [24].

Лемма 1. Пусть E — ОПСС со свойством УПСЗ и C ∈ Conf(E). Тогда C лево-

замкнуто относительно <.

Приведенный ниже пример объясняет приведенную выше лемму.

Пример 4. Вспомним ОПСС E1 (<1= {(b, d), (c, e)}) из примеров 1–3, не обладающую

свойством УПСЗ. Знаем, что {d}, {e}, {b, e}, {c, d}, {d, e}, {b, d, e}, {c, d, e} и т.д. —

конфигурации в E1. Видим, что эти конфигурации не являются лево-замкнутыми от-

носительно <1.

Легко проверить, что в ОПСС E2 и E3 из примеров 2–3, обладающих свойством УПСЗ,

все конфигурации лево-замкнуты относительно ПСЗ. 3

3. Остаточные ОПСС

Оператор удаления для ОПСС, основанный на удалении из структуры событий уже

произошедших событий и конфликтующих с ними, необходим для построения остаточных

ОПСС.

В отличии от работы [1], где оператор удаления задан для более узкого подкласса

ОПСС со свойством СПСЗ на основе понятия конфигурации, введем определение операто-

ра удаления, используя понятие трассы. Это определение упрощает определение операто-

ра удаления из статьи [23] в части построения множеств предшественников неотменяемых

событий в шагах трассы.

Определение 5. Пусть E = (E,<, ♯, l, F,≺,�, C0) — ОПСС со свойством УПСЗ и t =

(A1 ∪ B1) . . . (An ∪ Bn) ∈ Traces(E) (C0

A1∪B1→ C1 . . . Cn−1

An∪Bn→ Cn) (n ≥ 0). Остаточная

структура E\t для E после t посредством оператора \ удаления определяется по индукции

0 ≤ i ≤ n следующим образом:

i = 0. E \ (t0 = ϵ) = (E0 = E, <0=<, ♯0 = ♯, l0 = l, F 0 = F , ≺0=≺, �0 = �, C0
0 = C0) = E.

i > 0. E \ ti = (Ei, <i=<i−1 ∩ (Ei × Ei), ♯i = ♯i−1 ∩ (Ei × Ei), li = li−1 |Ei, F i, ≺i=≺i−1

∩ (Ei × F i), �i = �i−1 ∩ (Ei × F i), Ci
0), где
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– Ei = Ei−1 \ (Ãi ∪ ♯i−1(Ãi)), где

Ãi = (Ai \ F i−1) ∪ ⌊(Ai \ F i−1)⌋<i−1 = {ã ∈ Ei−1 | ∃a ∈ Ai \ F i−1 : ã <i−1 a}),

♯i−1(Ãi) = {a ∈ Ei−1 | ∃ã ∈ Ãi : a ♯i−1 ã};

– F i = (F i−1 ∩ Ei) \
(
Âi ∪ ˆ̂

Ai

)
, где

Âi = {e ∈ F i−1 | ∃a ∈ Ãi : a�
i−1 e},

ˆ̂
Ai = {e ∈ F i−1 | ∃a ∈ ♯i−1(Ãi) : a ≺i−1 e};

– Ci
0 = ((Ci−1

0 \Bi) ∪ Ai) ∩ Ei.

E \ t = E \ tn.

Интуитивная интерпретация приведенного выше определения заключается в следую-

щем.

i = 0. Остаточная структура E \ ϵ для ОПСС E после пустой трассы ϵ — это сама ОПСС.

i > 0. На каждом этапе 1 ≤ i ≤ n построения остаточной структуры E \ ti для ОПСС E

после трассы ti = (A1 ∪B1) . . . (Ai ∪Bi) выполняется следующее:

– Множество Ei событий на i-ом этапе формируется из множества Ei−1 событий

(i−1)-го этапа посредством удаления событий из:

∗ множества Ãi = (Ai \ F i−1) ∪ ⌊(Ai \ F i−1)⌋<i−1 , где (Ai \ F i−1) — множе-

ство неотменяемых событий, происходящих на i-ом шаге, и ⌊(Ai \ F i−1)⌋<i−1

— множество событий, которые являются предшественниками по ПСЗ для

событий из (Ai \ F i−1) и которые происходят перед i-ым шагом;

∗ множества ♯i−1(Ãi) = {a ∈ Ei−1 | ∃ã ∈ Ãi : a ♯i−1 ã} событий, конфликтую-

щих с событиями из Ãi.

В силу правила выполнения шага и пункта б) в определении 3, события из мно-

жества Ãi присутствуют в конфигурации Ci, тогда как по пункту а) определе-

ния 3, события из множества ♯i−1(Ãi) отсутствуют в Ci. Понятно, неотменяемые

события из множества Ãi не могут быть отменены ни на одном последующем

шаге. Тогда в ОПСС со свойством УПСЗ i отменяемые события из множества

Ãi не могут быть отменены впоследствии, согласно пункту г) определения 3.

Поскольку, по пункту а) определения 3, события из Ãi в ОПСС со свойством

УПСЗ и события из ♯i−1(Ãi) в любой ОПСС не могут произойти в дальнейшем,

то оператор удаляет события из (Ãi ∪ ♯i−1(Ãi)) на i-ом этапе.

– Множество F i отменяемых на i-ом этапе событий — это пересечение множеств

iДля событий e, e′ ∈ E верно, что e < e′ ⇒ e′ � e, если e ∈ F .
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F i−1 отменяемых событий на (i−1)-ом этапе и Ei−1 оставшихся на i-ом этапе

событий, из которого удаляются события из:

∗ множества Âi отменяемых событий на (i−1)-ом этапе, которых события из

Ãi предотвращают от отмены;

∗ множества ˆ̂
A отменяемых событий на (i−1)-ом этапе, для которых события

из ♯i−1(Ãi) являются обратной причиной.

Поскольку события из Ãi уже присутствуют в конфигурации Ci и не могут быть

отменены впоследствии в ОПСС со свойством УПСЗ, то события из Âi стано-

вятся неотменяемыми, в силу пункта г) определения 3, в ОПСС со свойством

УПСЗ. Так как события из ♯i−1(Ãi) отсутствуют в Ci и не могут произойти в

дальнейшем, то события из ˆ̂
A становятся неотменяемыми, согласно пункту в)

определения 3.

– На основе полученных множеств Ei и F i строятся отношения <i, ♯i, ≺i, �i и

помечающая функция li на i-ом этапе.

– Начальная конфигурация Ci
0 на i-ом этапе формируется из событий, оставшихся

на i-ом этапе и принадлежащих начальной конфигурации на (i−1)-ом этапе,

измененной посредством выполнения шага (Ai ∪Bi).

Ниже приведены характерные свойства оператора удаления.

Лемма 2. Для ОПСС E = (E,<, ♯, l, F,≺,�, C0) со свойством УПСЗ (СПСЗ), трассы

t = (A1 ∪ B1) . . . (An ∪ Bn) (C0

A1∪B1→ C1 . . . Cn−1

An∪Bn→ Cn) (n ≥ 0) в E и остаточной

структуры E \ t = (En, <n, ♯n, ln, F n, ≺n, �n, Cn
0 ) верно:

(а) Ej ⊆ Ei, F j ⊆ F i, lj ⊆ li, ∇j ⊆ ∇i (∇ ∈ {<, ♯,≺,�}) для всех 0 ≤ i ≤ j ≤ n;

(б) E \ ti — ОПСС со свойством УПСЗ (СПСЗ) для всех 0 ≤ i ≤ n;

(в) Bi ⊆ F i−1 для всех 1 ≤ i ≤ n;

(г) Ai ⊆ Ei−1 для всех 1 ≤ i ≤ n;

(д) Ãi ⊆ Cn для всех 1 ≤ i ≤ n;

(е) Cn
0 = Cn ∩ En.

Доказательство этой леммы аналогично доказательству леммы 3 из статьи [23], но с уче-

том разницы определения множества предшественников по ПСЗ неотменяемых событий

в шаге трассы в определении 5.

Проиллюстрируем применение оператора удаления.
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E2 = E2 \ ϵ = E2 \ ({a} ∪ ∅)(∅ ∪ {a}):

a

b

�
2

(а)

E2 \ ({a} ∪ ∅):

a

b

�
2

(б)

E2 \ ({a} ∪ ∅)({b} ∪ ∅) = E2 \ ({a, b} ∪ ∅):
a

(в)

E2 \ ({b} ∪ ∅):
a

(г)

E2 \ ({b} ∪ ∅)({a} ∪ ∅):

O

(д)

Рис. 2. Остаточные структуры для E2

Пример 5. Рассмотрим обладающую свойством УПСЗ ОПСС E2 из примеров 2–4 с

компонентами: E2 = {a, b}; <2= ∅; ♯2 = ∅; l2 — идентичная функция; F2 = {a}; ≺2=

{(a, a)}; �2 = {(b, a)}; C2
0 = ∅. Знаем, что трассы в E2 — префиксы последовательностей:

(({a}∪∅)(∅∪{a}))∗({a}∪∅)({b}∪∅), (({a}∪∅)(∅∪{a}))∗({a, b}∪∅), (({a}∪∅)(∅∪{a}))∗({b}∪

∅)({a} ∪ ∅).

Применяя оператор удаления к ОПСС E2 и её трассам, получаем следующие струк-

туры:

– È2 = E2 \ ϵ = (E2, <2, ♯2, l2, F2, ≺2, �2, C2
0) (см. рис. 2(а));

– Ẽ2 = E2 \ (A1 = {a} ∪ B1 = ∅) = (Ẽ = E2, <̃ =<2, ♯̃ = ♯2, l̃ = l2, F̃ = F2, ≺̃ =≺2,

�̃ = �2, C̃0 = {a}), поскольку (Ã1 ∪ ♯2(Ã1)) = ∅, благодаря тому, что a ∈ F2, и

C̃0 = ((C2
0 = ∅) ∪ (A1 = {a})) ∩ (Ẽ = {a, b}) = {a} (см. рис. 2(б));

– Ê2 = E2 \ (A1 = {a} ∪ B1 = ∅)(A2 = ∅ ∪ B2 = {a}) = E2, так как (Ã2 ∪ ♯̇(Ã2)) = ∅, по

причине того, что A2 = ∅, и ((C̃0 = {a}) \B2 = {a}) ∩ Ê2 = ∅ (см. рис. 2(а));

– Ĕ2 = E2 \ (A1 = {a} ∪B1 = ∅)(A2 = {b} ∪B2 = ∅) = (Ĕ = {a}, <̆ = ∅, ♯̆ = ∅; l̆ = l2|{a};

F̆ = ∅; ≺̆ = ∅; �̆ = ∅, C̆0 = {a}), потому что Ã2 = {b}, благодаря тому, что

b ∈ A2 \ F̃ , и a ̸∈ F̆ , благодаря тому (b, a) ∈ �̃, а также C̆0 = ((C̃0 = {a}) ∪ (A2 =

{b})) ∩ (Ĕ = {a}) = {a} (см. рис. 2(в));

– Ě2 = E2\(A1 = {a, b}∪B1 = ∅) = Ĕ2, поскольку Ã1 = {b}, так как b ∈ A1\F2, и a ̸∈ F̌ ,

так как (b, a) ∈ �2, а также Č0 = ((C0
2 = ∅) ∪ (A1 = {a, b})) ∩ (Ě = {a}) = {a} = C̆0

(см. рис. 2(в));

– Ė2 = E2 \ (A1 = {b} ∪ B1 = ∅) = (Ė = {a}, <̇ = ∅, ♯̇ = ∅, l̇ = l2|{a}, Ḟ = ∅, ≺̇ = ∅,

�̇ = ∅, Ċ0 = ∅), так как Ã1 = {b}, в силу b ∈ A1 \ F2, и a ̸∈ Ḟ , в силу (b, a) ∈ �2, а
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также Ċ0 = ((C0
2 = ∅) ∪ (A1 = {b})) ∩ (Ė = {a}) = ∅ (см. рис. 2(г));

– Ë2 = E2 \ (A1 = {b}∪B1 = ∅)(A2 = {a}∪B2 = ∅) = (Ë = ∅, <̈ = ∅, ♯̈ = ∅, l̈ = ∅, F̈ = ∅,

≺̈ = ∅, �̈ = ∅, C̈0 = ∅), потому что Ã2 = {a}, благодаря тому, что a ∈ A2 \ Ḟ , а

также C̈0 = ((Ċ0 = ∅) ∪ (A2 = {a})) ∩ (Ė = ∅) = ∅ (см. рис. 2(д)).

Отметим, что оператор удаления создает одинаковые остаточные структуры после

различных трасс. Например, легко видеть, что:

È2 = Ê2 = E2 \ (({a} ∪ ∅)(∅ ∪ {a}))∗,

Ẽ2 = E2 \ (({a} ∪ ∅)(∅ ∪ {a}))∗({a} ∪ ∅),

Ĕ2 = E2 \ (({a} ∪ ∅)(∅ ∪ {a}))∗({a} ∪ ∅)({b} ∪ ∅) =

Ě2 = E2 \ (({a} ∪ ∅)(∅ ∪ {a}))∗({a, b} ∪ ∅),

Ė2 = E2 \ (({a} ∪ ∅)(∅ ∪ {a}))∗({b} ∪ ∅),

Ë2 = E2 \ (({a} ∪ ∅)(∅ ∪ {a}))∗({b} ∪ ∅)({a} ∪ ∅).

E3 = E3 \ ϵ:

b

a c♯3

(а)

E3 \ ({a} ∪ ∅):

b

(б)

E3 \ ({b} ∪ ∅):

b

a c♯3

(в)

E3 \ ({c} ∪ ∅):

b

(г)

E3 \ ({a} ∪ ∅)({b} ∪ ∅) = E3 \ ({b} ∪ ∅)({a} ∪ ∅) = E3 \ ({a, b} ∪ ∅):

b

(д)

E3 \ ({b} ∪ ∅)({c} ∪ ∅) = E3 \ ({b, c} ∪ ∅):

b

(е)

E3 \ ({c} ∪ ∅)({b} ∪ ∅):

O

(ж)

Рис. 3. Остаточные структуры для E3

Теперь рассмотрим обладающую свойством УПСЗ ОПСС E3 из примеров 2–4 с ком-

понентами: E3 = {a, b, c}; <3= ∅; ♯3 = {(a, c), (c, a)}; l3 — идентичная функция; F3 = {b};

≺3= {(a, b), (b, b)}; �3 = ∅ и C3
0 = ∅. Знаем, что трассы в E3 — это префиксы последова-

тельностей:

({b} ∪ ∅)({c} ∪ ∅), ({c} ∪ ∅)({b} ∪ ∅), ({b, c} ∪ ∅),
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({a} ∪ ∅)(({b} ∪ ∅)(∅ ∪ {b}))∗({b} ∪ ∅)((∅ ∪ {b})({b} ∪ ∅))∗,

({b} ∪ ∅)({a} ∪ ∅)((∅ ∪ {b})({b} ∪ ∅))∗(∅ ∪ {b})(({b} ∪ ∅)(∅ ∪ {b}))∗({b} ∪ ∅),

({a, b} ∪ ∅)((∅ ∪ {b})({b} ∪ ∅))∗(∅ ∪ {b})(({b} ∪ ∅)(∅ ∪ {b}))∗({b} ∪ ∅).

Остаточные структуры для ОПСС E3 после некоторых её трасс показаны на рис. 3.

А также имеем:

E3 \ ({a} ∪ ∅) = E3 \ ({a} ∪ ∅)(({b} ∪ ∅)(∅ ∪ {b}))⋆ = E3 \ ({b} ∪ ∅)({a} ∪ ∅)((∅ ∪ {b})({b} ∪

∅))∗(∅ ∪ {b})(({b} ∪ ∅)(∅ ∪ {b}))∗;

E3 \ ({a} ∪ ∅)({b} ∪ ∅) = E3 \ ({a} ∪ ∅)(({b} ∪ ∅)(∅ ∪ {b}))∗({b} ∪ ∅)((∅ ∪ {b})({b} ∪ ∅))∗ =

E3 \ ({b}∪ ∅)({a}∪ ∅)((∅∪ {b})({b}∪ ∅))∗(∅∪ {b})(({b}∪ ∅)(∅∪ {b}))∗({b}∪ ∅) = E3 \ ({a, b}∪

∅)((∅ ∪ {b})({b} ∪ ∅))∗(∅ ∪ {b})(({b} ∪ ∅)(∅ ∪ {b}))∗({b} ∪ ∅).

Поэтому на рис. 3 показаны остаточные структуры для ОПСС E3 после всех её трасс.

Далее рассмотрим обладающую свойством СПСЗ ОПСС E4 из примеров 2–4 с компо-

нентами: E4 = {a, b, c}; <4= ∅; ♯4 = {(a, c), (c, a)}; l4 — идентичная функция; F4 = {b};

≺4= {(b, b)}; �4 = ∅; C4
0 = ∅. Знаем, что трассы в E4 — это префиксы последовательно-

стей:

(({b} ∪ ∅)(∅ ∪ {b}))∗({b} ∪ ∅)({x} ∪ ∅)(∅ ∪ {b})(({b} ∪ ∅)(∅ ∪ {b}))∗({b} ∪ ∅),

(({b} ∪ ∅)(∅ ∪ {b}))∗({x} ∪ ∅)(({b} ∪ ∅)(∅ ∪ {b}))∗({b} ∪ ∅),

(({b} ∪ ∅)(∅ ∪ {b}))∗({x, b} ∪ ∅)(∅ ∪ {b})(({b} ∪ ∅)(∅ ∪ {b}))∗({b} ∪ ∅).

Далее пусть x ̸= x′ ∈ {a, c}. Остаточные структуры для ОПСС E4 после её некоторых

трасс показаны на рис. 4. Также верно:

E4 \ ϵ = E4 \ (({b} ∪ ∅)(∅ ∪ {b}))⋆;

E4 \ ({b} ∪ ∅) = E4 \ ({b} ∪ ∅)((∅ ∪ {b})({b} ∪ ∅))⋆;

E4\({x}∪∅) = E4\(({b}∪∅)(∅∪{b}))⋆({x}∪∅)(({b}∪∅)(∅∪{b}))⋆ = (({b}∪∅)(∅∪{b}))⋆({b}∪

∅)({x} ∪ ∅)(∅ ∪ {b})(({b} ∪ ∅)(∅ ∪ {b}))∗ = E4 \ (({b} ∪ ∅)(∅ ∪ {b}))∗({x, b} ∪ ∅)(∅ ∪ {b})(({b} ∪

∅)(∅ ∪ {b}))∗;

E4 \ (({b} ∪ ∅)(∅ ∪ {b}))∗({b} ∪ ∅)({x} ∪ ∅)(∅ ∪ {b})(({b} ∪ ∅)(∅ ∪ {b}))∗({b} ∪ ∅) = E4 \ (({b} ∪

∅)(∅ ∪ {b}))∗({x} ∪ ∅)(({b} ∪ ∅)(∅ ∪ {b}))∗({b} ∪ ∅) = E4 \ (({b} ∪ ∅)(∅ ∪ {b}))∗({x, b} ∪ ∅)(∅ ∪

{b})(({b} ∪ ∅)(∅ ∪ {b}))∗({b} ∪ ∅).

Поэтому на рис. 4 показаны остаточные структуры для ОПСС E4 после всех её трасс.

3
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E4 = E4 \ ϵ = E4 \ ({b} ∪ ∅)(∅ ∪ {b}):

a

b c

♯4

(а)

E4 \ ({b} ∪ ∅):

a

b c

♯4

(б)

E4 \ ({x} ∪ ∅)({b} ∪ ∅) = E4 \ ({b} ∪ ∅)({x} ∪ ∅) = E4 \ ({b, x} ∪ ∅):

b

(в)

E4 \ ({x} ∪ ∅) = E4 \ ({x} ∪ ∅)({b} ∪ ∅)(∅ ∪ {b}):

b

(г)

Рис. 4. Остаточные структуры для E4

Покажем, что остаточные структуры для ОПСС, обладающие свойством СПСЗ, явля-

ются инвариантом относительно эквивалентных трасс.

Утверждение 1. Для ОПСС со свойством СПСЗ E и трасс t, t′ ∈ Trace(E) таких,

что [t] = [t′], верно E \ t = E \ t′.

Пример 6. Рассмотрим обладающую свойством СПСЗ ОПСС E4 из примеров 2–5.

Знаем, что {a} — конфигурация в E4, t = ({a} ∪ ∅) и t′ = ({b} ∪ ∅)({a} ∪ ∅)(∅ ∪ {b})

— трассы в E4. По определению 3, получаем, что last(t) = (C4
0 \ ∅) ∪ {a} = {a} и

last(t′) = (((((C4
0 \ ∅) ∪ {b}) \ ∅) ∪ {a}) \ {b}) ∪ ∅ = {a}, т.е. t ∼ t′. В примере 5 пока-

зано, что E4 \ t = E4 \ t′.

Мы оставляем читателю проверку остаточных структур для E4 после других экви-

валентных трасс.

С другой стороны, приведенное выше утверждение неверно для обладающей свойством

УПСЗ, но не свойством СПСЗ ОПСС E2 из примеров 2–5. Знаем, что {a, b} — конфи-

гурация в E2, t = ({a} ∪ ∅)({b} ∪ ∅) и t′ = ({b} ∪ ∅)({a} ∪ ∅) — трассы в E2. В силу

определения 3, имеем last(t) = {a, b} и last(t′) = {a, b}, т.е. t ∼ t′. В примере 5 показано,

что Ĕ2 = E2 \ t ̸= E2 \ t′ = Ë2. 3
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4. Семантика систем переходов для ОПСС

В этом разделе сначала приводятся базовые определения, касающиеся систем перехо-

дов, а затем для ОПСС E определяются отображения TC (E) и TR(E), которые строят два

различных типа систем переходов.

На основе множества L действий в ОПСС определим множество L := NL
0 (множество

мультимножеств на L или функций из L в множество неотрицательных целых чисел),

которое будем использовать как множество меток в системах переходов.

Система переходов T = (S,→, i), помеченная на множестве L меток, состоит их мно-

жества S состояний, отношения перехода →⊆ S × L × S и начального состояния i ∈ S.

Две системы переходов, помеченные на множестве L, являются изоморфными, если су-

ществует биекция между их состояниями, сохраняющая отношение перехода и начальное

состояние. Будем говорить, что отношение R ⊆ S × S ′ является бисимуляцией между си-

стемами переходов T = (S,→, i) и T ′ = (S ′,→′, i′), помеченными на L, если (i, i′) ∈ R и

для всех пар (s, s′) ∈ R и меток λ ∈ L: если (s, λ, s1) ∈→, то (s′, λ, s′1) ∈→′ и (s1, s
′
1) ∈ R для

некоторого состояния s′1 ∈ S ′; а также если (s′, λ, s′1) ∈→′, то (s, λ, s1) ∈→ и (s1, s
′
1) ∈ R

для некоторого состояния s1 ∈ S. Две системы переходов, помеченные на множестве L,

являются бисимуляционными, если существует отношение бисимуляции между ними.

Определим понятие системы переходов, имеющей в качестве состояний конфигурации

ОПСС.

Определение 6. Для ОПСС E = (E,<, ♯, l, F,≺,�, C0), помеченной на множестве L

действий,

TC (E) — конфигурационная система переходов (Conf (E), ⇁, C0), помеченная на

множестве L меток,

где C
M
⇁ C ′ ⇐⇒ C

(A∪B)→ C ′ в E и M = l(A ∪B).

Объясним приведенное выше определение на примере.

Пример 7. Рассмотрим ОПСС E3 (см. примеры 2–5). Из примера 2 знаем, что ∅, {a},

{b}, {c}, {a, b}, {b, c} — конфигурации в E3. Там также приведены пояснения для перехо-

дов между конфигурациями. Используя определения 3 и 6, получаем конфигурационную

систему переходов TC (E3) (см. рис. 5). 3

Теперь рассмотрим определение системы переходов, имеющей в качестве состояний

остаточные структуры для ОПСС.
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∅

{a}

{b}

{c}

{a, b}

{b, c}

({
a}

∪
∅)

({a, b
} ∪ ∅)

({b, c} ∪ ∅)

({
a}
∪
∅)

({c} ∪
∅)

({c} ∪
∅)

({b} ∪ ∅)

(∅ ∪ {b})

({b} ∪ ∅)

({b} ∪ ∅)

Рис. 5. Конфигурационная система переходов TC (E3)

Определение 7. Для ОПСС E = (E,<, ♯, l, F,≺,�, C0), помеченной на множестве L

действий,

TR(E) — остаточная система переходов (Reach(E), ⇀, E), помеченная на множестве L

меток,

где F M
⇀ F ′ ⇐⇒ F ′ = F \ (A ∪B) и M = l(A ∪B), а также Reach(E) = {F | ∃E0, . . . , Ek

(k ≥ 0) такие, что E0 = E \ ϵ, Ek = F и Ei
l(A∪B)
⇀ Ei+1 (0 ≤ i < k)}.

Проиллюстрируем это определение на примере.

Пример 8. Рассмотрим ОПСС E3 из примеров 2–5. Используя определения 5 и 7, по-

строим остаточную систему переходов TR(E3) (см. рис. 6). Видим, что конфигураци-

онная система переходов TC (E3) (см. рис. 5) и остаточная система переходов TR(E3)

бисимуляционны, но не являются изоморфными. 3

E

E3 \ ({a} ∪ ∅)

E3 \ ({b} ∪ ∅)

E3 \ ({c} ∪ ∅)

E3 \ ({a, b} ∪ ∅)

E3 \ ({b, c} ∪ ∅)

O

({
a
}
∪
∅)

({a, b
} ∪ ∅)

({b, c} ∪ ∅)

({
a
}
∪
∅)

({
c}

∪
∅
)

({
c}

∪
∅
)

({b} ∪ ∅)

(∅ ∪ {b})

({b} ∪ ∅)

({b} ∪ ∅)

Рис. 6. Остаточная система переходов TR(E3)

Теорема 1. Для помеченной на L ОПСС E со свойством УПСЗ верно, что TC (E) и

TR(E) бисимуляционно эквивалентны и не являются изоморфными в общем случае.

Доказательство этой теоремы аналогично доказательству теоремы 1 из статьи [23], но с
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учетом разницы определения множества предшественников по ПСЗ неотменяемых собы-

тий в шаге трассы в определении 5.

5. Теоретико-категорная характеризация отображений TC (·) и

TR(·)

В этом разделе сначала рассматриваются определения категорий моделей систем пере-

ходов и ОПСС, а затем устанавливается, можно ли отображения TC (E) и TR(E), где E —

ОПСС со свойством УПСЗ, расширить до функторов между этими категориями.

Определим понятие морфизма между двумя системами переходов, помеченными на

множестве L меток.

Определение 8. Пусть T = (S, →, i) и T ′ = (S ′, →′, i′) — системы переходов, по-

меченные на множестве L меток. Функция ν : S → S ′ — это морфизм из T в T ′, если

верно: ν(i) = i′ и для всех s, s1 ∈ S и для всех λ ∈ L выполняется: если (s, λ, s1) ∈→ в T ,

то (ν(s), λ, ν(s1)) ∈→′ в T ′.

Видим, что морфизм, определенный выше, представляет понятие симуляции одной си-

стемы переходов другой.

Теперь введем понятие морфизма между двумя ОПСС, помеченными на множестве L

действий.

Определение 9. Пусть E = (E, <, ♯, l, F , ≺, �, C0) и E ′ = (E ′, <′, ♯′, l′, F ′, ≺′, �′, C ′
0)

— ОПСС, помеченные на множестве L действий. Функция µ : E → E ′ — это морфизм

из E в E ′, если верно:

1) ∀e ∈ E : ⌊µ(e)⌋<′ ⊆ µ(⌊e⌋<)ii;

2) ∀e, e′ ∈ E : µ(e) ♯′ µ(e′) ⇒ e ♯ e′;

3) ∀e ̸= e′ ∈ E : µ(e) = µ(e′) ⇒ e ♯ e′;

4) l′ ◦ µ = l;

5) µ(F ) ⊆ F ′;

6) ∀u ∈ F : ⌞µ(u)⌟≺′ ⊆ µ(⌞u⌟≺);

7) ∀e ∈ E, ∀u ∈ F : µ(e)�′ µ(u) ⇒ e� u;

8) µ(C0) = C ′
0.

Покажем, что морфизм, определенный выше, представляет понятие симуляции пове-

дения одной ОПСС поведением другой ОПСС.
iiЗдесь и далее для подмножества X ⊆ E будем использовать запись µ(X), чтобы обозначать множество {µ(e) | e ∈ X}.
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Лемма 3. Пусть E, E ′ — ОПСС, помеченные на множестве L действий, и µ : E → E ′

— морфизм. Если C
(A∪B)→ C1 в E для некоторых C,C1 ∈ Conf(E), то µ(C), µ(C1) ∈

Conf(E ′) и µ(C)
(µ(A)∪µ(B))

→ µ(C1) в E ′.

Определим категории систем переходов и ОПСС со свойством УПСЗ.

Определение 10. Помеченные на L системы переходов (помеченные на L ОПСС со

свойством УПСЗ) и морфизмы между ними формируют категорию TSL (RPESL), в

которой композиция двух морфизмов определяется как обычная композиция функций, а

тождественный морфизм является тождественной функцией.

Лемма 4. Пусть RPES0
L — подкатегория категории RPESL, содержащая в качестве

объектов ОПСС вида E = (E, <, ♯, l, F , ≺, �, ∅) со свойством УПСЗ. Тогда категория

RPES0
L имеет копроизведения.

Утверждение 2. Отображение TC (TR) может быть расширено (не может быть

расширено) до функтора из категории RPESL в категорию TSL.

Этот результат показывает разницу между отображениями TC(E) и TR(E) для ОПСС

E со свойством УПСЗ.

6. Заключение

В этой статье в контексте обратимых первичных структур событий, учитывающих

причинно-следственные зависимости между событиями, была дана теоретико-категорная

характеризация построений семантик в терминах систем переходов, основанных на конфи-

гурациях и остаточных структурах. С этой целью, во-первых, была определена (шаговая)

семантика рассматриваемой модели обратимых структур событий, которая основана на

конфигурациях/трассах и которая строится из начальной конфигурации посредством до-

бавления произошедших параллельных событий и/или посредством отмены ранее произо-

шедших событий. Во-вторых, были исследованы свойства оператора удаления, который

используется для построения остаточных структур, получаемых из заданной структуры

событий посредством удаления из неё уже произошедших событий и конфликтующих

с ними в ходе выполнения структуры. Есть надежда, что при разработке операционной

семантики алгебраических исчислений параллельных процессов полученные здесь резуль-

таты могут быть столь же полезны для обратимых первичных структур событий, как и

для традиционных (необратимых) (см. [9, 18] среди прочих).
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В дальнейшем планируется расширить список рассматриваемых моделей, включив об-

ратимые версии потоковых, расслоенных, обобщенных структур событий с симметрич-

ным и асимметричным конфликтом. Другой целью дальнейших исследований является

изучение возможности получения изоморфизма, а не бисимуляции, между двумя типами

семантик систем переходов за счёт обогащения модели обратимых первичных структур

событий событиями, которые присутствуют в структуре, но которые не могут произойти

из-за, например, отсутствия транзитивности/ацикличности в ПСЗ, наличия бесконечного

количества предшественников по ПСЗ и т.д., как это было сделано для традиционных пер-

вичных структур событий в статье [7]. Там авторы смогли доказать, что наличие событий,

которые не могут произойти, полезно при сравнительном анализе различных семантик,

способствуя устранению несущественных несоответствий между исследуемыми моделями.
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Приложение А

Приведем базовые определения из теории категорий. Напомним, что категория C состоит

из множества Ob, элементы которого называются объектами категории, и множества Mor,

элементы которого называются морфизмами этой категории, при этом

• каждой упорядоченной паре объектов A,B ∈ Ob сопоставлено некоторое множество

морфизмов Hom(A,B) из Mor, а каждому морфизму f ∈ Mor соответствует един-

ственная упорядоченная пара объектов A,B ∈ Ob (обозначается f : A → B);

• для любых двух морфизмов f ∈ Hom(A,B) и g ∈ Hom(B,C) задана операция

композиции морфизмов g ◦ f ∈ Hom(A,C), обладающая ассоциативностью, то есть

f ◦ (g ◦ h) = (f ◦ g) ◦ h для всех морфизмов h ∈ Hom(A,B), g ∈ Hom(B,C) и

f ∈ Hom(C,D);

• для каждого объекта A ∈ Ob задан тождественный морфизм idA ∈ Hom(A,A),

действующий тривиально, то есть f ◦ idA = idB ◦ f = f для любого морфизма

f ∈ Hom(A,B).

Будем говорить, что категория C имеет (конечные) копроизведения, если для любых

двух объектов A,B ∈ Ob существует объект A ⊕ B ∈ Ob и морфизмы πA : A → A ⊕ B

и πB : B → A ⊕ B такие, что для любого объекта C ∈ Ob c любой парой морфизмов

λA : A → C и λB : B → C существует единственный морфизм λ : A ⊕ B → C такой, что

λ ◦ πA = λA и λ ◦ πB = λB.

Для сравнения двух категорий и построения взаимосвязей между ними в теории ка-

тегорий используется понятие функтора, то есть отображения, сохраняющего структуру

категорий. Формально, функтор F : C → C ′ между двумя категориями C и C ′ – это отоб-

ражение, которое каждому объекту A ∈ Ob категории C ставит в соответствие объект

F (A) ∈ Ob′ категории C ′, и каждому морфизму f : A → B (A,B ∈ Ob) в категории C – мор-

физм F (f) : F (A) → F (B) в категории C ′, при этом F (idA) = idF (A) и F (g)◦F (f) = F (g◦f)

для всех морфизмов f : A → B и g : B → C (A,B,C ∈ Ob) в категории C.

Приложение Б

Доказательство утверждения 1. Поскольку t (t′) — трасса в E , то существует последо-

вательность C0

A1∪B1→ C1 . . . Cn−1

An∪Bn→ Cn (n ≥ 0) (C0

X1∪Y1→ C ′
1 . . . C

′
m−1

Xm∪Ym→ C ′
m (m ≥ 0))

в E . Так как равенство [t] = [t′] истинно, то Cn = C ′
m.

Предложение I. Если E — ОПСС со свойством СПСЗ, то верно F j = F ∩Ej для каждого
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1 ≤ j ≤ n.

Доказательство. Пусть 1 ≤ j ≤ n. По определению 5, истинно F j = (F j−1∩Ej)\(Âj∪ ˆ̂
Aj).

Сначала проверим, что множество Âj не пересекается со множеством Ej. Предположим

обратное, т.е. существует событие z из Ej такое, что z ∈ Âj. В силу определения 5, верно,

что z ∈ F j−1 и существует событие a ∈ Ãj такое, что a �j−1 z. По лемме 2(а), получаем

a � z. Поскольку ОПСС E обладает свойством СПСЗ, то имеем z < a. Далее, так как

верно a ∈ Ãj, то возможны два случая:

• a ∈ Aj \ F j−1. Благодаря лемме 2(г), a принадлежит множеству Ej−1. В силу опре-

деления 5, получаем z <j−1 a, так как z ∈ F j−1 ⊆ Ej−1, т.е. z ∈ ⌊Aj \F j−1⌋<j−1 ⊆ Ãj,

что противоречит принадлежности события z множеству Ej.

• a ∈ ⌊Aj\F j−1⌋<j−1 , т.е. событие a принадлежит множеству Ej−1 и существует событие

a′ ∈ Aj \F j−1 такое, что a <j−1 a′. Более того, по определению 5, имеем z <j−1 a, так

как z ∈ F j−1 ⊆ Ej−1. Согласно лемме 2(б), E j−1 — ОПСС, обладающая свойством

СПСЗ. В силу транзитивности <j−1, получаем z <j−1 a′, т.е. z ∈ ⌊Aj \ F j−1⌋<j−1 , что

вновь противоречит принадлежности события z множеству Ej.

Таким образом, множества Âj и Ej не пересекаются.

Теперь покажем, что множество ˆ̂
Aj не пересекается со множеством Ej. Предположим

обратное, т.е. существует событие z ∈ Ej такое, что z ∈ ˆ̂
Aj. По определению 5, это озна-

чает, что z ∈ F j−1 и существует событие a ∈ ♯j−1(Ãj) такое, что a ≺j−1 z. Тогда, по

лемме 2(а), получаем a ≺ z. Поскольку ОПСС E обладает свойством СПСЗ, то z = a, что

противоречит принадлежности события z множеству Ej.

Таким образом, показали, что F j = F j−1 ∩ Ej для каждого 1 ≤ j ≤ n. Это позволяет

утверждать, что F j = F 0∩E1∩. . .∩Ej. Однако, благодаря лемме 2(а), знаем, что равенство

E1 ∩ . . . ∩ Ej = Ej истинно, т.е. верно F j = F ∩ Ej, так как F 0 = F . 2

Предложение II. Для каждого 1 ≤ j ≤ m и x̃ ∈ X̃j верно, что x̃ ∈ Ãi для некоторого

1 ≤ i ≤ n.

Доказательство. Из определения 5 известно, что X̃j = (Xj \ F ′j−1) ∪ ⌊(Xj \ F ′j−1)⌋<′j−1 .

Рассмотрим два случая:

• x̃ ∈ Xj \ F ′j−1. Докажем, что x̃ ∈ Ai \ F i−1 для некоторого 1 ≤ i ≤ n. Поскольку E —

ОПСС со свойством СПСЗ, то, благодаря предложению I, имеем F ′j−1 = F ∩ E ′j−1.

Тогда x̃ ̸∈ F , так как, по лемме 2(г), верно x̃ ∈ E ′j−1. Более того, поскольку x̃ ∈ X̃j,
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используя лемму 2(д), получаем x̃ ∈ C ′
m = Cn. Согласно определению 3, существует

1 ≤ i ≤ n такое, что x̃ ∈ Ai. Так как x̃ ̸∈ F , то имеем x̃ ∈ Ai\F i−1, в силу леммы 2(а).

• x̃ ∈ ⌊(Xj \ F ′j−1)⌋<′j−1 , т.е. x̃ ∈ E ′j−1 и x̃ <′j−1 x для некоторого x ∈ Xj \ F ′j−1.

Тогда, благодаря лемме 2(а), имеем x̃ < x. Используя предыдущий пункт, получаем,

что x ∈ Ai \ F i−1 ⊆ Ãi для некоторого 1 ≤ i ≤ n. Более того, из леммы 2(г) следует

x ∈ Ei−1, а из леммы 2(д) — x ∈ Cn. В силу леммы 1, конфигурация Cn лево-замкнута

относительно <. Тогда верно x̃ ∈ Cn, поскольку x̃ < x. Далее рассмотрим два случая:

– x̃ ∈ Ei−1. Благодаря определению 5, получаем x̃ <i−1 x, потому что x̃ < x. Так

как x ∈ Ai \ F i−1, то справедливо x̃ ∈ ⌊(Ai \ F i−1)⌋<i−1 ⊆ Ãi.

– x̃ ̸∈ Ei−1. Тогда имеем x̃ ∈ E и x̃ ̸∈ Ei−1. По определению 5, существует

1 ≤ k ≤ i − 1 такое, что x̃ ∈ Ek−1 и x̃ ̸∈ Ek, т.е. x̃ ∈ Ãk или x̃ ∈ ♯k−1(Ãk).

Предположим x̃ ∈ ♯k−1(Ãk), т.е. существует событие ỹ ∈ Ãk такое, что x̃ ♯k−1 ỹ.

В силу леммы 2(а), верно x̃ ♯ ỹ. Кроме того, из леммы 2(д) следует ỹ ∈ Cn.

Это противоречит бесконфликтности конфигурации Cn, так как x̃ ∈ Cn. Таким

образом, верно x̃ ∈ Ãk для некоторого 1 ≤ k ≤ i− 1 < n. 2

Проверим, что верно En = E ′m. Предположим обратное, то есть En ̸= E ′m. Рассмотрим

случай, когда существует событие e ∈ En такое, что e ̸∈ E ′m (случай, когда e ∈ E ′m и

e ̸∈ En доказывается аналогично). Так как e ∈ E и e ̸∈ E ′m, то существует 1 ≤ j ≤ m

такое, что e ∈ (X̃j ∪ ♯j−1(X̃j)), по определению 5. Рассмотрим все возможные случаи:

– e ∈ X̃j. Благодаря предложению II, существует 1 ≤ i ≤ n такое, что e ∈ Ãi. Значит,

по определению 5, верно e ̸∈ Ei, что противоречит лемме 2(а), поскольку e ∈ En.

– e ∈ ♯j−1(X̃j), т.е. e ∈ Ej−1 и существует событие x ∈ X̃j такое, что e ♯j−1 x. В

силу леммы 2(а), имеем e ♯ x. По предложению II, существует 1 ≤ i ≤ n такое, что

x ∈ Ãi. Отсюда с помощью леммы 2(г) и определения 5 получаем x ∈ Ei−1. Согласно

лемме 2(а), верно e ∈ Ei−1, поскольку e ∈ En. Тогда, по определению 5, получаем

e ♯i−1 x, потому что e ♯ x. Следовательно, имеем e ∈ ♯i−1(Ãi). Тогда верно e ̸∈ Ei, что

противоречит лемме 2(а), так как e ∈ En.

Таким образом, справедливо En = E ′m.

Покажем совпадение множеств F n и F ′m. Поскольку E — ОПСС со свойством СПСЗ,

то, по предложению I, верно F n = F ∩ En и F ′m = F ∩ E ′m. Отсюда заключаем, что

F n = F ′m, поскольку множества En и E ′m совпадают.

Далее рассмотрим помечающие функции. В силу определения 5, известно, что ln =
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l |E1∩...∩En и l′m = l |E′1∩...∩E′m . По лемме 2(а), истинно, что En ⊆ Ei для всех 1 ≤ i ≤ n

и E ′m ⊆ E ′j для всех 1 ≤ j ≤ m. Тогда имеем, что ln = l |En и l′m = l |E′m . Отсюда из

равенства множеств En и E ′m получаем совпадение функций ln = l′m.

Аналогичным образом из равенства множеств En = E ′m и F n = F ′m следует совпадение

отношений ∇n = ∇′m, где ∇ ∈ {<, ♯,≺,�}.

И, наконец, проверим совпадение начальных конфигураций. Из леммы 2(е) знаем, что

Cn
0 = Cn ∩ En и C ′m

0 = C ′
m ∩ E ′m. Поскольку верно Cn = C ′

m, то имеем Cn
0 = C ′m

0 , в силу

совпадения множеств En и E ′m.

Таким образом, справедливо E \ t = E \ t′. 2

Доказательство леммы 3. Предположим, что E = (E,<, ♯, l, F,≺,�, C0) и E ′ = (E ′, <′,

♯′, l′, F ′,≺′,�′, C ′
0) — ОПСС со свойством УПСЗ, помеченные на множестве L, и µ : E → E ′

— морфизм между ними. По определению 9, µ — это функция из E в E ′ такая, что

1) ∀e ∈ E : ⌊µ(e)⌋<′ ⊆ µ(⌊e⌋<);

2) ∀e, e′ ∈ E : µ(e) ♯′ µ(e′) ⇒ e ♯ e′;

3) ∀e ̸= e′ ∈ E : µ(e) = µ(e′) ⇒ e ♯ e′;

4) l′ ◦ µ = l;

5) µ(F ) ⊆ F ′;

6) ∀u ∈ F : ⌞µ(u)⌟≺′ ⊆ µ(⌞u⌟≺);

7) ∀e ∈ E, ∀u ∈ F : µ(e)�′ µ(u) ⇒ e� u;

8) µ(C0) = C ′
0.

Предложение III. Пусть C0
A1∪B1−→ . . .

An∪Bn−→ Cn в E . Тогда верно µ(C0)
µ(A1)∪µ(B1)

−→ . . .
µ(An)∪µ(Bn)

−→

µ(Cn) в E ′.

Доказательство. Проведем доказательство индукцией по n.

n = 0 Тогда имеем µ(C0) = C ′
0, по пункту 8) определения 9.

n > 0 Предположим, что µ(C0)
(µ(A1)∪µ(B1))

−→ . . .
(µ(An−1)∪µ(Bn−1))

−→ µ(Cn−1) в E ′. Покажем, что

µ(Cn−1)
(µ(An)∪µ(Bn))

−→ µ(Cn) в E ′. Тогда, в силу определения 3, получаем µ(Cn−1) ∈

Conf(E ′), а также µ(Cn−1) — конечное и бесконфликтное множество. Кроме того,

µ(Cn−1) лево-замкнуто относительно <, по лемме 1. Далее, согласно определению 9,

имеем, что µ(An) ⊆ E ′ и µ(Bn) ⊆ µ(F ) ⊆ F ′, так как Bn ⊆ F . Осталось показать,

что шаг (µ(An) ∪ µ(Bn)) возможен из конфигурации µ(Cn−1) в E ′. Проверим спра-

ведливость пунктов а)-г) определения 3.
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а) Так как шаг (An ∪ Bn) возможен из конфигурации Cn−1 в E , то An ∩ Cn−1 = ∅,

Bn ⊆ Cn−1 и (Cn−1 ∪ An) — конечное и бесконфликтное множество. Предпо-

ложим µ(An) ∩ µ(Cn−1) ̸= ∅, т.е. существуют a ∈ An и x ∈ Cn−1 такие, что

µ(a) = µ(x). Так как имеем (An ∩ Cn−1) = ∅, то верно a ̸= x. По пункту

3) определения 9, получаем a ♯ x, что противоречит бесконфликтности мно-

жества (Cn−1 ∪ An). Таким образом, имеем µ(An) ∩ µ(Cn−1) = ∅. Вложение

µ(Bn) ⊆ µ(Cn−1) очевидным образом следует из вложения Bn ⊆ Cn−1. Ко-

нечность множества (µ(Cn−1) ∪ µ(An)) обеспечивается конечностью множества

(Cn−1∪An). Осталось проверить бесконфликтность этого множества. Предполо-

жим обратное, т.е. существуют z, z′ ∈ (µ(Cn−1)∪ µ(An)) такие, что z ♯′ z′. Тогда

существуют a, b ∈ (Cn−1 ∪ An) такие, что µ(a) = z и µ(b) = z′. По пункту 2)

определения 9, получаем a ♯ b, что противоречит бесконфликтности множества

(Cn−1 ∪ An). Таким образом, (µ(Cn−1) ∪ µ(An)) — бесконфликтное множество.

б) Пусть e ∈ µ(An), e′ ∈ E ′ и e′ <′ e. Тогда существует a ∈ An такое, что e = µ(a).

Кроме того, имеем e′ ∈ ⌊e⌋<′ , по определению 2. Благодаря пункту 1) опреде-

ления 9, верно e′ ∈ µ(⌊a⌋<), т.е. справедливо e′ = µ(e1) для некоторого события

e1 ∈ E такого, что e1 < a. Поскольку шаг (An ∪Bn) возможен из конфигурации

Cn−1 в E , то событие e1 принадлежит множеству Cn−1 \ Bn, а значит, событие

e′ принадлежит множеству µ(Cn−1 \ Bn) ⊆ µ(Cn−1). Осталось проверить, что

событие e′ не принадлежит множеству µ(Bn). Предположим обратное, т.е. суще-

ствует событие b ∈ Bn такое, что e′ = µ(b). Однако, поскольку верно e′ = µ(e1),

то, благодаря пункту 3) определения 9, получаем: либо e1 = b, что противоречит

принадлежности события e1 множеству (Cn−1 \ Bn), либо e1 ♯ b, что противо-

речит бесконфликтности множества Cn−1, с учетом Bn ⊆ Cn−1. Таким образом,

событие e′ принадлежит множеству (µ(Cn−1) \ µ(Bn)).

в) Пусть e ∈ µ(Bn), e′ ∈ E ′ и e′ ≺′ e. Тогда существует a ∈ Bn такое, что e = µ(a).

Кроме того, имеем e′ ∈ ⌞e⌟≺′ , по определению 2. Используя пункт 6) опреде-

ления 9, получаем e′ ∈ µ(⌞a⌟≺), т.е. e′ = µ(e1) для некоторого e1 такого, что

e1 ≺ a. Поскольку шаг (An ∪ Bn) возможен из конфигурации Cn−1 в E , то

e1 ∈ (Cn−1 \ (Bn \ {a})) ⊆ Cn−1. Так как верно e′ = µ(e1), то имеем e′ ∈ µ(Cn−1).

Осталось убедиться в том, что e′ ̸∈ (µ(Bn) \ µ({a})). Предположим обратное,

т.е. e′ = µ(b) для некоторого события b ∈ Bn, неравного событию a. Из равен-
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ства e′ = µ(e1) следует µ(e1) = µ(b). Благодаря пункту 3) определения 9, по-

лучаем: либо e1 = b, что противоречит принадлежности события e1 множеству

Cn−1 \ (Bn \ {a}), либо e1 ♯ b, что противоречит бесконфликтности множества

Cn−1, с учетом Bn ⊆ Cn−1. Следовательно, событие e′ = µ(e1) принадлежит мно-

жеству µ(Cn−1) \ (µ(Bn) \ µ({a})).

г) Пусть e ∈ µ(Bn), e′ ∈ E ′ и e′ �′ e. Тогда существует a ∈ Bn такое, что e = µ(a).

Проверим два возможных варианта:

– e′ ̸∈ µ(E). Очевидно, что e′ ̸∈ (µ(Cn−1) ∪ µ(An)), так как Cn−1, An ⊆ E.

– e′ ∈ µ(E). Это означает, что e′ = µ(e1) для некоторого e1 ∈ E. Благодаря

пункту 7) определения 9, верно e1 � a, поскольку a ∈ Bn ⊆ F . Так как шаг

(An ∪ Bn) возможен из конфигурации Cn−1 в E , то имеем e1 ̸∈ (Cn−1 ∪ An).

Следовательно, получаем e′ = µ(e1) ̸∈ µ(Cn−1 ∪ An) = (µ(Cn−1) ∪ µ(An)).

Отсюда заключаем, что шаг (µ(An) ∪ µ(Bn)) возможен из µ(Cn−1) в E ′ и приводит в

конфигурацию Y = (µ(Cn−1) \ µ(Bn))∪ µ(An). Проверим справедливость Y = µ(Cn).

Очевидно, имеем µ(Cn) = µ((Cn−1 \ Bn) ∪ An) = µ(Cn−1 \ Bn) ∪ µ(An). Покажем,

справедливость µ(Cn−1 \Bn) = µ(Cn−1) \ µ(Bn).

Пусть d ∈ µ(Cn−1 \ Bn), т.е существует событие c ∈ Cn−1 \ Bn такое, что µ(c) = d.

Так как имеем c ∈ Cn−1, то верно d = µ(c) ∈ µ(Cn−1). Предположим d ∈ µ(Bn), т.е.

существует событие b ∈ Bn такое, что µ(b) = d. Поскольку событие c принадлежит

множеству (Cn−1 \Bn), то события c и b не могут быть равными. Тогда по пункту 3)

определения 9, верно c ♯ b, что противоречит бесконфликтности множества Cn−1, с

учетом Bn ⊆ Cn−1. Значит, имеем d ∈ (µ(Cn−1) \ µ(Bn)).

Теперь пусть d ∈ (µ(Cn−1)\µ(Bn)), т.е. d ∈ µ(Cn−1) и d ̸∈ µ(Bn). Так как d принадле-

жит множеству µ(Cn−1), то существует событие c ∈ Cn−1 такое, что µ(c) = d. Пред-

положим, что верно c ∈ Bn. Тогда имеем µ(c) ∈ µ(Bn), что противоречит d = µ(c).

Следовательно, верно c ∈ (Cn−1 \ Bn). Это влечёт принадлежность события d мно-

жеству µ(Cn−1 \Bn).

Отсюда заключаем, что Y = µ(Cn). 2

Возьмём две произвольные конфигурации C,C ′ ∈ Conf(E) такие, что C
A∪B−→ C ′ в E . Так

как верно C ∈ Conf(E), то, по определению 3, существуют множества Ai ⊆ E и Bi ⊆ F

(1 ≤ i ≤ n − 1) такие, что Ci−1
Ai∪Bi−→ Ci и Cn−1 = C. Тогда получаем, что C0

A1∪B1−→ . . .
An−1∪Bn−1−→ C

A∪B−→ C ′ в E . По предложению III, имеем, что µ(C0)
µ(A1)∪µ(B1)

−→ . . .
µ(An−1)∪µ(Bn−1)

−→
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µ(C)
µ(A)∪µ(B)
−→ µ(C ′) в E ′. Из пункта 8 определения 9 знаем, что µ(C0) = C ′

0. Тогда, по

определению 3, верно µ(C), µ(C ′) ∈ Conf (E ′). 2

Доказательство леммы 4. Для доказательства достаточно построить копроизведение

для двух произвольных ОПСС Ei = (Ei, <i, ♯i, li, Fi, ≺i, �i, ∅) (i = 1, 2). Построим

структуру E = E1⊕E2 как дизъюнктивное объединение следующим образом: E = E1⊕E2 =

(E, <, ♯, l, F , ≺, �, ∅), где

• E = {(i, e) | i ∈ {1, 2}, e ∈ Ei} и F = {(i, e) | i ∈ {1, 2}, e ∈ Fi};

• для всех (i, e), (j, e′) ∈ E пусть (i, e) < (j, e′) тогда и только тогда, когда i = j и

e <i e
′;

• для всех (i, e), (j, e′) ∈ E пусть (i, e) ♯ (j, e′) тогда и только тогда, когда i ̸= j или

(i = j и e ♯i e
′);

• для всех (i, e) ∈ E функция пометки сохраняется, т.е. l((i, e)) = li(e);

• для всех (i, e) ∈ E и (j, e′) ∈ F отношение ≺ определено следующим образом: (i, e) ≺

(j, e′) тогда и только тогда, когда i = j и e ≺i e
′;

• для всех (i, e) ∈ E и (j, e′) ∈ F пусть (i, e) � (j, e′) тогда и только тогда, когда i ̸= j

или (i = j и e �i e
′).

Учитывая, что Ei (i = 1, 2) — это ОПСС со свойством УПСЗ, с помощью определения 2

нетрудно видеть, что построенная структура E1⊕E2 является объектом категории RPES0
L.

Определим два проектирующих отображения πi : Ei → E1⊕E2 (i = 1, 2) по следующему

правилу: πi(e) = (i, e) для всех e ∈ Ei (i = 1, 2). Проверим, что πi (i = 1, 2) действительно

являются морфизмами категории RPES0
L.

1) Пусть e ∈ Ei. Тогда ⌊πi(e)⌋< = ⌊(i, e)⌋< = πi(⌊e⌋<i
), по определению отношения <.

2) Пусть e, e′ ∈ Ei и при этом πi(e) ♯ πi(e
′). Это означает, что верно (i, e) ♯ (i, e′). Далее,

по определению отношения ♯, получаем e ♯i e
′.

3) Теперь предположим, что существуют e ̸= e′ ∈ Ei такие, что πi(e) = πi(e
′). По

определению отображения πi, имеем (i, e) = (i, e′), что противоречит e ̸= e′. Значит,

наше предположение неверно.

4) По определению функции l, верно, что l ◦ πi(e) = l((i, e)) = li(e) для любого e ∈ Ei.

5) Пусть e ∈ Fi. Тогда имеем πi(e) = (i, e) ∈ F , по определению множества F .

6) Пусть u ∈ Fi. Рассмотрим множество ⌞πi(u)⌟≺. Очевидно, что πi(u) = (i, u) и, кроме

того, ⌞(i, u)⌟≺ = πi(⌞(u)⌟≺i
), по определению отношения ≺.

7) Предположим, что e ∈ Ei и u ∈ Fi такие, что πi(e)� πi(u), т.е. (i, e)� (i, u). Отсюда,
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благодаря определению отношения �, получаем e �i u.

8) Так как начальные конфигурации — пустые множества, то верно πi(∅) = ∅.

Для завершения доказательства необходимо для любого объекта E ′ и пары морфизмов

λi : Ei → E ′ (i = 1, 2) категории RPES0
L показать существование и единственность мор-

физма λ : E = E1 ⊕E2 → E ′ такого, что λ ◦ πi = λi (i = 1, 2). Для любого события (i, e) ∈ E

определим отображение λ((i, e)) = λi(e) ∈ E ′, которое очевидным образом удовлетворяет

последнему равенству для i = 1, 2. Единственность отображения следует из построения

проекций πi. Проверим, что λ является морфизом категории RPES0
L.

1) Пусть (i, e) ∈ E. Тогда верно ⌊λ((i, e))⌋<′ = ⌊λi(e)⌋<′ ⊆ λi(⌊e⌋<i
), поскольку λi яв-

ляется морфизом. Так как λi = λ ◦ πi, то λi(⌊e⌋<i
) = λ ◦ πi(⌊e⌋<i

). По построению

структуры E , выполняется πi(⌊e⌋<i
) = ⌊(i, e)⌋<, т.е. ⌊λ((i, e))⌋<′ ⊆ λ(⌊(i, e)⌋<).

2) Пусть (i, e), (j, e′) ∈ E и λ((i, e)) ♯′ λ((j, e′)), т.е. λi(e) ♯′ λj(e
′). Если i ̸= j, то

(i, e) ♯ (j, e′), по определению отношения ♯ в E . Когда i = j, то, поскольку λi яв-

ляется морфизмом, заключаем, что верно e ♯i e
′. А это, вновь в силу определения

отношения ♯ в E , позволяет сделать вывод, что справедливо (i, e) ♯ (j, e′).

3) Выберем произвольным образом два события (i, e) ̸= (j, e′) ∈ E такие, что λ((i, e)) =

λ((j, e′)), т.е. λi(e) = λj(e
′). Если i ̸= j, то, по определению отношения ♯ в E , получаем

(i, e) ♯ (j, e′). Когда i = j, поскольку λi является морфизмом, то верно e ♯i e
′. Тогда,

вновь, в силу определения отношения ♯ в E , получаем (i, e) ♯ (j, e′).

4) Так как λi — морфизм, то имеем l′ ◦ λi = li. Отсюда, по определению функций λ и l,

верно, что l′ ◦ λ((i, e)) = l′(λi(e)) = li(e) = l((i, e)) для любого (i, e) ∈ E.

5) Нетрудно заметить, что выполняется следующее: λ(F ) = λ({(i, e) | e ∈ Fi, i =

1, 2}) = {λi(e) | e ∈ Fi, i = 1, 2} = λ1(F1) ∪ λ2(F2) ⊆ F ′, так как λi является

морфизом.

6) Пусть (i, e) ∈ F . Тогда верно ⌞λ((i, e))⌟≺′ = ⌞λi(e)⌟≺′ ⊆ λi(⌞e⌟≺i
), поскольку λi

является морфизом. Так как λi = λ ◦ πi, то справедливо λi(⌞e⌟≺i
) = λ ◦ πi(⌞e⌟≺i

).

Однако, по построению структуры E , верно πi(⌞e⌟≺i
) = ⌞(i, e)⌟<.

7) Выберем произвольным образом два события (i, e) ∈ E и (j, e′) ∈ F такие, что

λ(i, e) �′ λ(j, e′), т.е. λi(e) �
′ λj(e

′). Если i = j, т.е. λi(e) �
′ λi(e

′), то, так как λi —

морфизм, известно, что e �i e′. Это означает, что (i, e)� (i, e′). Пусть i ̸= j. Тогда,

согласно определению отношения � в E , верно (i, e)� (j, e′).

8) И, наконец, имеем λ(∅) = λ(∅) = ∅. 2
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Доказательство утверждения 2.

Пусть E1 = (E1, <1, ♯1, l1, F1,≺1,�1, C
1
0) и E2 = (E1, <2, ♯2, l2, F2,≺2,�2, C

2
0) — ОПСС со

свойством УПСЗ и µ : E1 → E2 — морфизм категории RPESL.

Расширим отображение TC до функтора, а именно определим, как это отображе-

ние преобразует морфизмы категории RPESL в морфизмы категории TSL. Определим

отображение TC(µ) следующим образом: пусть TC(µ)(C) = µ(C) ∈ Conf(E2) для всех

C ∈ Conf(E1). Проверим, что TC(µ) является морфизмом из TC(E1) в TC(E2) в катего-

рии TSL.

Очевидно, что TC(µ)(C1
0) = µ(C1

0) = C2
0 , по пункту 8) определения 9.

Пусть конфигурации C,C ′ ∈ Conf(E1) выбраны так, что C
M
⇁ C ′. По определению

отношения ⇁, имеем C
A∪B−→ C ′ в E1 для некоторых множеств A ⊆ E1 и B ⊆ F1 таких,

что M = l1(A ∪ B). Другими словами, шаг A ∪ B возможен из конфигурации C и его

выполнение приводит к конфигурации C ′ = (C \ B) ∪ A. Используя лемму 3, получаем,

что µ(C), µ(C ′) ∈ Conf(E2) и µ(C)
µ(A)∪µ(B)
−→ µ(C ′) в E2. Поскольку отображение µ является

морфизмом категории RPESL, то l2 ◦ µ = l1 по пункту 4) определения 9. Следовательно,

верно M = l1(A∪B) = l2◦µ(A∪B) = l2(µ(A)∪µ(B)). Однако, в соответствии с определением

отношения ⇁, это означает, что TC(µ)(C) = µ(C)
M
⇁ µ(C ′) = TC(µ)(C ′). Таким образом,

TC(µ) — морфизм в категории TSL.

Заметим, что при таком определении TC(µ) естественным образом сохраняются тож-

дественные морфизмы и композиции морфизмов, а значит, TC — функтор.

Рассмотрим ОПСС E∗ = (E∗, <∗, ♯∗, l∗, F ∗,≺∗,�∗, C∗
0) со свойством УПСЗ, где E∗ =

{a, b}, <∗= ∅, ♯∗ = ∅, l∗ — идентичная функция, F ∗ = ∅, ≺∗= ∅, �∗ = ∅ и C∗
0 = ∅. Очевидно,

что для ОПСС E∗ и E2 из примера 2 не существует ни одного морфизма категории TSL,

который бы отображал систему переходов TR(E∗) в систему переходов TR(E2). Однако

отображение η : E∗ → E2 такое, что η(a) = a и η(b) = b, является морфизмом категории

RPESL. Значит, отображение TR нельзя расширить до функтора между категориями

RPESL и TSL. 2



System Informatics (Системная информатика), No. 29 (2025)   91 

УДК 004.8 

Современные тенденции в развитии нейронных сетей 

Насибулов Илья Андреевич (Институт систем информатики СО РАН, 

Новосибирский государственный университет), 

Насибулов Егор Андреевич (Институт систем информатики СО РАН, 

Новосибирский государственный университет) 

 

В последние 30 лет нейронные сети являются одним из наиболее бурно 

развивающихся направлений искусственного интеллекта. Они широко применяются в 

обработке звука и изображения, медицине, задачах анализа и генерации контента и 

других. Это стало возможным благодаря значительному росту вычислительных 

мощностей, возможности обработки больших объёмов данных и развитию теории 

нейросетей. 

В данной работе приведён анализ развития алгоритмов обучения и архитектур 

нейросетей от их зарождения до современного состояния. Были выделены наиболее 

активно развивающиеся направления, такие как большие языковые модели, сети-гиганты 

и мультимодальные модели. Также упомянуто перспективное направление развитие, 

связанное с сетями Колмогорова-Арнольда. 

Ключевые слова: искусственный интеллект, нейронная сеть, машинное обучение, 

глубокое обучение, свёрточные нейронные сети, языковые модели, сети-трансформеры, 

сети Колмогорова-Арнольда. 

1. Введение 

Подход к искусственному интеллекту (ИИ) в XXI веке значительно изменился. Термин 

ввёл Джон Маккарти [1], определяя ИИ как машинные вычисления, способные решать 

задачи, предназначенные для человека и даже имитировать поведение человека. Термин 

подразумевал под собой следующее: искусственный — эта часть от машины, а интеллект — 

человеческая часть, способная решать задачи, в том числе и когнитивные, и выдавать себя за 

человека. Подход к реализации такого ИИ описывался принципом, что ИИ должен 

самовоспроизводиться с помощью несложных инструкций кода [2]. Несмотря на то, что в 

определении ИИ отсутствуют технические детали реализации, подразумевая, что способов 
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реализаций может быть несколько, в последнее время ИИ всё чаще ассоциируется с 

нейросетями [3], особенно глубокого обучения. 

X Y

W1 W2 W3 W4  

Рисунок 1. Представление нейросети в виде вычислительного графа.  — входные 

данные,  — выходные данные,  — матрицы весов. 

 

Первые нейросети задумывались как вычислительные модели, основанные на имитации 

искусственными нейронами биологических [4], способные обучаться на примерах и 

применять полученную информацию для решения аналогичных задач. Развивая эту идею, 

можно воспринимать нейросети как вычислительные графы [5], на рёбрах которых 

происходят несложные арифметические действия (рис. 1). Таким образом, решение задач с 

помощью нейросетей технически относится к моделированию. Перспективы создания ИИ с 

помощью нейросетей послужили выделению отдельного направления в науке, получившего 

название общий искусственный интеллект [6]. Несмотря на то, что масштабирование 

нейросетей позволило получить ряд значимых результатов, chatGPT и аналогичные 

архитектуры всё ещё не могут полноценно заменить живых специалистов, что показал опыт 

ведущих наукоёмких компаний. Тем не менее, спектр задач, которые решаются с 

применением нейросетей, довольно обширен. 

Одной из типичных задач является анализ изображений. С ним связаны задачи от 

распознавания рукописного текста до распознавания лиц. Одной из задач обеспечения 

безопасности является распознавание номеров машин с помощью видеонаблюдения с 

последующим выявлением нарушений правил дорожного движения [7]. Анализ изображений 
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находит себя и в медицине [8, 9] — по симптомам и соответствующим снимкам пациентов 

нейросети помогают соответствующим специалистам поставить диагноз. Есть применение и 

в аграрной области — если анализировать снимки полей с урожаем, например, поля 

пшеницы, то можно выявить потенциально больные колосья для последующей обработки 

посевов. Или же можно получить достаточно много информации по сорту будущего посева и 

потенциальному процессу роста по снимку семян или листов растений [10]. 

Нейросети активно применяются в задачах компьютерной лингвистики, психологии и 

изучения мышления [11, 12]. Есть подходы, позволяющие использовать нейросети для 

переводов различных текстов и анализа аргументации [13]. В числе успешно решаемых задач 

— переводы узкоспециализированных технических текстов с определёнными лексическими 

оборотами [14, 15]. Также ведутся работы в направлении переводов с малораспространённых 

языков различных народов России и не только [16]. 

Своё применение нейросети находят и в биоинформатике. Например, анализ 

последовательностей белков можно частично упростить [17, 18], что в дальнейшем облегчает 

расшифровку последовательностей аминокислот в организме. 

Ещё одним применением нейросетей является генерация контента, такого как текст, 

изображения, звук и т.д. Свою нишу нейросети постепенно занимают и в генерации 

программного кода [19]. По данному вопросу существуют две точки зрения исследователей. 

Одни считают, что через декаду лет программисты как таковые будут нужны не в качестве 

специалистов по написанию кода, а скорее операторов нейросетей и ИИ для формирования 

конечного программного продукта. Контраргументом является то, что код генерируется на 

основе уже существующих материалов, заложенных в нейросети на этапе обучения. Большая 

часть сгенерированного кода не является кодом высокого уровня в смысле оптимального по 

используемым ресурсам ЭВМ и их производных. Большинство программного кода написано 

программистами низкой квалификации, так называемыми младшими программистами, и в 

условиях ограниченности по времени разработки, что несёт в себе изначальные изъяны, 

которым обучается нейросеть и, в дальнейшем, при генерации нового кода считает эти 

изъяны допустимой нормой. Первые считают, что для исправления таких проблем и нужно 

будет «оперирование» нейросетей, т. е. дальнейшее улучшение с помощью них же 

сгенерированного изначального кода. Обе позиции имеют место быть, однако сложно 

спорить с тем, что нейросети уже как минимум сдают ЕГЭ по разным предметам на 

проходной балл для поступления в ВУЗы. Это активно обсуждалось в прессе и 

образовательных учреждениях [20]. 
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Так называемые из-за своего размера сети-гиганты объединяют в той или иной степени 

все вышеперечисленные возможности. Актуальные на 2025 г. архитектуры сетей-гигантов 

содержат миллиарды параметров. ChatGPT и его аналоги, в числе которых Гигачат от 

Сбербанка, YandexGPT от Яндекса и китайская Deepseek уже используются широкими 

слоями населения. Возможности этих нейросетей обширны, и есть публикации в прессе о 

случаях, когда пользователи предпочитают общаться с нейросетями вместо своих коллег и 

друзей. С тех пор как тест Тьюринга был пройден нейросетями, уровень доверия к 

нейросетям растёт, в том числе в таких важных сферах, как здравоохранение [21]. Тем не 

менее, не стоит забывать, что алгоритмы нейросетей не являются абсолютно надёжными и в 

большинстве моделей недоступны для верификации. Таким образом, ошибки и 

галлюцинации нейросетей становятся непредсказуемыми и опасными. В последние годы 

интерес к исследованию данной проблемы держится на устойчиво высоком уровне как с 

технической [22, 23, 24], так и с этической стороны [25, 26, 27]. 

Целью данной работы является дать краткий обзор развития нейронных сетей от первых 

персептронов до сетей Колмогорова-Арнольда (KAN). К сожалению, все подобные обзоры 

[28, 29, 30] быстро устаревают в связи с бурным развитием области и появлением новых 

направлений, таких как сети Колмогорова-Арнольда [31]. Несмотря на то, что KAN 

появились сравнительно недавно и большого количества результатов с их использованием 

ещё не было получено на момент написания данной статьи, архитектура уже 

зарекомендовала себя как перспективный инструмент для решения нелинейных задач. 

2. Зарождение нейросетей 

Первой нейросетью считается искусственный нейрон, предложенный У. Маккалаком и 

У. Питтсом [32]. Они же и ввели понятие искусственной нейронной сети (ИНС). Нейрон 

имеет строение аналогичное сумматору, однако имеются только логические сигналы 0 и 1. В 

качестве функции активации была выбрана пороговая функция Хевисайда. Это служит 

неким аналогом активации человеческих нейронов в нервной системе. Таким образом, мы 

получаем 

 

Где  и  — вектора входных данных и весов соответственно, ,  — смещение,  

— выход,  — активационная функция, в данном случае 
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где  — порог активации. Если учесть факт, что при формировании нейросетей 

нейроны объединяются в нейросетевые слои, то вышеописанные уравнения можно записать 

в матричном виде 

 

где W — матрица весов. 

Первой ИНС, которая способна была решить задачу классификации и широко 

применялась на практике, была нейросеть Ф. Розенблатта [33], так называемый персептрон. 

Нейросеть интересна наличием одного скрытого слоя нейронов в ней. Скрытыми слоями 

называются слои между входными данными и выходным слоем. Веса и смещения задаются 

случайным образом из {-1, 0, 1}, а в качестве функции активации используется sign. Таким 

образом, получаем 

 

, 

где .  является выходом первого слоя и одновременно 

входными данными для второго слоя. 

М. Минский и С. Паперт в 1969 году в своей работе [5] рассматривают персептроны 

Розенблатта в качестве вычислительных графов, что открывает возможности для применения 

нейросетей в математическом моделировании. Тем не менее, никакого выхода на новые 

практические задачи продемонстрировано в работе не было, и на какое-то время интерес 

исследователей к этой области ИИ угас. 
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Входной слой

Скрытые слои

Выходной 
слой

 

Рисунок 2. Многослойный персептрон. Все нейроны предыдущего слоя соединены со 

всеми нейронами следующего слоя, и только с ними. 

3. Нейронные сети со скрытыми слоями 

В 1986 вышла работа Д. Румельхарта [34], в которой был продемонстрирован потенциал 

многослойных персептронов Розенблатта (рис. 2) с некоторыми улучшениями: 

 

 

где  является сигмоидальной функцией или 

 гиперболический тангенс, . Входной слой уже не ограничен 

исключительно логическими сигналами, а принимает вещественные значения . В 

обучении нейросетей в данной работе активно применяется метод обратного 

распространения ошибки, который предложили и развили А. Галушкин и П. Вербос в [35, 36, 

37, 38]. 

Для развития нейронных сетей критически важными являются теоремы о суперпозиции 

Колмогорова-Арнольда [39] и универсальная теорема аппроксимации [40]. Согласно первой, 

 существует  функций одного аргумента  таких, что  

может быть представлена в виде 
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для некоторых , зависящих от . 

Универсальная теорема аппроксимации представляет собой адаптацию теоремы 

суперпозиции Колмогорова-Арнольда к области нейронных сетей и говорит, что 

искусственная нейронная сеть прямого распространения с одним скрытым слоем может 

аппроксимировать любую непрерывную функцию многих переменных с любой точностью, 

при условии, что сеть имеет в скрытом слое достаточное число нейронов , имеющих 

сигмоидальную функцию активации . 

Входной 
слой Скрытые 

слои

Выходной 
слой

...
...

...

Входной 
слой Скрытый 

слои

Выходной 
слой

 

Рисунок 3. Многослойная нейронная сеть (слева) и эквивалентная ей сеть с одним 

скрытым слоем (справа). Цветом выделены эквивалентные пути, дающие одинаковый 

вклад в выходной слой, в разных архитектурах. 

 

Действительно, если каждый уникальный путь через нейроны от входного к выходному 

слою (рис. 3) представить в виде нейрона этого единственного слоя, получим полную 

эквивалентность с точки зрения результата работы нейросетей как функционалов. Сам факт 



98    Насибулов И.А., Насибулов Е.А. Современные тенденции в развитии нейронных сетей 

существования такого гомеоморфизма оказался крайне полезным для доказательства ряда 

теорем. 

Важной для развития рекуррентных нейронных сетей является теорема о полной 

тьюринговости, доказанная Х. Зигельманом и Э. Сонтагом [41]: Любые машины Тьюринга 

могут моделироваться полностью связанными рекуррентными сетями, созданными из 

нейронов с сигмоидальными функциями активации, при условии, что сеть имеет 

достаточное число нейронов в скрытом слое  и достаточное число шагов временной 

памяти . 

В работе К. Хорника [42] 1991 года значительно расширено понимание возможностей 

нейронных сетей. Была обобщена универсальная теорема аппроксимации для случая 

произвольных нелинейных функций активации. Это позволило сделать следующие 

фундаментальные выводы: нейросети способны к аппроксимации, а свойства последней 

определяются архитектурой; выбор конкретной функции активации менее критичен, чем 

считалось ранее; для построения эффективных нейронных сетей может быть использован 

широкий класс функций активации. 

Ещё одним доказанным в 1992 году результатом является универсальная 

аппроксимационная теорема рекуррентных нейронных сетей, доказанная К. Фунахаши и 

Ю. Накамурой [43]: Любая нелинейная динамическая система может быть 

аппроксимирована рекуррентной нейронной сетью c любой точностью, без ограничений 

на компактность пространства состояний системы, при условии, что сеть имеет 

достаточное число нейронов в скрытом слое. 

Т. Чоу и Х. Ли в 2000 году расширили универсальную аппроксимационную теорему 

рекуррентных нейронных сетей на случай неавтономных нелинейных обыкновенных 

дифференциальных уравнений [44]. 

Несмотря на то, что появились теоремы, раскрывающие область применимости 

нейронных сетей для решения различных задач машинного обучения, на практике 

возможности ИНС с одним скрытым слоем достаточно ограничены и не подходят для 

решения большого класса задач. Однослойная нейросеть, которую можно построить для 

любой многослойной сети, крайне плохо обучается и годится только в качестве абстрактной 

математической модели. Попытки же добавления скрытых слоёв нейронов не приносят 

значительного продвижения из-за проблемы затухания градиента [45]. В процессе 

обучения поправки из выходного слоя просто не доходят до входа сети. 
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4. Глубокие (многослойные) нейросети 

Вторая половина 2000-х годов приносит плоды, благодаря которым интерес к 

нейросетям снова разжигается в научном сообществе. Работы Д. Хинтона и 

Р. Салахутдинова [46] предлагают некоторые способы обучения нейросетей со многими 

скрытыми слоями, однако на практике эти способы получились затратными в плане 

вычислений и неустойчивыми для сетей с более чем 3–5 слоями. Для решения проблемы 

обучения нейросетей со многими скрытыми слоями оказались принципиальными два 

фактора. Один из них — подобрать правильную функцию активации, что сделал в 2010 

году В. Наир, предложив использовать функцию ReLU (Rectified Linear Unit) [47]. 

Функция ReLU представляет собой  Вторым фактором стал способ 

начальной инициализации весов нейросетей. К. Глорот и Й. Бенжио в 2010 году 

предложили [48] дисперсию инициализирующего шума находить по формуле 

 

где  и  — число искусственных нейронов в предыдущем и следующем нейрослое 

соответственно. Эти факторы дали старт для очередного быстрого развития нейросетей, а 

как сопутствующий результат, сформировали понятие глубокой нейронной сети — 

нейросети, содержащей 2 и более скрытых нейрослоёв (рис. 3). 

5. Свёрточные нейросети 

Отдельного упоминания стоит история развития свёрточных нейросетей, так как они 

показывали и показывают себя как один из самых эффективных инструментов для анализа 

изображений. История создания свёрточных нейросетей уходит в 50-е — 60-е годы, когда 

работы таких исследователей, как Д. Хебба [4] и других нейрофизиологов показали, что 

зрительная кора головного мозга для распознавания объектов имеет отдельный вид 

нейронов, которые реагируют на определённые шаблоны (pattern) в получаемых сигналах 

— линии, углы, движение. 
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Рисунок 4. Завирусившееся в интернете изображение, на котором IntelexVision вместо 

собаки видит тигра, не учитывая контекст в виде забора, дающего полосатую тень. 

 

В связи с этим принцип работы нейросетей основан на поиске тех или иных признаков 

объекта, который подаётся в качестве входных данных. Этот процесс называется поиском 

шаблонов в данных. Однако входные данные могут содержать персональный контекст, 

который может искажать исходные признаки объекта. Ярким примером такого искажения 

является следующее изображение (рис. 4), на котором человек определит собаку, однако 

нейросеть, ранее обученная решать задачу выявления животных на изображении и 

классифицировать выявленное животное, относит данную собаку к тигру. 

Подобные случаи неверного истолкования признаков входных объектов доказывают 

важность персонального контекста и в целом обработки данных при работе с нейросетями, а 

не только выявления самой эффективной архитектуры и получения лучших метрик в 

выходных данных. 

Первые свёрточные нейросети работали на следующих принципах: к изображению 

применяется операция свёртки; для обнаружения шаблонов используются 

соответствующие фильтры; изображение обрабатывается слой за слоем с целью 

извлечения более сложных шаблонов; для обучения сетей используется метод обратного 

распространения ошибки. 
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Первой практически работающей архитектурой свёрточной нейросети стала LeNet, 

которую в 1989 году разработал Я. Лекун с соавторами [49] для распознавания 

написанных от руки цифр почтового индекса, предоставляемых почтовой службой США. 

Работа нейросети основана на принципе разделения весов, когда несколько нейронов или 

групп нейронов используют одни и те же веса для снижения количества уникальных 

параметров в модели и оптимизации процесса обучения. К 1998 году идеи коллектива 

выливаются в архитектуру LeNet-5 [50], состоящей из чередования свёрточных слоёв и 

слоёв субдискретизации, завершая выход нейросети двумя полносвязными свёрточными 

слоями. 

В 2010 году Д. К. Кирешан и Ю. Шмидхубер публикуют препринт [51], в котором 

реализованная архитектура нейросети добивается рекордных на то время показателей 

точности определения рукописных символов эталонных тестов MNIST. Для достижения 

цели была спроектирована нейросеть, содержащая 9 скрытых слоёв, а для её обучения 

использовался графический процессор, что позволило снизить время обучения сети. 

М. Цейлер с соавторами публикуют работу [52], в которой предложили использование 

слоя деконволюции. Если рассмотреть его на примере входного изображения  с  

входными каналами , то каждый из этих каналов представляется в виде 

линейной суммы  скрытых карт признаков , свёрнутых фильтрами : 

. 

Если изображение  имеет размер , а фильтры имеют размер , то карты 

скрытых объектов имеют размер . 

В 2012 году AlexNet — свёрточная нейронная сеть, разработанная командой 

исследователей под руководством А. Крижевского [53] — одерживает революционную 

победу в конкурсе ImageNet LSVRC-2012, где показывает впечатляющий результат с 

ошибками топ-1 и топ-5 в 37,5% и 17,0% против 45,7% и 25,7% у конкурентов, 

усреднявших показания двух классификаторов, обученных на Фишеровских векторах [54]. 

Ключевыми особенностями AlexNet стали применение функции активации ReLU, 

эффективное использование графического процессора для обучения и применение 

техники Dropout для борьбы с переобучением, предложенная ранее тем же коллективом 

[55]. Техника основана на выключении в течение одной итерации обучения части 
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нейронов скрытых слоёв с определённым шансом с последующим их возвращением в 

конце итерации с последующей нормировкой весов нейронов. 

М. Лин с соавторами в 2013 году [56] предложили ввести слой глобальной 

усредняющей субдискретизации, что в дальнейшем позволило создавать полносвязные 

свёрточные нейросети без полносвязных слоёв в конце сети. Также было показано, что 

вставка многослойных персептронов между свёрточными слоями усиливает свёрточные 

свойства. 

В 2014 году К. Симонян и Э. Зиссерман публикуют работу [57], в которой описывают 

так называемую VGG-сеть. Архитектура предлагает использовать вместо тяжёлых 

свёрточных слоёв размером 5x5 и более свёрточные слои размером 3x3 с увеличением их 

количества — сама нейросеть включала 19 нейрослоёв. Как оказалось, такой подход 

оказывается крайне эффективным за счёт уменьшения числа параметров и уменьшения 

тяжеловесных арифметических операций. 

К. Сегеди с коллегами в 2014 году публикуют работу [58], где предлагают к 

рассмотрению архитектурный принцип под названием Inception и конкретную нейросеть с 

22-мя нейрослоями GoogLeNet, основанную на данной архитектуре и успешно 

применяемую в задачах классификации и обнаружения. В архитектуре Inception ключевым 

принципом является использование ядер размера 1x1, что является переосмыслением идей 

Лин [56]. 

В том же 2014 году Л. Сифре защищает кандидатскую диссертацию [59], посвящённую 

получению шаблонов изображений, стабильных относительно трансляции и поворота 

посредством каскада вейвлет-преобразований по пространственным и угловым 

координатам. Для этого он вводит Depthwise Separable свёрточный слой нейронов, в 

котором также являются важными ядра размера 1x1. 

x

w z

y

x x y

x y

w w

x

w

z

w z

y

y

z

z

x

w z

y

x x y

x S

w S

S

w

S

w z

y

y

z

z

 

Рисунок 5. Пример операции пространственного расширения карты признаков. Слева 

— простейшая схема с дублированием существующих, справа — с применением 

интерполяции и созданием синтетических признаков. В данном примере  
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Развивая идеи [56], в 2014 году Дж. Лонг с соавторами в своей работе [60] предложили 

концепцию полносвёрточной сети для задач, результатом в которых является изображение 

такого же размера, как исходное. Предлагается использовать операцию пространственного 

расширения карты признаков (Upsampling) для решения проблемы несбалансированных 

наборов данных (рис. 5). В простейшем случае операция представляет собой метод 

копирования существующих предметов, а может применяться и интерполяция для 

создания новых синтетических примеров в классе на основе существующих. В 

дальнейшем подход с применением интерполяции доработали и нейрослой стал 

называться слоем транспонированной свёртки [61]. 

 

 

Рисунок 6. Появление дефектов в случае использования только деконволюции 

(сверху), для сравнения — использование деконволюции в сочетании с расширением 

карты признаков (снизу). Источник: [62]. 

 

В работе [62] А. Одена изучает пиксельные дефекты, возникающие при анализе 

изображений с использованием нейросетей с пространственным расширением карты 

признаков. Коллектив приходит к выводу, что стандартный подход к созданию 

изображений с помощью деконволюции имеет значительные успехи, но также имеет 

некоторые концептуально простые проблемы, которые приводят к появлению дефектов в 

создаваемых изображениях (рис. 6). Тщательное же продумывание архитектуры 

нейросетей с использованием операций расширения карты признаков и слоя 

транспонированной свёртки может оказаться лучшим решением, чем уже существовавшие 

решения в виде свёрточных нейросетей. 

В 2015 году С. Иоффе с командой разрабатывают пакетную нормализацию данных 

(Batch Normalization) при передаче между слоями [63]. Метод основан на том, что 

нормализация становится частью архитектуры нейросети и выполняется для каждого 

обучающего мини-пакета, что позволяет использовать более быстрые темпы обучения 

сетей и снизить требования к инициализации исходных данных, а в некоторых случаях не 

применять технику борьбы с переобучением Dropout. 



104    Насибулов И.А., Насибулов Е.А. Современные тенденции в развитии нейронных сетей 

О. Роннебергер с коллегами разрабатывают в 2015 году подход к построению 

архитектуры нейросети и её обучению в задаче сегментации изображений [64], 

позволяющий эффективно использовать имеющиеся выборки данных. Архитектура 

основана на двух частях — сжимающей, активно использующей свёрточные слои для 

извлечения шаблонов из входных данных, и расширяющей, использующей операцию 

пространственного расширения карты признаков. Связи между этими двумя частями 

архитектуры позволяют добиться эффективного обучения на относительно меньших 

наборах входных данных и лучшей сегментации изображений, что и позволило выиграть 

ISBI cell tracking challenge 2015 с большим отрывом относительно конкурентов (свёрточных 

нейросетей с подвижным окном). 

Ф. Ю и В. Колтун в своей работе [65] предлагают использовать архитектурный модуль 

нейросети, содержащий операцию разреженной свёртки. Коллектив показывает, что 

данный модуль можно применять для систематического объединения многомасштабной 

контекстной информации без потери разрешения, что выливается в повышение точности 

современных систем семантической сегментации. 

В конце 2015 года выходит работа К. Хэ с коллегами [66], в которой предлагается к 

рассмотрению архитектура Residual Network (ResNet) — свёрточная нейросеть с 

остаточными блоками. Переформулировав слои как обучающие остаточные функции со 

ссылкой на входные слои, коллектив делает упор на глубину сети, сравнивая до 152 слоёв 

с 16–19 в архитектуре VGG. Несмотря на количество слоёв, ResNet является сетью с 

меньшей сложностью. Совокупность остаточных блоков даёт погрешность в 3,57% на 

эталонном наборе тестов ImageNet. Также данная архитектура побеждает на ILSVRC 2015 

в задачах классификации. 

Х. Хан и Б. Енер в 2018 году на конференции представляют работу [67], в которой 

используют слой вейвлет-деконволюции для спектрального разложения временных рядов 

вместо предобработки сигналов в свёрточных нейросетях, что позволяет уменьшить 

количество параметров обучения и повысить интерпретируемость классификатора 

временных рядов. Данный метод позволил уменьшить ошибку в распознавании 

телефонных сигналов на 4% до 18,1%. 

С. Фудзиеда с коллегами представили в своей работе [68] использование вейвлет-

преобразований непосредственно в нейросети в качестве вейвлет-нейрослоёв 

субдискретизации. Такой подход позволяет использовать спектральную информацию, 

обычно теряющуюся в обычных свёрточных нейросетях, для эффективного решения задач 

классификации текстур и аннотации 2D-изображений. 
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В 2019 году П. Лю с коллегами предлагает использование [69] мультивейвлет-

свёрточной нейросети, архитектура которой включает встройку вейвлет-преобразований в 

нейросеть для уменьшения карт признаков и увеличить поле восприятия соответствующих 

фильтров. Также данную архитектуру можно применять для восстановления карт объектов 

с высоким разрешением с использованием обратных вейвлет-преобразований в 

архитектуре. 

6. Глубокие рекуррентные нейросети 

В конце 1980-х — 1990-х годах М. Джордан и Дж. Элман внесли фундаментальный 

вклад в развитие рекуррентных нейронных сетей (RNN). В 1990 году Элман в своей работе 

[70] предлагает модель рекуррентной ИНС с обратной связью и наличием одношагового 

временного контекста как обобщение высказанных идей различными исследователями в 

86-90-х годах, первым из которых был Джордан, говоривший про временной контекст в 

техническом отчёте [71]: 

 

, 

где  — дискретное время,  — вектор скрытого состояния нейросети в момент 

времени , а  отвечает за обратную связь и временной контекст. 

В 1997 году Джордан предложил модификацию сети Элмана [70] в работе [72] по 

изучению коартикуляционных явлений в речи, которая заключается в том, что контекст 

решения определяется выходом сети, а не скрытым слоем: 

 

, 

 

Такие сети как в [72] и [70] называются SimpleRNN и имеют некоторые проблемы. 

Однако рекуррентные сети, состоящие из стандартных рекуррентных ячеек, не способны 

обрабатывать долгосрочные зависимости: по мере увеличения разрыва между 

соответствующими входными данными становится трудно получить информацию о 

соединении. А сигналы об ошибках, поступающие в обратном направлении во времени, 

имеют тенденцию либо усиливаться, либо исчезать [73]. 
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Для решения проблем SimpleRNN в 1997 году З. Хохрайтер предлагает архитектуру 

LSTM — Long Short Term Memory [74], или же долгая краткосрочная память. Они 

улучшили запоминающую способность стандартной рекуррентной ячейки, введя в нее 

шлюзы (gates). После этой новаторской работы LSTM были модифицированы и 

популяризированы многими исследователями. Варианты включают LSTM без шлюза 

забывания, LSTM с шлюзом забывания и LSTM с подключением через глазок. Обычно 

термин "ячейка LSTM" обозначает LSTM со шлюзом забывания [73]. 

Ф. Морин и Й. Бенгиа в 2005 году в своей работе про языковое моделирование 

распознавателей речи [75] предлагают использование иерархической декомпозиции 

условных вероятностей отношений языковых конструкций к определённым классам 

семантической иерархии WordNet, что по сути является модификацией нейрослоя Softmax. 

Это позволяет эффективно решать задачи классификации в компьютерной лингвистике с 

десятками тысяч классов. 

А. Гравес и Ю. Шмидбухер в своей работе 2005 года [76] совершенствуют архитектуру 

LSTM и представляют архитектуру сети Bidirectional LSTM. Тестируя различные 

архитектуры нейросетей, исследователи делают вывод о том, что двунаправленные сети 

превосходят однонаправленные, а архитектура LSTM в целом превосходит обычные RNN 

сети. 
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Ok
 

Рисунок 7. Слой внимания (Attention layer). Выходное значение формируется как 

взвешенное среднее выхода. 

 

В 2013 году Гравес [77] предложил реализацию слоя внимания (Attention layer). Выход 

слоя внимания является взвешенным средним выхода рекуррентного слоя (рис. 7). 

С. Ши с соавторами в 2015 году представляют в работе [78] свёрточную LSTM 

нейросеть — инновационную архитектуру, объединяющую преимущества свёрточных и 

LSTM сетей для краткосрочного прогнозирования осадков. Данная работа демонстрирует 
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успешное применение глубокого обучения в метеорологии и показывает эффективные 

методы обработки пространственно-временных данных. 

В 2015 году Н. Кальхбреннер в работе [79] представляет архитектуру Grid LSTM, 

расширяющую возможности LSTM для работы с входными данными, имеющими 

сетчатую структуру. Отличия от традиционной долгой кратковременной памяти 

заключается в связи ячеек между нейросетевыми уровнями, а также в пространственно-

временных данных. Превосходство архитектуры показано на наборе эталонных тестов 

предсказания символов Википедии, в задаче перевода текста с китайского на английский. 

На бенчмарке MNIST для определения рукописных символов архитектура показала 

конкурентоспособный процент ошибки. 

К. Лаурент с коллегами в своей работе 2015 года показывает как пакетная 

нормализация позволяет значительно сократить время обучения сети [80]. Коллектив 

отмечает, что хотя эта техника может привести к более быстрой сходимости критериев 

обучения, как такового преимущества при решении задач языкового моделирования и 

распознавания речи не даёт. 

Д. Амодей с соавторами [81] добиваются ускорения работы нейросети для 

распознавания английской и китайской речи в своей работе. Ключом к повышению 

эффективности является использование архитектур нейросетей, которые позволяют 

применение схемы формирования пакетов для графических процессоров. Применение 

данной схемы, называющейся диспетчеризацией пакетов (Batch Dispatch), позволило 

добиться эффективной работы программного пакета в реальном времени на серверах 

разработки.  

В 2016 году Дж. Л. Ба публикует работу [82], в которой метод пакетной нормализации 

модифицируется в метод нормализации слоя. Отличием служит применение адаптивных 

смещений нейронов до применения элементов нелинейности. Также схожие операции 

происходят и во время обучения и тестирования нейросети. Такой подход эффективен для 

стабилизации динамики скрытых состояний в рекуррентных нейросетях и может 

значительно сократить время, требуемое для обучения сети. 

А. Васвани с коллегами представляют в своей работе [83] архитектуру Transformer, 

которая с помощью механизма многоголового внимания (Multi-head attention) может 

эффективно моделировать зависимости между данными без использования рекуррентных 

или свёрточных нейрослоёв, заменяя их массивами ячеек внимания. Данная архитектура 

показала значительные улучшения показателей в задачах обработки естественного языка и 

эффективность обучения в условиях ограниченности обучающих данных. Однако у 
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данной сети есть недостаток в виде ограниченности операционного контекста — всего 

несколько десятков токенов. 

М. Дехгани и С. Гувс в 2018 году представляют архитектуру Universal Transformer, 

которая является обобщением архитектуры сети-трансформера с использованием 

рекуррентных последовательностей, что позволяет преодолеть ограничения сетей-

трансформеров во многих простых задачах [84]. 

Работа Дж. Девлина с соавторами 2018 года [85] представляет модель BERT 

(Bidirectional Encoder Representations from Transformers), которая предлагает новый подход к 

предварительному обучению языковых моделей, учитывающий левый и правый контекст во 

всех слоях. Архитектура показала свою эффективность в задачах обработки естественного 

языка [86], а операционный контекст в несколько сотен токенов позволяет преодолеть 

недостатки LSTM. 

В 2019 году Ц. Даи с коллегами представляет в [87] архитектуру нейросети Transformer-

XL, которая позволяет изучать зависимости за пределами фиксированной длины без 

нарушения временной согласованности. Улучшение составляет на 80% в случае RNN, и 

450% для обычных нейросетей архитектуры Transformer. 

Современное состояние архитектур рекуррентных нейронных сетей позволяет решать 

широкий класс задач [88, 89, 90]. 

7. Современные тенденции глубокого обучения 

7.1 Обработка естественного языка 

Одним из современным направлений развития является улучшение архитектуры больших 

языковых моделей. Развитие рекуррентных нейронных сетей, ячеек долгой краткосрочной 

памяти и архитектуры трансформеров позволило развиваться таким семействам нейросетей 

как вышеописанная BERT [85], модель от Google Brain Team, названная T5 [91, 92], или 

ChatGPT [93]. Принципиальным вкладом T5 в развитие нейросетей является 

унифицирование задачи обработки естественного языка в единую схему преобразования 

текста. В отличие от существовавших до неё моделей, в том числе BERT, T5 обрабатывает 

входной текст (энкодер) и на его основе генерирует выходной текст (декодер). 

Развитие ChatGPT демонстрирует впечатляющий прогресс в области искусственного 

интеллекта и обработки естественного языка. Первой архитектурой для СhatGTP была GPT-

1, появившаяся в 2018 году и представлявшая из себя архитектуру трансформера, умеющего 
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генерировать простые тексты, отвечать на несложные вопросы, завершать предложения, 

генерировать небольшие описания на основе описания характеристик. Но GPT-1 имела 

недостатки в виде ограниченной длины генерации текстов, слабое понимание контекста, 

сложности с решением сложных задач, несвязное ведение диалога с пользователем. По-

настоящему революционной стала архитектура GPT-3, которая колоссально увеличила 

количество параметров модели — 175 миллиардов, значительно улучшила качество 

генерации и уменьшила выборки данных для обучения. В 2022 году появился сам ChatGPT, 

расширивший возможности пользовательского интерфейса, а на текущий момент активно 

используется архитектура GPT-4o в комбинации с GPT-5, вышедшей в релиз 7 августа 2025 

года. 

В 2022 году Google AI представляет архитектуру Pathways Language Model (PaLM) [94]. 

Нейросеть представляет собой языковую модель-трансформер с 540 миллиардами 

параметров, а в обучении использовалась Pathways, новая система ML, которая обеспечивает 

высокоэффективное обучение в нескольких модулях тензорных процессоров Google. PaLM 

обладает широкими возможностями в решении многоязычных задач и генерации исходного 

кода. В работе [94] продемонстрировано превосходство модели над GPT-3. 

Нейросети-трансформеры нашли своё применение и в задаче определения белков, где 

позволили улучшить существующие модели. Дж. Джампер с коллегами из DeepMind 

представили AlphaFold — первую нейросеть, способную определять последовательности 

белков с атомной точностью [95]. Успехи были подтверждены на конкурсе 14th Critical 

Assessment of protein Structure Prediction (CASP14). AlphaFold открыла новую эру в 

предсказании белковых структур, значительно ускорив процесс, который ранее занимал 

месяцы и годы расчётных и экспериментальных исследований. 

П. Левис с коллегами в 2020 году представляют универсальный рецепт тонкой настройки 

моделей генерации с расширенным поиском (RAG), которые объединяют предварительно 

обученную параметрическую и непараметрическую память для генерации языка [96]. 

Анализируя данный метод настройки в широком спектре задач обработки естественного 

языка, команда делает вывод, что модели RAG генерируют более конкретный, 

разнообразный и основанный на фактах язык, чем базовая версия модели seq2seq, 

основанная только на параметрах. Данный принцип впоследствии стал использоваться 

многими коммерческими решениями, по крайней мере специальными версиями моделей из 

семейства архитектур, таких как GPT, DALL-E, Claude, Gemini, Copilot и другие. 

7.2 Компьютерное зрение 
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А. Досовитский с соавторами в работе [97] рассуждают о том, что архитектура сетей-

трансформеров стала стандартом для задач обработки естественного языка, а в 

компьютерном зрении применение архитектуры остается ограниченным. Механизм 

внимания применяется либо совместно со свёрточными сетями, либо используется для 

замены определённых компонентов свёрточных сетей при сохранении их общей структуры. 

Команда демонстрирует, что зависимость от свёрточных нейросетей необязательна, и чистый 

преобразователь, применяемый непосредственно к последовательностям фрагментов 

изображений, хорошо справляется с задачами классификации изображений. 

Р. Ромбах с соавторами представляют в 2021–2022 годах скрытую диффузионную модель 

Stable Diffusion для генерации изображений по текстовому описанию [98]. Команда 

улучшает диффузионные модели, основанные на декомпозиции процесса формирования 

изображения на последовательное применение автоэнкодеров (энкодер + декодер) с 

шумоподавлением, с помощью использования скрытого пространства мощных 

предварительно обученных автоэнкодеров и внедрения в архитектуру модели уровней 

перекрёстного внимания. Архитектура стала первой высокопроизводительной моделью с 

открытым кодом в области генеративного ИИ. 

Конкурирующей архитектурой является DALL-E 2 — генеративная модель от OpenAI, 

представленная в 2022 году, способная создавать реалистичные изображения и произведения 

искусства на основе текстовых описаний. К сожалению, OpenAI не публикует полные 

научные статьи о DALL-E 2 в открытом доступе, поэтому преимущества в виде более 

высокого качества финальных изображений, лучшего понимания контекста запроса, меньшее 

число дефектов при генерации и более стабильные результаты в сравнении со Stable 

Diffusion можно считать субъективными, однако из рассмотрения исключить саму нейросеть 

не позволяют. Ещё одним коммерческим конкурентом является Midjourney от одноимённой 

компании. Нейросети приписывают преимущество при генерации изображений в 

художественном стиле, однако закрытый характер разработки не позволяет полноценно 

провести анализ модели. 

В области компьютерного зрения NVIDIA в 2022 году предлагают свою разработку 

StyleGAN v4 — генеративно-состязательную сеть (GAN), предназначенную для создания 

фотореалистичных изображений лиц и других объектов. Архитектура включает основанный 

на грамматике обучения основанной лексике (G2L2) подход к изучению композиционного и 

обоснованного представления значений языка на основе обоснованных данных, таких как 

парные изображения и тексты. В ходе работы сети слова сопоставляются с кортежем 
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синтаксического типа и нейросимволической семантической составляющей. Модель 

продолжает развиваться, открывая новые возможности для создания фотореалистичного 

контента. 

В области компьютерного зрения можно отметить CLIP (Contrastive Language-Image Pre-

training) [99]. В 2021 году А. Радфорт с коллегами демонстрируют, что предварительное 

обучение определения соответствия подписей и изображений является эффективным и 

масштабируемым способом изучения представлений изображений с нуля на основе набора 

данных из 400 миллионов пар (изображение, текстовое описание), собранных из Интернета. 

Модель нетривиально подходит для большинства задач и часто конкурирует с полностью 

контролируемыми базовыми показателями без необходимости какого-либо обучения для 

конкретного набора данных. 

В 2023 году Meta AI представляет разработку Segment Anything Model [100], 

предназначенную для автоматической сегментации объектов на изображениях. Модель была 

обучена для обработки как текстовых запросов, так и изображений, при этом её важной 

особенностью является способность выполнять инструкции в условиях отсутствия примеров 

(zero-shot) для новых изображений и задач. Производительность при этих условиях 

впечатляет — часто результат не уступает или даже превосходит полученный при наличии 

полностью размеченных аналогичных примеров в обучающей выборке. 

7.3 Вопросы архитектуры и масштабирования нейросетей 

В 2020 году Д. Лепихин с соавторами обозначают проблему, связанную с 

масштабированием нейросетей [101]. Несмотря на надёжное повышение качества моделей с 

масштабированием, растёт сложность вычислений, программирования и эффективного 

распараллеливания. Для преодоления этих проблем команда использует архитектурное 

решение Mixture of Experts. С помощью модуля Gshard, состоящего из набора облегченных 

API-интерфейсов аннотаций и расширения для компилятора XLA, команда добивается 

расширения многоязычной модели нейронного машинного перевода архитектуры 

Transformer до 600 миллиардов параметров, используя автоматическое сегментирование. 

Модель обучалась 4 дня на 2048 тензорных процессорах и показала высокое качество 

перевода. 

В 2019 году М. Тан и К. В. Ле публикуют работу про семейство архитектур EfficientNet 

[102], переосмысляющую масштабирование нейросетей. Тщательный баланс глубины, 

ширины и разрешения сети при масштабировании может привести к повышению 

производительности. Основываясь на этом наблюдении, команда предлагает новый метод, 
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который равномерно масштабирует все параметры глубины, ширины и разрешения с 

использованием простого, но высокоэффективного комплексного коэффициента. Также Тан 

и Ле используют поиск по нейронной архитектуре для разработки новой базовой сети и её 

масштабирования с целью получения нового семейства моделей, называемых EfficientNet. 

В 2019 году Э. Ховард с командой представляют семейство архитектур MobileNetV3 

[103]. Команда представляет новое поколение нейронных мобильных сетей, адаптированное 

к процессорам мобильных телефонов с помощью аппаратного обеспечения для поиска 

сетевой архитектуры (NAS), дополненного алгоритмом NetAdapt, а затем 

усовершенствованного за счет новых достижений в архитектуре. Данное решение 

представляет собой эффективное решение для задач компьютерного зрения на мобильных 

устройствах, предлагая баланс между точностью и производительностью. 

Дж. Расли с соавторами публикуют в 2020 году статью про библиотеку DeepSpeed от 

Microsoft [104] для предназначенную для масштабирования и оптимизации обучения 

глубоких нейронных сетей на графических и тензорных процессорах. Одна из частей 

библиотеки — параллельный оптимизатор ZeRO, который значительно снижает ресурсы, 

необходимые для распараллеливания модели. При этом ZeRO увеличивает количество 

параметров, которые можно обучить. DeepSpeed предоставляет возможности для обучения 

моделей с триллионами параметров. 

7.4 Обучение с подкреплением 

В 2018 году DeepMind представили нейросеть AlphaZero, представляющую собой 

архитектуру, способную достигать сверхчеловеческого уровня игры в различные 

стратегические игры на основе обучения с подкреплением — метода машинного обучения, 

при котором нейросеть учится принимать оптимальные решения через взаимодействие с 

окружающей средой, получая обратную связь в виде наград или наказаний [105]. В отличие 

от AlphaGo [106], обучавшейся в том числе на размеченных данных игр профессионалов, 

AlphaZero, имея в своём арсенале только правила игры, за 24 часа достигла 

сверхчеловеческого уровня игры в шахматы и сёги, а также в го, и в каждом случае 

убедительно побеждала программы-чемпионки мира. 

В 2019 году О. Винялс с соавторами публикуют работу [107] про нейросеть AlphaStar от 

DeepMind, достигшей уровня игры Грандмастеров в StarCraft II. Для обучения использовался 

многоагентный алгоритм обучения с подкреплением, который использует данные как из игр 

с участием людей, так и других нейросетей в рамках разнообразной лиги постоянно 

адаптирующихся стратегий и контрстратегий, каждая из которых представлена глубокими 
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нейронными сетями. Серия онлайн-игр против игроков-людей показала, что рейтинг 

AlphaStar был на уровне гроссмейстера для всех трех рас StarCraft и превышал рейтинг 

99,8% официально зарегистрированных игроков-людей. 

В 2020 году выходит статья Дж. Шритвайзера с соавторами про нейросеть MuZero от 

DeepMind [108], обобщающую идеи предыдущих разработок и концентрирующуюся на 

разработке победных стратегий без знаний про игру, полагаясь на динамику изменения 

окружения. MuZero при итеративном применении предсказывает величины, непосредственно 

относящиеся к планированию: вознаграждение, политику выбора действий и функцию 

ценности. При оценке в Го, шахматах и сёги, без какого-либо знания правил игры, MuZero 

соответствовал сверхчеловеческой производительности алгоритма AlphaZero, который был 

применён вместе с правилами игры. 

В 2022 году DeepMind представляет нейросеть AlphaTensor [109], использующую методы 

обучения с подкреплением для автоматического открытия новых алгоритмов умножения 

матриц. Архитектура основана на AlphaZero и предлагает существенные улучшения в 

эффективности умножения матриц для различных размеров, в том числе улучшение 

алгоритма Штрассена для матриц размера . 

7.5 Мультимодальные модели 

Мультимодальными нейросетями называются системы искусственного интеллекта, 

способные обрабатывать несколько типов данных одновременно: текст, изображения, аудио, 

видео и другие форматы информации. Формально к ним можно отнести много нейросетей из 

больших языковых моделей, сетей для компьютерного зрения и других, но акцент на 

мультимодальности стали делать с 2022–2023 года. 

В 2022 году статья С. Рида с соавторами представляет разработку DeepMind 

мультимодального агента Gato [110], работа которого выходит за рамки текстового вывода. 

Gato работает как мультимодальная, многозадачная и многоцелевая универсальная 

нейросеть. Одна и та же сеть с одинаковыми весами может играть в игры, подписывать 

изображения, общаться в чате, складывать блоки с помощью настоящей руки робота и 

многое другое в зависимости от контекста. 

Нейросеть Flamingo — ещё одна разработка DeepMind — освещена в статье Дж.-

Б. Алайрака с соавторами [111]. Flamingo представляет собой семейство моделей 

визуального языка, обладающих возможностью быстро адаптироваться к новым задачам, 

используя всего несколько примеров с аннотациями. Предлагаются архитектурные 

инновации, позволяющие объединить мощные предварительно обученные визуальные и 
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языковые модели, обрабатывать последовательности произвольно чередующихся 

визуальных и текстовых данных и легко использовать изображения или видео в качестве 

входных данных. Благодаря своей гибкости сети Flamingo могут обучаться на 

крупномасштабных мультимодальных веб-ресурсах, содержащих произвольно 

чередующийся текст и изображения, что является ключевым фактором для обеспечения их 

возможностями обучения в режиме реального времени. 

В 2023 году DeepMind представляет семейство сетей Gemini [112]. Семейство 

мультимодальных моделей Gemini обладает замечательными возможностями для понимания 

изображений, аудио, видео и текста. Новые возможности семейства Gemini в области кросс-

модального мышления и понимания языка позволят использовать их в самых разнообразных 

случаях. 

Р. Сан с коллегами публикует обзор на основе разработки OpenAI генеративной модели 

Sora, предназначенная для создания высококачественных видео на основе текстовых 

описаний [113]. Команда делает вывод, что продукт является важной вехой на пути к 

созданию общего искусственного интеллекта. 

Развитие нейросетей-трансформеров и других современных архитектур заслуживает 

отдельного обзора [30]. В данной работе мы не будем подробно рассматривать их развитие, 

поскольку оно связано в большей степени с их масштабируемостью, нежели с новыми 

концептуальными идеями. 

7.6 Сети Колмогорова-Арнольда 

Теорема суперпозиции Колмогорова-Арнольда легла в основу так называемых сетей 

Колмогорова-Арнольда. В отличие от многослойных персептронов, лежащих в основе всех 

современных ИНС, KAN имеют фиксированные функции активации на узлах и обучаемые 

функции активации на ребрах (рис. 8). Каждый функция активации является одномерной 

функцией, параметризованной в виде сплайна. Это изменение позволяет KAN превосходить 

MLP с точки зрения точности и интерпретируемости в ряде задач [31]. KAN являются 

многообещающей альтернативой MLP, открывая возможности для дальнейшего 

совершенствования современных моделей глубокого обучения, которые в значительной 

степени зависят от MLP. 
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Рисунок 8. Схема архитектуры сети Колмогорова-Арнольда. В отличие от MLP, 

активационные функции присутствуют как в нейронах, так и в рёбрах, их связывающих. 

 

Для задач аппроксимации при помощи KAN существует теорема Майорова-Пинкуса 

[114]: 

Существует аналитическая вещественная строго монотонно возрастающая функция 

активации , удовлетворяющая следующему свойству. и  существуют 

вещественные константы  и вектора , для которых 

 

. 

Согласно теореме Майорова-Пинкуса, существует класс функций, требующих большого 

размера нейронной сети, причём с ростом точности масштабируемость растёт 

экспоненциально. Также теорема определяет нижнюю границу сложности аппроксимации. 

С. А. Немковым [115] было обосновано, что для задач со сложными нелинейными 

зависимостями KAN являются предпочтительной архитектурой в сравнении с MLP. Это 

связано с тем, что MLP аппроксимируют результат кусочно-линейными функциями, что 

приводит к необоснованному росту числа параметров от каждого сегмента. В то же время 

KAN обладают индуктивным сдвигом в сторону разложения сложных зависимостей на 
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одномерные гладкие функции. В ряде задач это помогает не только достигнуть результата, 

но и получить дополнительную информацию для анализа. 

8. Заключение 

Основой современных нейронных сетей является многослойный персептрон. Входные 

сигналы могут иметь любое числовое значение, а итоговое значение в узле получается 

суммированием произведений входных сигналов с весами рёбер. Также в каждом узле 

присутствует активационная функция, которая превращает линейный функционал в 

произвольный, добавляя элементы нелинейности. 

Структура организации искусственных нейронов, связей между ними и способы 

обработки информации внутри сети может быть гораздо сложнее, чем полносвязные слои 

нейронов. Для разных задач лучше подходят разные архитектуры и, зачастую, выбор 

архитектуры обусловлен какой-то эвристикой или даже просто эмпирически. 

Среди современных тенденций развития наибольший интерес представляют большие 

языковые модели, сети-трансформеры, мультимодальные модели, среди представителей 

которых наиболее известны chatGPT, BERT, Cursor, DeepSeek и другие. 

Также развивается альтернатива многослойным персептронам — сети Колмогорова-

Арнольда, содержащие не только фиксированные активационные функции в узлах, но и 

обучаемые активационные функции на рёбрах. 
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УДК 004.4'4 

Алгоритм восстановления позиций выражений в 

исходном коде Cloud Sisal программ 

Гордеев Д. С. (Институт систем информатики им. А.П. Ершова СО РАН) 

В статье предложен алгоритм восстановления позиций выражений в исходном коде 

программ на языке Cloud Sisal. Актуальность исследования обусловлена важностью 

точного сопоставления элементов абстрактного синтаксического дерева с фрагментами 

исходного текста для построения инструментов разработки, таких как редактор 

исходного кода, визуальный отладчик, средства диагностики ошибок. Предлагаемый 

подход решает проблему неполной информации о позициях в выходных данных 

синтаксических анализаторов, модификация которых затруднительна. В работе описан 

разработанный трехфазный алгоритм, включающий этапы восстановления 

последовательности лексем, вычисления позиций лексем и вычисления позиций вершин 

абстрактного синтаксического дерева. Асимптотическая оценка времени выполнения 

алгоритма линейно зависит от объема входных данных и не превышает O(n), где n — 

количество символов в исходной программе. 

 

Ключевые слова: CPPS, Cloud Sisal, внутреннее представление, абстрактное 

синтаксическое дерево, AST, лексема, синтаксический анализатор. 

1. Введение 

В лаборатории конструирования и оптимизации программ ИСИ СО РАН ведется 

разработка системы облачного параллельного программирования CPPS [4], являющейся 

интегрированной средой разработки и исполнения программ на языке функционального 

программирования Cloud Sisal [5]. Одним из ключевых компонентов CPPS является 

визуальный отладчик, который реализует визуальное изображение внутреннего 

представления Cloud Sisal программ [3]. Внутреннее представление IR является 

иерархическим атрибутированным ориентированным ациклическим графом с портами. 

Данное представление состоит из вершин, содержащих входные и выходные порты. 

Вершины IR соответствуют функциям и операциям, входные порты соответствуют 

аргументам, а выходные порты соответствуют результатам вычислений. Для повышения 

удобства визуальной отладки требуется синхронизация между визуальным представлением 
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IR графа и исходным текстом Cloud Sisal программы. Возникает задача вычисления позиций 

выражений в исходном тексте по соответствующим им вершинам IR графа. Решение данной 

задачи необходимо для реализации таких функций, как: выделение выражений в исходном 

коде при выделении вершин в IR графе, отображение визуальных эффектов для фрагментов 

исходного текста программы при распространении данных по дугам IR графа, динамическая 

установка и снятие точек останова в визуальном редакторе IR графа, динамическая 

установка и снятие точек останова редакторе исходного кода. Поскольку вершины IR тесно 

связаны с узлами абстрактного синтаксического дерева AST [1], исходная задача сводится к 

задаче вычисление соответствия между узлами дерева AST и их позициями в исходном 

тексте Cloud Sisal программы. 

Задача точного сопоставления элементов абстрактного синтаксического дерева с 

фрагментами исходного текста программ является актуальной и рассматривается в не только 

в работах, связанных с визуализацией программ. В работе об автоматической верификации 

С-программ на основе смешанной аксиоматической семантики [10] приведено описание 

протокола обратной трансляции из промежуточного C-kernel-представления на исходный 

язык C-light. При трансляции из C-light в C-kernel модифицированные конструкции 

обогащаются метаинформацией. Эта метаинформация включает данные о примененных при 

трансляции правилах и о позициях данных конструкций в исходной программе, включая 

номера строк. Таким образом, данный протокол обратной трансляции является примером 

решения задачи о поддержке обратного отображения программы из промежуточного 

представления в исходное. Недостатком данного протокола обратной трансляции является 

необходимость модификации транслятора для поддержки работы с метаинформацией. В 

работе о системе IF1-Viewer [8], предназначенной для отображения графовых представлений 

Sisal-программ в виде промежуточной формы IF1, реализована функциональность подсветки 

строк в исходном коде Sisal-программы при нажатии на соответствующий узел графового 

представления в графическом редакторе. Недостатком системы IF1-Viewer является 

подсветка строк в целом без детализации до конкретных столбцов или позиций в строке, а 

также отсутствие устойчивости к небольшим модификациям исходного кода, таким как 

добавление комментариев и скобок. В системе HASKEU [7], предназначенной для 

разработки программ на функциональном языке Haskell, реализована функциональность 

одновременных графического и текстового представлений Haskell-программ, а также 

функциональность синхронизации между данными представлениями. Недостатком данной 

работы является отсутствие детального описания реализации синхронизации между 

графическим и текстовым представлениями Haskell-программ. В работах [2, 6] описаны 
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компоненты трансляции и компиляции программ на языках SISAL 3.*, которые применяются 

для визуализации внутреннего представления Cloud Sisal программ [3], однако возвращаемая 

информация о позициях выражений в исходном тексте программы является неполной. 

В данной работе описывается трехфазный алгоритм восстановления позиций вершин 

дерева AST в исходном тексте. В разделе 2 описана формальная постановка задачи, 

приведены обозначения и основные термины. В разделе 3 описан алгоритм, состоящий из 

трёх этапов: восстановления последовательности лексем слова из соответствующего дерева 

AST, восстановление позиций лексем во входном слове с помощью посимвольного 

сканирования входного слова и восстановление позиций вершин AST с помощью 

восстановленных позиций лексем. Для каждого из этапов приведён псевдокод. В разделе 4 

приведены доказательства утверждений о том, что алгоритм всегда завершается, имеет 

линейную сложность относительно длины входного слова, и для всех лексем слова 

вычисляются позиции во входном слове. В разделе 4 также приводится обсуждение 

применимости предложенного алгоритма в случае возможности модифицировать 

синтаксический анализатор, возвращающий AST. 

2. Постановка задачи 

Пусть задан контекстно-свободный язык L. Пусть G это однозначная контекстно-

свободная грамматика, порождающая язык L. Пусть w это слово (исходный текст 

программы) из языка L. Пусть SA это синтаксический анализатор, построенный для 

грамматики G. Пусть AST это абстрактное синтаксическое дерево, построенное для слова w 

анализатором SA. Пусть VAST  это множество вершин из дерева AST. Позицией подстроки в 

тексте (лексемы или выражения) будем называть четвёрку натуральных чисел (lS, cS, lE, cE) из 

N4, где lS и cS это номера строки и столбца начала подстроки соответственно, lE и cE это 

номера строки и столбца окончания подстроки соответственно. Требуется построить 

отображение F: VAST  → N4 , которое каждой вершине дерева AST сопоставляет позицию в 

исходном тексте w. 

3. Описание алгоритма 

Входные данные алгоритма: слово w из языка L и дерево AST = SA(w). 

Выходные данные алгоритма: отображение F : VAST → N4.VAST 

Алгоритм состоит из трех этапов: 

1) Восстановление последовательности лексем слова w из дерева AST. 
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2) Восстановление позиций лексем в слове w. 

3) Восстановление позиций вершин дерева AST. 

3.1. Восстановление последовательности лексем 

Вход: Корень дерева AST. 

Выход: Упорядоченный список лексем, соответствующих листьям дерева AST. 

Алгоритм представляет собой рекурсивный обход дерева в глубину, в процессе которого 

посещаются все листовые узлы. Лексемы, хранящиеся в этих узлах, последовательно 

добавляются в выходной список в порядке их обхода. Данный порядок соответствует 

порядку следования лексем в исходном тексте для корректно построенного AST. 

function ExtractLexemes(AstNode node) → Lexeme[] 

begin 

    if node is leaf then 

        begin 

            return [node.lexeme] 

        end 

    else 

        begin 

            lexemes = [] 

            for childNode in node.children 

                lexemes.append(ExtractLexemes(childNode)) 

            return lexemes 

        end 

end 

3.2. Восстановление позиций лексем 

Вход: Исходный текст w, список лексем Lexeme[]. 

Выход: Отображение P: N→ N4, сопоставляющее каждой лексеме из L ее позицию в w.  

Алгоритм выполняет сканирование слова w и для каждой лексемы l находит ее первое 

вхождение в тексте, начиная с текущей позиции сканирования. Алгоритм руководствуется 

следующими правилами: 

а) Обработка комментариев: Алгоритм распознает и пропускает однострочные и 

многострочные комментарии, определенные в грамматике G. При подсчете номеров строк и 

столбцов длина комментариев учитывается, но сами комментарии в список лексем не входят. 
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б) Поиск вхождений: Для лексемы l алгоритм ищет подстроку, совпадающую с l, начиная с 

текущей позиции в тексте. После успешного сопоставления текущая позиция сканирования 

перемещается на символ, следующий за окончанием лексемы l, и начинается поиск 

следующей лексемы. 

в) Обработка лишних скобок: Алгоритм корректно обрабатывает области текста, не 

соответствующие ни одной лексеме из входного списка пропуская их. Это обеспечивает 

устойчивость к форматированию исходного кода. 

Приведённый ниже псевдокод алгоритма опирается на семантику конструкции switch-case, 

при которой выполняется только одна case-ветвь, и, соответственно, не требуется добавлять 

инструкцию break для каждой case-ветви. Заметим, что в switch из цикла while только две 

case-ветви не увеличивают индекс i, указывающий на текущий символ в слове w. Первая 

такая case-ветвь (*) соответствует переходу в состояние обработки потенциально 

избыточных открывающих скобок, в котором начинается накапливание позиций 

открывающих скобок. Вторая такая case-ветвь (**) соответствует возврату из состояния 

открывающих скобок, при котором используются позиции только самых правых 

открывающих скобок. При этом соответствующие лексемы открывающих скобок уже 

обработаны в процессе накапливания позиций открывающих скобок. 

    function BuildLexemePositions(string w, Lexeme[] lexemes) → (N → N4) 

    P = {} 

    current_line = 1 

    current_column = 1 

    lexeme_index = -1 

    mode = text 

    sub_mode = none 

    foreach lexeme in lexemes 

    begin 

        lexeme_index += 1 

        length = len(lexeme) 

        tokenScanCompleted = false 

        while (tokenScanCompleted = false && i < len(w)) 

            switch (mode, sub_mode) 

                case (text, _) when w[i..i+2] = “//”: 

                    mode = single_line_comment; current_column += 2; i += 2; 
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                case (text, _) when w[i..i+2] = “/*”: 

                    mode = multi_line_comment; current_column += 2; i += 2; 

                case (text, _) when w[i..i+2] = “\r\n”: 

                    current_line += 1; current_column = 0; i += 1; 

                case (text, none) when w[i..i+len] = lexeme: 

                    tokenScanCompleted = true; current_column += len; i += len; 

                    position = (current_line, current_column, current_line, current_column + len) 

                    P = P U (lexeme_index, position) 

                case (text, none) when w[i..i+1] = “(”: // (*) 

                    j = lexeme_index 

                    while (lexemes[j] = “(”) begin  j += 1 end 

                    lb_count = j – lexeme_index 

                    fixedSizeQueue.setSize(count) 

                    sub_mode = lb 

                case (text, none): 

                    current_column += 1; i += 1; 

                case (text, lb) when lb_count > 0 and w[i..i+1] = “(” : 

                    tokenScanCompleted = true 

                    fixedSizeQueue ← (current_line, current_column, current_line, current_column + len) 

                    lb_count -= 1 

                    current_column += 1; i += 1; 

                case (text, lb) when lb_count > 0: 

                    current_column += 1; i += 1; 

                case (text, lb) when lb_count = 0 and w[i..i+len] = lexeme: 

                    fixedSizeQueue ← (current_line, current_column, current_line, current_column + len) 

                    current_column += 1; i += 1; 

                case (text, lb) when lb_count = 0 and w[i..i+1] = “(”: // (**) 

                    for(int k = 0; k < fixedSizeQueue.Size; k++) 

                        P = P U (lexeme_index + k – fixedSizeQueue.Size, fixedSizeQueue[k]) 

                    sub_mode = none 

                case (text, lb) when lb_count = 0: 

                    current_column += 1; i += 1; 

                case (multi_line, _) when w[i..i+2] = “*/”: 

                    mode = text 
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                    current_column += 2; i += 2; 

                case (multi_line_comment, _) when w[i..i+2] = “\r\n”: 

                    current_column = 0; i += 1; current_line += 1 

                case (multi_line_comment, _): 

                    current_column += 1; i += 1 

                case (single_line_comment, _) when w[i..i+2] = “\r\n”: 

                    mode = text 

                    current_column = 0; i += 1; current_line += 1 

                case (single_line_comment, _): 

                    current_column += 1; i += 1 

    end 

    return P 

3.3. Восстановление позиций вершин дерева AST 

Вход: Дерево AST, отображение P. 

Выход: Отображение F: VAST→  N4 

Алгоритм представляет собой рекурсивный обход AST. Для каждой вершины v ∈ VAST 

позиция вычисляется как объединение позиций всех ее дочерних вершин. Обход вершин 

AST производится в том же порядке, что и в алгоритме из раздела 3.1, при этом значение 

index соответствует количеству обработанных лексем из слова w. 

    procedure BuildAstNodePosition(AstNode node, N → N4 P, integer index = 0, F = {}) 

    begin 

    if node is leaf then 

        index += 1 

        F = F U {(node, P(index))} 

    else 

        begin 

            start_index = index 

            for childNode in node.children 

                BuildAstNodePosition(childNode, P, index, F) 

            first = P(start_index + 1) 

            last = P(index) 

            position = (first.start_line, first.start_column, last.end_line, last.end_column) 
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            F = F U {(node, position)} 

        end 

end 

4. Обсуждение 

Предложенный трехфазный алгоритм представляет решение для случая, когда 

существующий синтаксический анализатор возвращает дерево AST с недостаточной 

информацией о позициях выражений в исходном тексте программы или без неё и недоступен 

для модификации. Если существует возможность использовать лексический анализатор 

отдельно от синтаксического, то вместо рекурсивного обхода дерева AST на первом этапе 

предложенного алгоритма, на котором восстанавливается последовательность лексем, 

возможно использовать вызов лексического анализатора. Далее, если лексический 

анализатор доступен для модификации, то второй этап предложенного алгоритма возможно 

исключить, если модифицировать лексический анализатор так, чтобы для каждой 

извлекаемой лексема вычислялась и сохранялась её позиция в исходном слове w. Далее, если 

синтаксический анализатор доступен для модификации, третий этап предложенного 

алгоритма можно исключить, если модифицировать синтаксический анализатор так, чтобы 

при построении дерева AST каждая вершина снабжалась информацией о позиции 

соответствующего выражения в исходном слове w, наследуемой от позиций порождающих 

его лексем. Если же модификация синтаксического или лексического анализаторов 

невозможна или трудоёмка, то предложенный трехфазный алгоритм представляет собой 

полное и эффективное решение поставленной задачи. 

4.1. Свойства алгоритма 

Предложенный трехфазный алгоритм обладает следующими свойствами. 

Утверждение 1. Алгоритм всегда завершается. 

Доказательство: 

Этап 1: Обход конечного дерева AST гарантированно завершается, так как количество узлов 

∣VAST∣ конечно, и каждый узел посещается ровно один раз. 

Этап 2: Длина исходного текста ∣w∣=n. Каждая итерация цикла либо увеличивает индекс i, 

который указывает на позицию сканирования слова w, либо соответствует переключению в 

режим обработки открывающих скобок, либо обратному переключению из режима 

обработки открывающих скобок. Причём, если группа открывающих скобок разделена 

только пробельными символами или комментариями, то для такой группы переключение в 
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режим обработки открывающих скобок произойдёт ровно один раз. Таким образом, 

количество итераций, не увеличивающих индекс i не превышает 2/3*n в случае максимально 

возможного количества открывающих скобок. И, поскольку i ≤ n, алгоритм завершится за не 

более чем 2n шагов. 

Этап 3: Аналогично этапу 1. 

 

Утверждение 2. Сложность алгоритма составляет O(n), где n — длина слова w. 

Доказательство: 

Этап 1: Сложность обхода дерева в глубину равна O(|VAST|), где VAST множество вершин. 

Известно, что количество вершин в дереве AST пропорционально количеству лексем для 

многих однозначных грамматик [9]. При этом количество лексем не превышает количество 

символов в слове w. Соответственно, сложность обхода дерева AST равна O(n). 

Этап 2: Длина исходного текста ∣w∣=n. Каждая итерация цикла либо увеличивает индекс i, 

который указывает на позицию сканирования слова w, либо соответствует переключению в 

режим обработки открывающих скобок, либо обратному переключению из режима 

обработки открывающих скобок. Причём, если группа открывающих скобок разделена 

только пробельными символами или комментариями, то для такой группы переключение в 

режим обработки открывающих скобок произойдёт ровно один раз. Таким образом, 

количество итераций, не увеличивающих индекс i  не превышает 2/3*n в случае максимально 

возможного количества открывающих скобок. И, поскольку i ≤ n, то сложность алгоритма 

равна O(n). 

Этап 3: Аналогично этапу 1. 

 

Утверждение 3. Все лексемы из списка Lexeme[] получают позиции этапе 2. 

Доказательство: Поскольку слово w принадлежит языку L, а список лексем получен из AST 

для w, последовательность лексем в L с точностью до пробельных символов и комментариев 

совпадает с последовательностью лексем в w. Следовательно, этап 2, пропуская 

комментарии и пробелы, гарантированно находит каждую следующую лексему, так как 

поиск начинается с текущей позиции и продолжается с позиции за текущей лексемой, поиск 

продолжается только в правом направлении, и все лексемы из восстановленной 

последовательности существуют в слове w. 

5. Заключение 
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В работе представлен алгоритм восстановления позиций узлов AST в исходном коде. 

Алгоритм всегда завершается, имеет линейную сложность и не требует модификации 

существующего синтаксического анализатора. Для визуальной отладки программ на языке 

Cloud Sisal в рамках системы CPPS, где вершины IR наследуют структуру AST, и, 

соответственно, позиции выражений в исходном тексте, предложенный алгоритм полностью 

решает задачу соответствия изображений  вершин внутреннего представления IR и языковых 

выражений в исходном тексте программы на языке Cloud Sisal. Это соответствие даёт 

возможность включать и выключать точки останова, не только используя визуальные 

изображения портов, дуг и вершин, а также фрагменты исходного текста, такие как имена 

переменных или параметров. Также это соответствие отрывает возможность добавлять 

отладочные визуальные эффекты непосредственно к изображению исходного текста Cloud 

Sisal программы в визуальном отладчике. 
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УДК 004.82, 004.42, 004.021

Язык спецификации дискретных динамических систем,

ориентированных на знания, структурированные в

онтологиях

Ануреев И.С. (Институт систем информатики СО РАН)

В статье рассматривается язык ABML (Attribute-Based Modeling Language), пред-

назначенный для спецификации и прототипирования дискретных динамических си-

стем, ориентированных на знания, структурированные в онтологиях. Язык позволяет

формально описывать как онтологические модели систем, так и правила их функци-

онирования, включая динамическое изменение структуры знаний и состояний объек-

тов.

ABML реализован как лексическое расширение диалекта Common Lisp (SBCL) и

опирается на минимальный, но выразительный концептуальный базис, включающий

объекты, атрибуты и типы объектов. Особое внимание уделяется разделению объек-

тов на изменяемые и константные, а также механизмам типизации, основанным на

атрибутах.

В работе подробно описаны средства языка для задания типов, создания и мо-

дификации объектов, сопоставления с образцом и вычисления атрибутов. Ключевым

элементом ABML является механизм атрибутных замыканий, позволяющий форма-

лизовать контекстно-зависимые вычисления атрибутов и моделировать динамику си-

стем в дискретном времени.

Практическая применимость языка демонстрируется на примере моделирования

сушилки для рук, для которой построена онтология, а также описаны правила ини-

циализации и функционирования системы. Представленный подход показывает, что

ABML может служить удобным инструментом для онтологического моделирования

интеллектуальных, информационных и программных систем.

Ключевые слова: онтологии, атрибуты, онтологические модели, графы знаний, ат-

рибутные замыкания, ABML, дискретные динамические системы

1. Введение

Современные информационные и программные системы все чаще проектируются как

сложные дискретные динамические системы, функционирование которых опирается на

структурированные знания. Такие знания, как правило, представлены в виде онтологий,

определяющих понятия предметной области, их свойства и отношения. В этой связи воз-
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никает потребность в формальных языках, способных единообразно описывать как струк-

туру знаний, так и динамику изменения состояний системы во времени.

Существующие языки онтологического моделирования, такие как OWL и связанные с

ним формализмы, в первую очередь ориентированы на декларативное представление зна-

ний и логический вывод. Однако они ограничены в средствах описания поведения систем и

моделирования их функционирования как последовательности дискретных шагов. С дру-

гой стороны, традиционные языки программирования обладают мощными вычислитель-

ными возможностями, но не всегда обеспечивают адекватную поддержку онтологического

уровня моделирования и явной работы со знаниями.

В данной работе предлагается язык ABML, который разрабатывается как средство он-

тологического моделирования дискретных динамических систем. Основной целью языка

является объединение онтологического подхода с возможностями процедурного и функ-

ционального программирования, что позволяет описывать как структуру системы, так и

правила ее функционирования в рамках единого формализма.

ABML построен как лексическое расширение диалекта Common Lisp – языка SBCL.

Выбор Lisp-подобного языка обусловлен его высокой выразительностью, развитой систе-

мой макросов и удобством встраивания предметно-ориентированных языков. Это позво-

ляет реализовать ABML с минимальным числом новых конструкций, сохраняя при этом

возможность использования всех средств базового языка.

Концептуальный фундамент ABML основан на трех ключевых понятиях: объектах, ат-

рибутах и типах объектов. Объекты используются для представления элементов системы,

атрибуты – для задания их свойств и отношений, а типы объектов – для онтологической

классификации. Существенной особенностью языка является различие между изменяемы-

ми и константными объектами, что позволяет явно контролировать семантику изменений

состояний системы.

Важным элементом ABML являются механизмы сопоставления с образцом и атрибут-

ных замыканий. Сопоставление с образцом обеспечивает удобное средство задания усло-

вий и правил поведения системы, а атрибутные замыкания позволяют формализовать вы-

числение атрибутов в фиксированном контексте, что особенно важно при моделировании

динамики и зависимостей между компонентами системы.

Для демонстрации возможностей языка в статье рассматривается пример моделиро-

вания сушилки для рук. На этом примере показывается, как с помощью ABML можно
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построить онтологическую модель системы, задать ее начальное состояние и формально

описать правила функционирования в виде дискретных тактов. Тем самым иллюстриру-

ется применимость языка для моделирования реальных технических и информационных

систем.

В оставшейся части статьи последовательно рассматриваются основные компоненты

предлагаемого подхода. В разделе 2 вводится базис языка ABML и формулируются его

ключевые концепции. Раздел 3 посвящён системе типов языка, включая базовые типы и

типы объектов, основанные на атрибутах. В разделе 4 описываются объекты, их создание

и принципы работы с изменяемыми и константными экземплярами. Раздел 5 рассмат-

ривает механизмы работы с атрибутами и способы доступа и изменения их значений. В

разделе 6 вводятся средства сопоставления с образцом, используемые для задания правил

функционирования систем. Раздел 7 посвящён атрибутным замыканиям и их роли в мо-

делировании динамики. В разделе 8 описывается онтология сушилки для рук как пример

онтологической модели системы. В разделах 9 и 10 рассматриваются запуск и функцио-

нирование сушилки в терминах ABML. В разделе 11 проведен анализ родственных работ.

В заключительном разделе подводятся итоги работы и обсуждаются направления даль-

нейших исследований.

2. Базис языка ABML

Язык ABML (Attribute-Based Modeling Language) предназначен для прототипирования

дискретных динамических систем, ориентированных на знания, структурированные в он-

тологиях. Он позволяет специфицировать как онтологии таких систем, так и правила

функционирования этих систем, меняющие как саму онтологию, так и ее содержимое.

Язык является лексическим расширением SBCL (Steel Bank Common Lisp) [21] – попу-

лярного диалекта Common Lisp. Мы выбираем язык из семейства Common Lisp в каче-

стве основы ABML как благодаря его хорошо развитым возможностям по встраиванию

предметно-ориентированных языков, так и для того, чтобы иметь возможность использо-

вать при необходимости напрямую лисповские средства.

ABML вводит в SBCL лишь небольшой набор дополнительных функций. Хотя боль-

шинство этих функций являются макросами, мы далее для универсальности будем ис-

пользовать термин функция.

Мы проектируем ABML как язык для онтологического моделирования дискретных ди-
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намических систем (далее – систем), в том числе информационных и программных си-

стем.

ABML основан на минимальном концептуальном фундаменте, состоящем из трех базо-

вых понятий – объекты, атрибуты и типы объектов:

• Объекты являются базовыми единицами для моделирования элементов и подсистем

системы. Существуют два вида объектов: изменяемые (mutable) и константные

(constant). Изменение атрибутов изменяемого объекта (добавление, удаление или

изменение атрибута) сохраняет идентичность объекта, тогда как любое изменение

атрибута константного объекта приводит к созданию нового константного объекта.

• Атрибуты определяют свойства и отношения объектов. Каждый атрибут имеет

имя, значение и тип, который ограничивает множество допустимых значений.

• Типы объектов классифицируют группы объектов, обладающих общими характери-

стиками, и соответствуют понятиям в онтологии.

3. Типы

Типы в ABML делятся на базовые типы и основанные на атрибутах типы объектов.

ABML поддерживает следующие базовые типы:

• lispt – множество значений Lisp;

• symbol – множество символов Lisp;

• atom – множество атомов Lisp;

• string – множество строк Lisp;

• int – множество целых чисел;

• nat – множество натуральных чисел (включая 0);

• real – множество вещественных чисел;

• (listt t) – списки элементов типа t;

• (uniont t1 ... tn) – объединение типов t1, ..., tn;

• (enumt v1 ... vn) – тип, состоящий из значений v1, ..., vn;

• (funt t1 ... tn t) – функции из t1 × . . .× tn в t;

• any – объединение всех базовых типов и типов объектов;

• bool – синоним any, подчеркивающий, что nil интерпретируется как ложь, а любое

значение, отличное от nil, – как истина.

Типы объектов делятся на типы изменяемых объектов и типы константных объек-
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тов.

Тип изменяемых объектов t′′ определяется как (mot ad1 ... adr), где декларации ат-

рибутов adj задают ограничения на значения атрибутов изменяемых объектов этого типа.

Пусть a′, t′, t′1, t′2 и v′ – значения выражений a, t, t1, t2 и v соответственно.

Существует четыре вида деклараций атрибутов:

1. :av a v – объявляет атрибут a′ со значением v′. Значение этого атрибута для любого

значения (называемого экземпляром) типа t′′ всегда равно v′.

2. :at a t – объявляет атрибут a′ с типом t′. Значение этого атрибута для любого

экземпляра типа t′′ должно принадлежать типу t′. На месте t может быть лямбда-

выражение с одним аргументом, выступающее в роли характеристической функции:

если на значение атрибута функция возвращает значение, отличное от nil, то такое

значение атрибута считается допустимым.

3. :atv a t v – объявляет атрибут a′ с типом t′ и значением по умолчанию v′. Поми-

мо ограничения, описанного в пункте (2), это объявление присваивает значение v′

атрибуту a′ во всех создаваемых экземплярах типа t′′, если иное значение не было

задано при создании экземпляра.

4. :amap t1 t2 – объявляет множество значений типа t′1 в качестве атрибутов, значения

которых принадлежат типу t′2. Значение любого атрибута a в экземпляре типа t′′

должно принадлежать t′2, если a является элементом t′1.

Тип константных объектов определяется как (cot ad1 ... adr), где объявления ат-

рибутов adj аналогичным образом задают ограничения на значения атрибутов констант-

ных объектов.

Для краткости обозначения

1 mot

2 cot

используются как сокращения для стандартных определений типов объектов

1 (mot)

2 (cot)

В ABML новые типы могут определяться с помощью конструкции (typedef n t), ко-

торая объявляет тип с именем n как синоним типа t. Для удобства используются сокра-

щенные формы
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1 (mot n ad1 ... adr)

2 (cot n ad1 ... adr)

вместо эквивалентных определений

1 (typedef n (mot ad1 ... adr))

2 (typedef n (cot ad1 ... adr))

4. Объекты

Объекты могут появляться в модели системы только через специальные функции, ко-

торые порождают экземпляры типов объектов.

Для изменяемых объектов функция генерации экземпляров имеет вид

1 (mo t ad1 ... adr),

где допускаются только объявления атрибутов вида :av a v. Эта функция создает новый

изменяемый объект o типа t и присваивает ему атрибуты и их значения в соответствии с

объявлениями атрибутов adj. Объект o также наследует все атрибуты со значениями по

умолчанию, определенные в типе t.

Генерация экземпляров типов объектов и последующие изменения их атрибутов и зна-

чений этих атрибутов подчиняется двум принципам.

Принцип ограниченности гласит, что присваиваемые атрибутам объекта значения долж-

ны удовлетворять ограничениям деклараций атрибутов типа, экземпляром которого этот

объект является.

Принцип открытости утверждает, что экземпляр любого типа объектов может содер-

жать атрибуты, явно не объявленные в этом типе, причем значения таких необъявленных

атрибутов ничем не ограничены.

ABML включает предопределенные функции для работы с изменяемыми объектами и

типами изменяемых объектов:

• (uid o) – возвращает уникальный идентификатор объекта o. Этот уникальный иден-

тификатор является натуральным числом, однозначно идентифицирующем этот объ-

ект – никакие два сгенерированных экземпляра типа изменяемых объектов не могут

иметь одинакового идентификатора;

• (imax t) – возвращает количество экземпляров типа t;
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• (otype o) – возвращает тип объекта o, т. е. (otype o) = t;

• (is-instance o t) – проверяет, является ли объект o экземпляром типа t;

• (attributes o) – возвращает список непустых атрибутов объекта o. Атрибут счи-

тается непустым, если его значение отличается от nil.

Для константных объектов функция генерации экземпляров имеет вид

1 (co t ad1 ... adr).

Все, что описано выше для изменяемых объектов, также применимо и к константным

объектам, за исключением того, что для них и их типов не определены функции uid и

imax, соответственно.

Для удобства используются сокращенные формы

1 (mo ad1 ... adr)

2 (co ad1 ... adr)

вместо эквивалентных определений

1 (mo mot ad1 ... adr)

2 (co cot ad1 ... adr)

5. Атрибуты

Для добавления новых деклараций атрибутов к типам объектов используется функция

1 (att t ad1 ... adr),

которая добавляет декларации атрибутов ad1, ..., adr к типу t.

Для получения значения атрибута a объекта o используется функция (aget o a). Для

установки значения v атрибута a объекта o применяется функция (aset o a v).

Эти функции также работают со списками (listt), где индексы трактуются как атри-

буты. В этом случае индекс не должен превышать длину списка при использовании aset

и должен быть строго меньше длины списка при использовании aget (так как индексация

списков начинается с 0). В противном случае возвращается ошибка.

Они поддерживают также работу с атрибутами на любом уровне вложенности

1 (aget o a1 ... an)

2 (aset o a1 ... an v)
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В этом случае, сначала вычисляется атрибут a1, затем вычисляется атрибут a2 на значении

v1 атрибута a1 и т. д.

Для вложенного вычисления атрибутов также применяются эквивалентные записи

1 (aget o (aseq a1 ... an))

2 (aset o (aseq a1 ... an) v)

с использованием формы (aseq a1 ... an).

Если список атрибутов явно не задан, вместо формы (aseq ...) используется форма

(aseql e). В этом случае список атрибутов вычисляется как значение выражения e.

Также имеется сокращенная форма

1 (aset o :av a1 v1 :av ... :av an vn)

эквивалентная вложенной форме

1 (aset (... (aset o a1 v1) ...) an vn)

представляющей последовательные применения функции aset.

Поведение функции aset зависит от того, применяется ли она к изменяемому или кон-

стантному объекту. Для изменяемых объектов функция обновляет значение указанного

атрибута без изменения самого объекта. В отличие от этого, при применении к констант-

ным объектам создается новый константный объект, идентичный исходному, за исключе-

нием обновленного значения атрибута. Для списков функция ведет себя так же, как и для

константных объектов.

Функция acall является атрибутно-ориентированным вариантом функции aget и трак-

тует атрибут как функцию:

• (acall a o) эквивалентна (aget o a);

• (acall a o v1 ... vs) применяет функцию с s аргументами, хранящуюся в атри-

буте a объекта o, к аргументам v1, ..., vs.

6. Сопоставление с образцом

Язык ABML имеет развитые средства сопоставления с образцом, основанные на сопо-

ставителях (matchers) вида

1 (match c1 ... cr)

2 (nmatch c1 ... cr)



System Informatics (Системная информатика), No. 29 (2025) 145

которые состоят из последовательности клозов сопоставления cj и реализуют чередова-

ние сопоставления с образцом и действий, выполняемых при успешном или неуспешном

сопоставлении.

Клозы сопоставления делятся на три категории: клозы атрибутов, клозы выражений

и клозы действий.

Пусть e′, a′, v′ и t′ обозначают значения e, a, v и t, соответственно.

Клозы атрибутов выполняют сопоставление значений атрибутов. ABML поддерживает

три вида клозов атрибутов:

1. :av e a v – сопоставление успешно, если e′ является объектом и его атрибут a′ имеет

значение v′.

2. :at e a t – сопоставление успешно, если e′ является объектом и значение его атри-

бута a′ принадлежит типу t′.

3. :ap e a p – сопоставление успешно, если e′ является объектом. Параметру p, назы-

ваемую параметром сопоставителя, присваивается значение e′.
Формы (aseq a1 ... an) и (aseql e) также могут использоваться вместо одиночных

атрибутов.

Клозы выражений выполняют сопоставление значений выражений. ABML поддерживает

три вида клозов выражений:

1. :v e v – сопоставление успешно, если e′ равно v′.

2. :t e t – сопоставление успешно, если e′ принадлежит типу t′.

3. :p e p – сопоставление всегда успешно. Параметру сопоставителяp присваивается

значение e′.

Клозы действий задают действия, выполняемые при успешном или неуспешном сопостав-

лении. ABML поддерживает два вида клозов действий:

1. :do e1 ... em – последовательно вычисляет выражения ej. Эти выражения могут

использовать параметры сопоставителя. После вычисления выражений сопоставле-

ние продолжается.

2. :exit e1 ... em – последовательно вычисляет выражения ej. Эти выражения мо-

гут использовать параметры сопоставителя. После вычисления выражений сопоста-

витель завершает работу, возвращая последнее вычисленное значение.

Сопоставители помимо возвращения значения, также возвращают признак того, успеш-

но ли прошло сопоставление или нет. Поэтому их можно использовать на месте клозов
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атрибутов и выражений, обеспечивая таким образом вложенные сопоставления.

Сопоставитель match последовательно вычисляет клозы сопоставления, входящие в

него по следующим правилам:

1. Если очередной клоз является клозом атрибутов, клозом выражений или сопостави-

телем, и успешно сопоставляется, то переходим к вычислению следующего клоза.

2. Если очередной клоз является клозом атрибутов, клозом выражений или сопоста-

вителем, сопоставление терпит неудачу, и оставшаяся последовательность клозов

содержит exit-клоз, то вычисляем ближайший exit-клоз и завершаем работу сопо-

ставителя с признаком успешного сопоставления.

3. Если очередной клоз является клозом атрибутов, клозом выражений или сопоста-

вителем, сопоставление терпит неудачу, и оставшаяся последовательность клозов не

содержит exit-клозов, то завершаем работу сопоставителя с признаком неудачного

сопоставления.

4. Если очередной клоз является do-клозом, то вычисляем его и переходим к вычисле-

нию следующего клоза.

5. Если очередной клоз является exit-клозом, то пропускаем его и переходим к вычис-

лению следующего клоза.

6. Если клозов больше нет, то завершаем работу сопоставителя с признаком неудачного

сопоставления.

Сопоставитель nmatch также как и match последовательно вычисляет клозы сопостав-

ления, но действует противоположным образом:

1. Если очередной клоз является клозом атрибутов, клозом выражений или сопоста-

вителем, сопоставление терпит неудачу, то переходим к вычислению следующего

клоза.

2. Если очередной клоз является клозом атрибутов, клозом выражений или сопостави-

телем, и успешно сопоставляется, и оставшаяся последовательность клозов содержит

exit-клоз, то вычисляем ближайший exit-клоз и завершаем работу сопоставителя

с признаком успешного сопоставления.

3. Если очередной клоз является клозом атрибутов, клозом выражений или сопоста-

вителем, успешно сопоставляется, и оставшаяся последовательность клозов не со-

держит exit-клозов, то завершаем работу сопоставителя с признаком неудачного

сопоставления.
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4. Если очередной клоз является do-клозом, то вычисляем его и переходим к вычисле-

нию следующего клоза.

5. Если очередной клоз является exit-клозом, то пропускаем его и переходим к вычис-

лению следующего клоза.

6. Если клозов больше нет, то завершаем работу сопоставителя с признаком неудачного

сопоставления.

7. Атрибутные замыкания

В дополнение к способам вычисления значений атрибутов, описанным выше, ABML

предоставляет механизм связывания атрибутов со значениями (экземплярами) любых ти-

пов и вычисления этих атрибутов в фиксированном контексте с использованием атри-

бутных замыканий.

Атрибутное замыкание задает:

• вычисляемый атрибут,

• конкретный экземпляр типа, для которого вычисляется этот атрибут,

• а также конечное множество дополнительных параметров вместе с их значениями

(называемое контекстом вычисления атрибута), которые влияют на вычисление ат-

рибута.

Замыкания атрибутов представляются в виде константных объектов.

Константный объект ac называется атрибутным замыканием относительно атрибута

a и типа t, если выполняются следующие условия:

• (aget ac "attribute") = a

• (aget ac "instance") = i, где i является экземпляром типа t.

Остальные атрибуты объекта ac образуют контекст вычисления атрибута a.

Способ вычисления атрибутных замыканий задается декларацией атрибутного замы-

кания одного из следующих видов:

1 (aclosure ac :attribute a :type t :instance i s1 s2 s3 :do e1 ... er)

2 (aclosure ac :attribute a :type t :instance i s1 s2 s3

3 :match c1 ... cr)

4 (aclosure ac :attribute a :type t :instance i s1 s2 s3

5 :nmatch c1 ... cr)
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где s1, s2 и s3 имеют вид

1 :a1 p1 ... :an pn

2 :ap w1 b1 q1 ... :ap wm bm qm

3 :p u1 t1 ... :p uk tk

соответственно.

Результат вычисления атрибутного замыкания ac для атрибута a и типа t определяется

λ-функцией (lambda (ac) b), где тело b имеет вид

1 (match :ap ac "instance" i :ap ac a1 p1 ... :ap ac an pn

2 :ap w1 b1 q1 ... :ap wm bm qm :p u1 t1 ... :p uk tk :do e1 ... er)

3

4 (match :ap ac "instance" i :ap ac a1 p1 ... :ap ac an pn

5 :ap w1 b1 q1 ... :ap wm bm qm :p u1 t1 ... :p uk tk c1 ... cr)

6

7 (match :ap ac "instance" i :ap ac a1 p1 ... :ap ac an pn

8 :ap w1 b1 q1 ... :ap wm bm qm :p u1 t1 ... :p uk tk

9 (nmatch c1 ... cr))

соответственно. Здесь выражения e1, ..., er, c1, ..., cr могут зависеть от параметров

i, ac, p1, ..., pn, q1, ..., qm, t1, ..., tk.

Часть :instance i s1 s2 s3 декларации атрибутного замыкания называется префиксом

декларации. Элементы префикса могут как переставляться (при этом соответствующим

образом переставляются элементы в λ-функции), так и опускаться. Часть декларации,

следующая за префиксом, называется телом декларации.

Декларация атрибутного замыкания задает способ вычисления, а само вычисление вы-

полняется функцией (eval-aclosure ac). Напомним, что вычисление атрибутного замы-

кания ac эквивалентно вычислению значения атрибута (aget ac "attribute").

Помимо функции (eval-aclosure ac) над атрибутными замыканиями определены сле-

дующие функции:

• (clear-aclosure ac) – удаляет все атрибуты у атрибутного замыкания ac кроме

"attribute" и "instance", т. е. контекст вычисления атрибута в ac;

• (update-eval-aclosure ac ...) – сначала выполняет (aset ac ...), модифицируя

значения атрибутов замыкания ac, а затем (update-eval-aclosure ac′) для моди-
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фицированного замыкания ac′;

• (clear-update-eval-aclosure ac ...) – сначала выполняет (clear-aclosure ac),

удаляя контекст вычисления атрибута в замыкании ac, а затем

(update-eval-aclosure ac′ ...) для модифицированного замыкания ac′.

В следующих разделах будет рассмотрен такой пример дискретной динамической си-

стемы как сушилка для рук и для нее на языке ABML будет построена онтология (онто-

логическая модель) и правила первого запуска этой системы и ее дальнейшего функцио-

нирования.

8. Онтология сушилки для рук

Онтология (или онтологическая модель) сушилки для рук определяется тремя типами

изменяемых объектов.

Тип "system" определяет сушилку как систему, состоящую из сенсора и контроллера:

1 (mot "system"

2 :at "controller" "controller"

3 :at "sensor" "sensor")

Тип "sensor" описывает сенсор через его состояние, моделирующее замечены руки или

нет:

1 (mot "sensor"

2 :at "state" (enumt "detected" "not detected"))

Тип "controller" моделирует контроллер, определяя такие его компоненты как

• связанный с ним сенсор "sensor";

• состояние "state", в котором находится контроллер (режим его работы);

• константы "maximum drying time" и "cooling time", характеризующие максималь-

ное время непрерывной работы сушилки и время охлаждения сушилки, заданные

для простоты числом тактов работы контроллера;

• локальные часы "local clock", подсчитывающие количество тактов, которые кон-

троллер непрерывно находился в состоянии сушки или состоянии охлаждения.

Он задается следующим образом:

1 (mot "controller"
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2 :at "sensor" "sensor"

3 :at "local clock" nat

4 :at "state" (enumt "waiting" "drying" "cooling")

5 :av "maximum drying time" 100000

6 :av "cooling time" 1000)

Конкретная сушилка для рук (точнее ее состояние в определенной момент времени)

может, например, быть задана (порождена) следующим образом:

1 (match

2 :p (mo "sensor" :av "state" "not detected") sen

3 :p (mo "controller"

4 :av "sensor" sen

5 :av "local clock" 0

6 :av "state" "waiting") cont

7 (mo "system" :av "controller" cont :av "sensor" sen))

Это выражение возвращает экземпляр типа "system".

Заметим, что конечные наборы экземпляров типов можно рассматривать как граф

знаний, в котором вершины помечены этими экземплярами и значениями базовых типов, а

дуги помечены именами атрибутов и ведут от объекта, для которого вычисляется атрибут

к значению этого атрибута.

В данном примере, граф знаний, соответствующий состоянию сушилки для рук, опре-

деленному выше, имеет вид как на Рис.1.

9. Запуск сушилки

Запуск сушилки моделируется декларацией атрибутного замыкания для атрибута "init"

и типа "system":

1 (aclosure ac :attribute "init" :type "system" :instance i

2 :match

3 :ap i "sensor" sen :ap i "controller" cont

4 :do

5 (aset sen "state" "not detected")
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Рис. 1: Граф знаний для состояния сушилки для рук

6 (aset cont :av "sensor" sen :av "state" "waiting" :av "local

clock" 0))

Эта декларация присваивает начальные значения атрибутам компонент sen и cont системы

i.

10. Функционирование сушилки

Функционирование сушилки также моделируется через декларации атрибутных замы-

каний.

Декларации для атрибута "step" определяет один такт работы системы и ее компонент.

Для системы целиком она определяется как

1 (aclosure ac :attribute "step" :type "system" :instance i :do

2 (update-eval-aclosure ac :av "instance" (aget i "sensor"))

3 (update-eval-aclosure ac :av "instance" (aget i "controller")))
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Сначала выполняется такт сенсора с получением данных из окружающей среды, а затем

такт контроллера на полученных данных.

Шаг для сенсора состоит в получении случайных данных и моделируется с помощью

функции random-list-element, выбирающей случайное значение из списка:

1 (aclosure ac :attribute "step" :type "sensor" :instance i

2 :do (aset i "state" (random-list-element

3 (list "detected" "not detected"))))

Шаг контроллера состоит в определении его состояния и запуска соотвествуюшего ре-

жима функционирования (ожидание, сушка, пассивное охлаждение) в данном состоянии:

1 (aclosure ac :attribute "step" :type "controller" :instance i

2 :match :ap i "state" s (nmatch

3 :v s "waiting"

4 :exit (update-eval-aclosure ac :av "attribute" "waiting")

5 :v s "drying"

6 :exit (update-eval-aclosure ac :av "attribute" "drying")

7 :v s "cooling"

8 :exit (update-eval-aclosure ac :av "attribute" "cooling")))

Режим ожидания задается следующей декларацией:

1 (aclosure ac :attribute "waiting" :type "controller" :instance i

2 :match :av i (aseq "sensor" "state") "detected"

3 :do (aset i :av "state" "drying" :av "local clock" 0))

В этом режиме отслеживается срабатывание датчика и переход контроллера в этом случае

в состояние сушки с обнулением локального времени.

В режиме сушки, задаваемом декларацией

1 (aclosure ac :attribute "drying" :type "controller" :instance i

2 :nmatch

3 :v (< (aget i "local clock")

4 (aget i "maximum drying time")) T

5 :exit (aset i :av "state" "cooling" :av "local clock" 0)

6 :av i (aseq "sensor" "state") "not detected"
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7 :exit (aset i "state" "waiting")

8 :do (aset i "local clock" (+ (aget i "local clock") 1)))

сначала выполняется проверка не превышен ли лимит непрерывной сушки. Если лимит

превышен, контроллер переходит в режим пассивного охлаждения с обнулением локаль-

ного времени. В противном случае, проверяется состояние датчика и если он ничего не

обнаруживает, то контроллер переходит в состояние ожидания. Если ни одно из выше

проверяемых условий не выполнено, то увеличивается время локальных часов на 1 (один

такт). Заметим, что в случае перехода в состояние ожидания время не сбрасывается в

ноль, так как для этого состояния время локальных часов не учитывается.

Декларация, моделирующая режим пассивного охлаждения, определяется аналогич-

ным образом:

1 (aclosure ac :attribute "cooling" :type "controller" :instance i

2 :nmatch

3 :v (< (aget i "local clock")

4 (aget i "cooling time")) T

5 :exit (aset i "state" "waiting")

6 :do (aset i "local clock" (+ (aget i "local clock") 1)))

Таким образом, мы построили как модель состояний такой системы как сушилка для

рук, так и модель функционирования этой системы в терминах онтологии.

11. Родственные работы

Исследования, посвящённые формальному описанию знаний и динамики систем, ведут-

ся в нескольких взаимосвязанных направлениях, включая онтологическое моделирование,

языки спецификации динамических и реактивных систем, предметно-ориентированные

языки (DSL), а также подходы, основанные на графах знаний и атрибутных вычислениях

[18, 20, 24]. Язык ABML находится на пересечении этих направлений, объединяя элементы

онтологий, типизированных объектных моделей и механизмов описания поведения.

Онтологические языки и представление знаний. Наиболее распространённым фор-

мализмом для представления онтологий является семейство языков, основанных на де-

скриптивных логиках, прежде всего OWL (Web Ontology Language) [5, 7, 9]. Эти языки
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обеспечивают строгую семантику, поддержку логического вывода и широко применяются

в задачах семантического веба и интеграции знаний [8, 18]. Однако OWL и родствен-

ные ему формализмы ориентированы преимущественно на статическое описание знаний

и обладают ограниченными возможностями для моделирования динамики и изменения

состояний объектов во времени [2].

Для расширения онтологического подхода в сторону описания поведения разрабатыва-

лись различные онтологические модели процессов и событий, включая OWL-S и SOSA/SSN

[18, 20, 23, 24]. Эти модели позволяют описывать действия, события и наблюдения, но, как

правило, не предоставляют формального механизма исполнения или пошагового модели-

рования динамических систем. В отличие от них, ABML изначально ориентирован на мо-

делирование дискретной динамики и допускает явное описание шагов функционирования

системы.

Языки спецификации динамических и реактивных систем. Значительный пласт

родственных работ связан с языками спецификации динамических, реактивных и кибер-

физических систем [6]. Классическими примерами являются языки временной логики,

такие как LTL и CTL [19], а также формализмы на основе автоматов и систем переходов

[4]. Эти подходы широко используются для верификации свойств систем, однако они слабо

приспособлены для непосредственного описания сложных структур знаний и онтологий.

Языки спецификации, такие как Event-B и TLA+ [11, 16], предлагают строгие матема-

тические средства для описания состояний и переходов, но требуют значительных усилий

для моделирования предметной области на уровне объектов и атрибутов. В отличие от

перечисленных формализмов, ABML ориентирован на знание-центричный подход, в кото-

ром онтологическая структура системы и динамика её функционирования описываются в

рамках единого атрибутного формализма.

Объектно-ориентированные и атрибутно-ориентированные модели. Многие идеи

ABML перекликаются с объектно-ориентированным моделированием и индустриальными

языками моделирования, такими как UML и SysML [17]. В этих языках объекты, атри-

буты и состояния играют центральную роль, однако формальная семантика большинства

их конструкций либо задаётся неявно, либо выходит за рамки стандартов, а средства

исполнения моделей, как правило, носят ограниченный или инструментально-зависимый

характер (см, например, [3, 15, 22]).
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Атрибутно-ориентированные подходы к моделированию рассматривались, в частности,

в контексте систем правил и продукционных систем, где вычисление значений атрибутов

определяется набором явно заданных зависимостей и условий [12]. В таких системах вы-

числение значений атрибутов может зависеть от контекста и состояния других объектов.

ABML развивает эти идеи, вводя формализованный механизм атрибутных замыканий,

который позволяет явно задавать контекст вычисления и связывать его с конкретным

экземпляром типа.

Предметно-ориентированные языки и Lisp-подобные системы. Разработка ABML

как расширения Common Lisp тесно связана с традицией создания предметно-ориентиро-

ванных языков (DSL) [13]. Lisp и его диалекты исторически используются для создания

языков моделирования и спецификации благодаря мощной макросистеме и однородному

синтаксису [1].

Существуют Lisp-ориентированные системы для представления знаний и онтологий, та-

кие как Loom и OCML, которые предоставляют средства описания понятий и отношений.

Однако они, как правило, либо ориентированы на логический вывод, либо не поддержи-

вают явное моделирование дискретной динамики. ABML отличается тем, что сочетает

декларативное описание структуры знаний с процедурным описанием поведения.

Графы знаний и вычисления на графах. В последние годы активно развиваются

подходы, основанные на графах знаний, где информация представляется в виде вершин и

дуг с семантической интерпретацией [10]. Графы знаний используются в интеллектуаль-

ных системах, анализе данных и моделировании сложных взаимосвязей. В этом контексте

модель ABML может интерпретироваться как граф знаний, в котором объекты и значения

образуют вершины, а атрибуты — помеченные рёбра.

Отличительной особенностью ABML является то, что вычисления и изменения состо-

яния системы формализуются как преобразования такого графа знаний во времени. Это

сближает ABML с подходами, основанными на трансформациях графов [14], но при этом

сохраняет удобство атрибутного и типизированного моделирования.

Итоги сравнения. Таким образом, существующие родственные работы либо фокусиру-

ются на статическом представлении знаний, либо на формальной спецификации динамики

без явной онтологической структуры. Язык ABML занимает промежуточную позицию,
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предлагая унифицированный формализм для онтологического моделирования и описа-

ния дискретной динамики систем. Его атрибутно-ориентированный подход и механизм

атрибутных замыканий позволяют выразить широкий класс моделей, что отличает его от

большинства существующих решений.

12. Заключение

В работе представлен язык ABML, предназначенный для спецификации дискретных

динамических систем, ориентированных на знания, структурированные в онтологиях.

Язык объединяет онтологическое моделирование и формальное описание поведения си-

стем в рамках единого, компактного и выразительного формализма.

Основным достоинством ABML является минимальный, но универсальный концепту-

альный базис, включающий объекты, атрибуты и типы объектов. Разделение объектов

на изменяемые и константные позволяет явно задавать семантику изменений и облегча-

ет моделирование эволюции состояний системы. Атрибутно-ориентированная типизация

обеспечивает гибкий механизм задания ограничений и классификации объектов, соответ-

ствующий онтологическому подходу.

Развитые средства работы с атрибутами, включая вложенный доступ, массовое об-

новление и интерпретацию атрибутов как функций, делают язык удобным для описания

сложных структур знаний. Механизмы сопоставления с образцом позволяют компактно

и наглядно формулировать правила функционирования систем, а также реализовывать

условные переходы между состояниями.

Ключевым элементом языка является механизм атрибутных замыканий, который обес-

печивает контекстно-зависимое вычисление атрибутов и служит основой для моделиро-

вания дискретной динамики. Использование атрибутных замыканий позволяет рассмат-

ривать поведение системы как последовательность вычислений атрибутов, что хорошо

согласуется с онтологической интерпретацией модели в виде графа знаний.

Пример моделирования сушилки для рук наглядно демонстрирует практическую при-

менимость ABML. В рамках одного языка удалось задать онтологию системы, ее началь-

ное состояние и правила функционирования, описывающие поведение сенсора и контрол-

лера во времени. Это подтверждает, что ABML может использоваться для прототипи-

рования и анализа поведения реальных технических, информационных и программных

систем.
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В перспективе язык ABML может быть расширен средствами верификации, анализа

свойств моделей и интеграции с внешними онтологическими и логическими инструмента-

ми. Такой подход делает ABML перспективным средством для исследования и разработки

интеллектуальных систем, основанных на знаниях и онтологиях.
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Операционная семантика операторов передачи

управления в языке C на языке ABML

Ануреев И.С. (Институт систем информатики СО РАН)

В работе рассматривается онтологический подход к заданию операционной се-

мантики операторов передачи управления языка программирования C. В качестве

формального средства используется предметно-ориентированный язык ABML, ранее

предложенный для спецификации дискретных динамических систем, ориентирован-

ных на знания, структурированные в онтологиях. Показано, что операционную семан-

тику фрагментов языков программирования, заданную в терминах систем переходов,

можно интерпретировать как динамическую систему и формализовать средствами

ABML.

В статье вводится онтология операторов передачи управления языка C, включаю-

щая операторы goto, break, continue и return, а также онтологии конструкций, реаги-

рующих на передачу управления, таких как помеченные операторы, блоки и оператор

switch. Для этих онтологических моделей задается операционная семантика в виде ат-

рибутных замыканий, вычисляемых относительно агентов и окружения.

Особое внимание уделяется адаптации языка ABML к задачам задания операцион-

ной семантики, включая уточнение понятия атрибутного замыкания, введение стадий

вычисления и явное моделирование контекста выполнения. Предложенный подход

обеспечивает модульность, расширяемость и наглядность спецификации семантики.

Полученные результаты демонстрируют применимость онтологического модели-

рования для формального описания семантики языков программирования и создают

основу для дальнейшего расширения подхода на другие конструкции языка C, а так-

же на анализ и верификацию программ.

Ключевые слова: операционные семантики, онтологии языков программирования,

модели языков программирования, атрибутные замыкания, ABML, операторы пере-

дачи управления

1. Введение

Формальное задание семантики языков программирования является одной из ключе-

вых задач теории программирования и формальных методов. Операционная семантика,

описывающая поведение программ через последовательность элементарных шагов выпол-

нения, традиционно задается с помощью систем переходов, абстрактных машин или пра-
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вил вывода. Такие описания, хотя и обладают высокой точностью, часто оказываются

слабо структурированными, трудно расширяемыми и плохо приспособленными для по-

вторного использования при анализе различных фрагментов языка.

В последние годы заметный интерес вызывает применение онтологического подхода к

моделированию программных систем. Онтологии позволяют явно фиксировать структуру

предметной области, типы сущностей и отношения между ними, что делает модели бо-

лее прозрачными и пригодными для автоматизированной обработки. В контексте языков

программирования это открывает возможность представлять синтаксические и семантиче-

ские конструкции языка в виде онтологических моделей, а правила их функционирования

– в виде формализованных механизмов изменения знаний.

В работе [63] был предложен язык ABML (Attribute-Based Modeling Language), пред-

назначенный для спецификации и прототипирования дискретных динамических систем,

ориентированных на знания, структурированные в онтологиях. Язык ABML объединяет

онтологическое моделирование с элементами функционального и процедурного програм-

мирования и предоставляет средства для задания объектов, атрибутов, типов, сопоставле-

ния с образцом и атрибутных замыканий. В предыдущей работе было показано, что ABML

может эффективно использоваться для моделирования динамики реальных технических

и информационных систем.

Настоящая статья развивает данный подход и рассматривает возможность примене-

ния ABML для задания операционной семантики языков программирования. Основная

идея заключается в том, что систему переходов, лежащую в основе операционной семан-

тики, можно рассматривать как дискретную динамическую систему, а значит, описывать

ее средствами ABML. Однако специфика языков программирования – наличие контек-

ста выполнения, стеков, областей видимости, передачи управления – требует адаптации

базовых механизмов языка.

В качестве предмета исследования выбран фрагмент языка C, связанный с операто-

рами передачи управления. Эти операторы играют важную роль в управлении потоком

выполнения программы и существенно усложняют формальное описание семантики из-за

нелокальных переходов, взаимодействия с блоками, циклами и оператором switch. В ста-

тье предлагается онтологическая модель операторов передачи управления и связанных

с ними конструкций, а также формальное задание их операционной семантики на языке

ABML.
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Целью работы является демонстрация того, что онтологический подход в сочетании

с языком ABML позволяет получить модульное, расширяемое и формально точное опи-

сание операционной семантики операторов передачи управления языка C. Полученные

результаты могут служить основой для дальнейшего расширения модели, а также для

исследований в области анализа, верификации и интерпретации программ.

Статья имеет следующую структуру. В разделе 2 рассматривается адаптация языка

ABML к задачам задания операционной семантики языков программирования и вводят-

ся необходимые уточнения базовых понятий. В разделе 3 описываются этапы построения

операционной семантики в терминах ABML. Раздел 4 посвящен онтологии операторов пе-

редачи управления языка C, а в разделе 5 вводится онтология конструкций, связанных с

передачей управления. В разделе 6 описываются модели агентов и окружения, использу-

емые для задания контекста выполнения. Разделы 7 и 8 содержат формальное описание

операционной семантики операторов передачи управления и связанных с ними конструк-

ций. В разделе 9 проведен анализ родственных работ. В заключении подводятся итоги

работы и обсуждаются направления дальнейших исследований.

2. Адаптация ABML для разработки операционных семантик

В работе [63] был предложен предметно-ориентированный язык ABML, предназначен-

ный для спецификации и прототипирования дискретных динамических систем, ориенти-

рованных на знания, структурированные в онтологиях. Основная идея применения этого

языка для спецификации операционной семантики языков программирования заключа-

ется в следующем. Если задавать операционную семантику языков программирования с

помощью систем переходов, то такие системы переходов можно рассматривать как дис-

кретные динамические системы и, таким образом, можно применить язык ABML для

спецификации таких систем.

Однако эти системы имеют свои особенности, и чтобы учитывать их, требуется неко-

торые модификации языка ABML. Опишем ниже эти модификации.

Понятие атрибутного замыкания переопределяется следующим образом. Константный

объект ac называется атрибутным замыканием относительно атрибута a и типа t, если

выполняются следующие условия:

• (aget ac "attribute") = a;

• (aget ac "instance") = i, где i является экземпляром типа t;
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• "agent" – экземпляр типа изменяемых объектов "agent". Агенты выполняют двоя-

кую роль. С одной стороны, агенты хранят в своих атрибутах знания, необходимые

для выполнения конструкций языка программирования (например, значения пере-

менных, типы переменных, распределение памяти и т. п.). С другой стороны, агентов

можно рассматривать как отдельных исполнителей, специфика которых определяет-

ся хранимым в них знанием (например, для определения потоков, процессов и т. п.).

Обязательным атрибутом агентов является атрибут "value", хранящий последнее

вычисленное в этом агенте значение;

• "env" – экземпляр типа изменяемых объектов "env". Окружение во-первых, хранит

информацию, общую для всех агентов, а во-вторых, позволяет агентам обменивать-

ся этой информацией через атрибуты окружения. В окружении также реализуется

обобщение концепции стека, широко используемой в языках программирования для

откладывания вычислений (например, элементом стека может быть функция с аргу-

ментами из ее текущего вызова). Реализация основана на двух обязательных атри-

бутах окружения. Атрибут "agents" типа (listt "agent") хранит список всех дей-

ствующих агентов. Атрибут "aclosures" типа (cot :amap "agent" (listt cot))

моделирует стек для каждого агента, хранящий отложенные атрибутные замыкания

для этого агента. Декларации типов для окружения и агентов задаются пользовате-

лем отдельно для каждого языка программирования.

Остальные атрибуты объекта ac образуют контекст вычисления атрибута a. Также в

контекст вычисления добавляется обязательный атрибут "stage", значения которого ха-

рактеризуют отдельные стадии вычисления атрибутного замыкания. Конкретный набор

этих стадий зависят от типа экземпляра, для которого вычисляется атрибут в замыкании

ac. Например, для условного оператора можно выделить 3 стадии: вычисление условия,

выбор ветви и вычисление выбранной ветви. Использование данного атрибута способству-

ет модульности операционной семантики, а также в совокупности с механизмом стеков,

описанным ниже, упрощает обработку исключительных ситуаций (появляющихся как ре-

зультат выполнения операторов передачи управления, операторов порождения исключе-

ний и т. п.), которые могут встретиться на каждой стадии.

Таким образом, к обязательным атрибутам атрибутных замыканий "attribute" и

"instance" добавляются еще два атрибута "agent" и "env". В частности, эти атрибуты

также будут сохраняться при выполнении функции (clear-aclosure ac), которая удаля-
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ет атрибуты из контекста вычисления.

В язык ABML добавляются следующие функции работы со стеками окружения:

• push-aclosure – добавляет атрибутное замыкание ac в стек соответствующего аген-

та, связанного с ac. Она имеет следующую семантику:

1 (defun push-aclosure (ac)

2 (match :ap ac "agent" a :ap ac "env" e

3 :ap e "agents" al

4 :ap e (aseq "aclosures" a) cl

5 :do (aset e "aclosures" a (cons ac cl))

6 :v (not (member a al)) T

7 :do (aset e "agents" (cons a al))))

• (pop-aclosure ac) – удаляет атрибутное замыкание ac из стека соответствующего

агента, возвращая его в качестве значения этой функции. Она имеет следующую

семантику:

1 (defun pop-aclosure (ac)

2 (match :ap ac "env" e :ap e "agents" al

3 :v (not (null al)) T :exit nil

4 :p (car al) a :ap e (aseq "aclosures" a) cl

5 :v (not (null cl)) T :exit nil

6 :do (aset e "aclosures" a (cdr cl)) (car cl)))

• (peek-aclosure ac) – читает атрибутное замыкание ac из стека соответствующего

агента, возвращая его в качестве значения этой функции. Она имеет следующую

семантику:

1 (defun peek-aclosure (ac)

2 (match :ap ac "env" e :ap e "agents" al

3 :v (not (null al)) T :exit nil

4 :p (car al) a :ap e (aseq "aclosures" a) cl

5 :v (not (null cl)) T :exit nil

6 :do (car cl)))

Имеются также сокращения
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1 (update-push-aclosure ac ...)

2 clear-update-push-aclosure ac ...)

для часто используемых операций

1 (push-aclosure (aset ac ...))

2 (update-push-aclosure (clear-aclosure ac))

В префикс декларации атрибутного замыкания добавляется элемент :value p, который

связывает с переменной p значение атрибута "value" агента (aget ac "agent"), связан-

ного с атрибутным замыканием ac. Таким образом, декларация атрибутного замыкания

принимает один из следующих видов:

1 (aclosure ac :attribute a :type t :instance i :value p s1 s2 s3

2 :do e1 ... er)

3 (aclosure ac :attribute a :type t :instance i :value p s1 s2 s3

4 :match c1 ... cr)

5 (aclosure ac :attribute a :type t :instance i :value p s1 s2 s3

6 :nmatch c1 ... cr)

где s1, s2 и s3 имеют вид

1 :a1 p1 ... :an pn

2 :ap w1 b1 q1 ... :ap wm bm qm

3 :p u1 t1 ... :p uk tk

соответственно.

Результат вычисления атрибутного замыкания ac для атрибута a и типа t определяется

λ-функцией (lambda (ac) b), где тело b имеет вид

1 (match :ap ac "instance" i :ap ac (aseq "agent" "value") p

2 :ap ac a1 p1 ... :ap ac an pn :ap w1 b1 q1 ... :ap wm bm qm

3 :p u1 t1 ... :p uk tk :do e1 ... er (next-aclosure ac))

4

5 (match :ap ac "instance" i :ap ac (aseq "agent" "value") p

6 :ap ac a1 p1 ... :ap ac an pn :ap w1 b1 q1 ... :ap wm bm qm

7 :p u1 t1 ... :p uk tk c1 ... cr (next-aclosure ac))
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9 (match :ap ac "instance" i :ap ac (aseq "agent" "value") p

10 :ap ac a1 p1 ... :ap ac an pn :ap w1 b1 q1 ... :ap wm bm qm

11 :p u1 t1 ... :p uk tk (nmatch c1 ... cr) (next-aclosure ac))

соответственно. Здесь выражения e1, ..., er, c1, ..., cr могут зависеть от параметров

i, ac, p, p1, ..., pn, q1, ..., qm, t1, ..., tk.

По-прежнему элементы префикса декларации атрибутного замыкания могут как пере-

ставляться, так и опускаться.

Функция (next-aclosure ac) определяет какое атрибутное замыкание требуется взять

из стеков окружения и выполнить после того, как завершится выполнение замыкания ac.

Эта функция определяется пользователем в зависимости от специфики языка програм-

мирования, для которого строится операционная семантика. В этой статье мы используем

следующее определение:

1 (defun next-aclosure (ac)

2 (match :ap ac "value" v

3 :v (not (is-instance v "stop next aclosure")) T :exit v

4 :ap ac "agent" a :ap ac "env" e :ap e (aseq "aclosures" a) st

5 :v (null st) T :exit (eval-aclosure (car st))

6 :ap e "agents" al

7 :v (not (null al)) T :exit nil

8 :p (car al) a1 :ap e (aseq "aclosures" a1) st1

9 :v (null st1) T :exit (aset e "aclosures" a (cdr cl))

10 (eval-aclosure (car st1))

11 :do (aset e "agents" a (cdr al)) next-aclosure (ac)))

Оно выбирает первый элемент стека агента, связанного с замыканием ac, а если стек пуст,

то первый элемент первого агента из списка агентов в окружении, для которого стек не

пуст. Если стеки для всех агентов пусты, то эта функция ничего не делает.

Для моделирования ситуации, когда next-aclosure ничего не делает, и, таким обра-

зом, ABML-программа завершает свою работу, используется значение типа "stop next

aclosure" из атрибута "value" агента, связанного с замыканием ac. Этот тип определя-

ется следующим образом:
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1 (cot "stop next aclosure" :at "type" string :at "aclosure" (cot))

Атрибут "type" хранит тип остановки программы (например, "error"), а атрибут "aclosure"

хранит замыкание, на котором произошла остановка.

3. Этапы построения операционной семантики на языке ABML

Подход к построению операционной семантики фрагмента языка программирования на

языке ABML состоит из следующих шагов:

1. Построить онтологию фрагмента языка программирования как набор типов объек-

тов языка ABML, соответствующих синтаксическим и семантическим конструкциям

этого фрагмента.

2. Определить типы для агентов и окружения.

3. Задать операционную семантику фрагмента как набор атрибутных замыканий отно-

сительно атрибута "opsem" и всех типов, определенных на шаге 1, которые соответ-

ствуют исполняемым конструкциям фрагмента. В этом случае, вычисление атрибута

"opsem" для онтологической модели исполнимой конструкции через атрибутное за-

мыкание соответствует вычислению операционной семантики этой конструкции от-

носительно агента, окружения и других параметров, задаваемых этим атрибутным

замыканием.

4. Онтология операторов передачи управления

Онтология операторов передачи управления задается следующим набором типов:

1 (typedef "jump statement" (uniont

2 "goto1" "continue" "break" "return1" "return1"))

3 (mot "goto1" :at 1 "identifier")

4 (mot "continue")

5 (mot "break")

6 (mot "return")

7 (mot "return1" :at 1 "expression")

Индексы 1, 2, 3 и т. д. в именах типов показывают позиции аргументов. Типы "continue",

"break" и "return", соответствующие операторам continue, break и return без аргумен-

тов, не имеют атрибутов. Атрибутом 1 типа "goto" является метка оператора goto, а
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атрибутом 1 типа "return1" является выражение, связанное с оператором return. Тип

"jump statement" моделирует все виды операторов передачи управления и определяется

как их объединение.

5. Онтология операторов, связанных с операторами передачи

управления

Определим также операторы и выражения, которые реагируют на передачу управле-

ния, разбив их на группы.

Первую группу операторов составляют помеченные операторы. Для упрощения опе-

рационной семантики мы рассматриваем в качестве помеченных операторов различные

виды меток без следующих за ними операторов. Эта группа операторов моделируется

следующими типами:

1 (typedef "labeled statement" (uniont

2 "label1" "case1" "default"))

3 (mot "label1" :at 1 "label name")

4 (mot "case1" :at 1 "constant expression")

5 (mot "default")

Типы "label1" и "case1", соответствующие обычных меткам и case-меткам, имеют один

атрибут 1 со значениями типов "label name" и "constant expression", представляющих

метки и константные выражения, соответственно. Тип "default" моделирует default-

метки.

Вторую группу составляют операторы блока. Их модели определяются следующим об-

разом:

1 (mot "{1}"

2 :at 1 (listt (uniont "declaration" "statement"))

3 :at "variables" (listt "variable")

4 :at "label position" (cot :amap "label name" nat))

Атрибут "variables" хранит список переменных, объявляемых на верхнем уровне в спис-

ке операторов блока. Это знание нужно для того, чтобы при переходе к телу этого операто-

ра для переменных с теми же именами, как переменные из этого списка, сохранять ячейки

памяти, связанные с ними, поскольку эти переменные будут прятаться при объявлениях
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соответствующих переменных внутри тела, а при выходе из тела цикла восстанавливать

старые связи между переменными и ячейками.

Атрибут "variable location" в этом типе хранит отображение меток, встречающихся

в списке операторов блока, в их позиции в этом списке.

Третью группу образуют онтологические модели операторов switch, представленные

типом "switch(1)2":

1 (mot "switch (1)2" :at 1 "expression" :at 2 (listt "statement")

2 :at "variables" (listt "variable"))

Атрибуты 1 и 2 имеют типы "expression" и (listt "statement") и задают управляющее

выражение и тело этих операторов.

Четвертую группу образуют операторы итерации, включающих операторы while, опе-

раторы do-while и два вида операторов for без и с декларацией переменных. Эта группа

моделируется следующими типами:

1 (typedef "iteration statement" (uniont "while (1)2"

2 "do1while (2)" "for (1;2;3)4" "for(var1 ;2;3)4"))

3

4 (mot "while (1)2" :at 1 "expression" :at 2 "statement")

5

6 (mot "do1while (2)" :at 1 "statement" :at 2 "expression")

7

8 (mot "for (1;2;3)4" :at 1 "expression" :at 2 "expression"

9 :at 3 "expression" :at 4 "statement")

10

11 (mot "for(var1 ;2;3)4" :at 1 "declaration" :at 2 "expression"

12 :at 3 "expression" :at 4 "statement"

13 :at "variables" (listt "variable"))

Атрибут "variables" в типе "for(var1;2;3)4" имеет тот же смысл, что и в типе "switch".

Он хранит список переменных, объявляемых в атрибуте 1. Смысл остальных аргументов

данных типов легко определяется их положением в имени типа.

Пятую группу составляют вызовы функций. Они моделируются следующим типом:

1 (mot "1(2)" :at 1 "expression" :at 2 (listt "expression"))
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Экземпляры этого типа связаны только с онтологическими моделями операторов return.

6. Модели агентов и окружения

Поскольку у нас последовательное вычисление и вычислитель только один, тип для

окружения не имеет атрибутов:

1 (mot "env")

Агент для языка Си хранит достаточно много информации, но для нашего подмноже-

ства языка Си достаточно двух атрибутов:

1 (mot "agent"

2 :at "location" (cot :amap "variable" "location")

3 :at "value" "c value")

Предопределенный атрибут "value" имеет тип "c value", который строится как объеди-

нение всех типов значений языка Си.

Атрибут "location" сопоставляет переменным программы связанные с ними ячейки

памяти и имеет тип (cot :amap "variable""location").

Тип "location" ячеек памяти определяется следующим образом:

1 (mot "location" :at "value" "c value")

Он имеет атрибут "value", который хранит значение, приписанное ячейке памяти.

7. Операционная семантика моделей операторов передачи

управления

Оператор break. Операционная семантика оператора break (более точно его онтоло-

гической модели) задается следующим атрибутным замыканием:

1 (aclosure ac :attribute "opsem" :type "break"

2 :p (pop-aclosure ac) ac1 :nmatch

3 :v (null ac1) T :exit (error ac "break")

4 :do (match

5 :ap ac1 "stage" st :do (nmatch

6 :v (equal st "exiting 1(2)")
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7 :exit (error ac "break")

8 :v (equal st "exiting while (1)2")

9 :v (equal st "exiting do1while (2)")

10 :v (equal st "exiting for (1;2;3)4")

11 :exit

12 :v (equal st "exiting for(var1 ;2;3)4")

13 :v (equal st "exiting switch (1)2")

14 :exit (eval-aclosure ac1)

15 :v (equal st "exiting {1}")

16 :exit (push-aclosure ac) (eval-aclosure ac1)

17 :do (eval-aclosure ac))))

Тело этого атрибутного замыкания моделирует передачу управления, осуществляемую

оператором break, через другие операторы.

Строка 2 сохраняет в параметре ac1 верхний элемент стека, связанного с текущим

агентом (aget ac "agent"), удаляя этот элемент из стека в текущем окружении (aget

ac "env").

В строке 3 выполняется проверка, а не пуст ли этот стек (пустота стека соответствует

значению nil параметра ac1). Если стек пуст, то выдается ошибка, так как это означает,

что не встретился оператор, который должен был поймать переход по оператору break.

В строке 5 в параметре st сохраняется значение текущей стадии вычисления атрибут-

ного замыкания ac1.

В строке 6 проверяется, является ли эта стадия стадией выхода "exiting 1(2)" из

вычисления вызова функции. Если является, то выдается ошибка, так как такая ситуация

тоже невозможна. Заметим, что единственное знание о других операторах и выражениях,

которым владеет оператор передачи управления (в данном случае оператор break) – это

знание имен стадий этих операторов, которые реагируют на передачу управления.

В строках 8-10 проверяется, является ли эта стадия стадией выхода

"exiting while(1)2", "exiting do1while(2)" и "exiting for(1;2;3)4" из операторов

while, do-while и for без декларации переменных, соответственно. Если является, то

передача управления завершается в строке 11. А поскольку эти стадии являются призна-

ками завершения соответствующих операторов, то, в соответствии с семантикой функции
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next-aclosure управление передается следующему замыканию из стека замыканий (в

частности, если после этих циклов имеется еще оператор, то управление передается ему).

В строках 12-13 проверяется, является ли эта стадия стадией выхода

"exiting for(var1;2;3)4" и "exiting switch(1)2" из операторов for с декларацией пе-

ременных и switch, соответственно. Если является, то передача управления завершается

в строке 14. Но, в отличие от предыдущих случаев, перед выходом из этих операторов вы-

полняются действия, связанные с восстановлением старых ячеек памяти для переменных,

а именно вычисляется атрибутное замыкание ac1.

В строке 15 проверяется, является ли эта стадия стадией выхода из блока. Если яв-

ляется, то передача управления продолжается после блока, что обеспечивается выраже-

нием (push-aclosure ac), но перед этим также выполняются действия, связанные с вос-

становлением старых ячеек памяти для переменных, а именно вычисляется выражение

(eval-aclosure ac1). Заметим, что чтобы обеспечить такой порядок вычисления этих

выражений, первое выражение откладывает вычисление ac, помещая его в стек. Поэтому

сначала вычислится ac1, а потом восстановиться из стека и вычислиться ac.

Строка 17 соответствует любой другой стадии и любому другому оператору. В этом

случае передача управления продолжается.

Оператор continue. Операционная семантика оператора continue задается во многом

аналогичным образом:

1 (aclosure ac :attribute "opsem" :type "continue"

2 :p (peek-aclosure ac) ac1 :nmatch

3 :v (null ac1) T :exit (error ac "continue")

4 :do (match

5 :ap ac1 "stage" st :do (nmatch

6 :v (equal st "exiting 1(2)")

7 :exit (error ac "continue")

8 :v (equal st "exiting while (1)2")

9 :exit (update-eval-aclosure ac1 :stage "executing 1")

10 :v (equal st "exiting do1while (2)")

11 :exit (update-eval-aclosure ac1 :stage "executing 2")

12 :v (equal st "exiting for (1;2;3)4")
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13 :v (equal st "exiting for(var1 ;2;3)4")

14 :exit (update-eval-aclosure ac1 :stage "executing 3")

15 :v (equal st "exiting switch (1)2")

16 :v (equal st "exiting {1}")

17 :exit (pop-aclosure ac) (push-aclosure ac)

18 (eval-aclosure ac1)

19 :do (pop-aclosure ac) (eval-aclosure ac))))

Но при этом имеется несколько отличий для этого оператора.

Во-первых, для стадии "exiting for(var1;2;3)4" не нужно восстанавливать старые

ячейки памяти для переменных, так как мы не выходим из оператора for.

Во-вторых, стадия "exiting switch(1)2" обрабатывается также, как и завершающая

стадия для блока, поскольку передача управления продолжается.

В-третьих, для стадий, связанных с завершением операторов итерации управление пе-

редается на соответствующие стадии этих операторов, с которых их выполнение продол-

жается.

Оператор goto. Операционная семантика оператора goto задается следующим обра-

зом:

1 (aclosure ac :attribute "opsem" :type "goto1"

2 :p (pop-aclosure ac) ac1 :nmatch

3 :v (null ac1) T :exit (error ac "goto1")

4 :do (match :ap ac1 "stage" st :do (nmatch

5 :v (equal st "exiting 1(2)")

6 :exit (error ac "goto")

7 :v (equal st "exiting for(var1 ;2;3)4") T

8 :v (equal st "exiting switch (1)2") T

9 :exit (push-aclosure ac) (eval-aclosure ac1)

10 :v (equal st "exiting {1}") T

11 :exit (match :ap i 1 lab :ap ac1 "instance" i1

12 :ap i1 "label position" lp

13 :v (member lab (attributes lp)) T

14 :do (match :ap i1 2 sts :ap (aget lp lab) k
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15 :do (push-aclosure ac1)

16 (clear-update-eval-aclosure ac1

17 :stage "iteration" :av "current" (+ k 1)

18 :av "bound" (length sts)

19 :av "statements" sts))

20 :exit (push-aclosure ac) (eval-aclosure ac1))

21 :do (eval-aclosure ac))))

Для стадий "exiting for(var1;2;3)4" и "exiting switch(1)2" (строки 7 и 8) передача

управления сопровождается восстановлением старых значений переменных.

Для стадии завершения блока (строка 10) в строке 11 в параметрах lab и i1 сохраня-

ются метка оператора goto и блок, до конца которого произошла передача управления,

а в строке 12 в параметре lp сохраняется отображение меток, которые встречаются в

операторе блока на верхнем уровне, в их позиции в списке операторов блока.

В строке 13 выполняется проверка, принадлежит ли метка lab меткам, которые встре-

чаются в операторе блока на верхнем уровне.

Если проверка выполняется (строка 14), то параметрам sts и k присваиваются список

операторов блока и позиция метки lab в этом списке. Затем запускается выполнение бло-

ка с оператора в k + 1 позиции. Это делается на стадии "iteration" вычисления блока.

Контекст вычисления атрибута "opsem" на этой стадии дополнительно включает атри-

буты "current", "bound" и "statements", хранящие позицию вычисляемого в текущий

момент оператора из списка операторов блока, число операторов в списке и сам список,

соответственно.

Если проверка не выполняется (строка 20), то восстанавливаются старые ячейки па-

мяти для переменных, определенных в блоке, блок завершается и передача управления

продолжается.

Оператор return без аргумента. Операционная семантика этого оператора проще,

чем предыдущих:

1 (aclosure ac :attribute "opsem" :type "return" :match

2 :p (pop-aclosure ac) ac1 :v (not (null ac1)) ac1

3 :do (match :ap ac1 "stage" st :do (nmatch

4 :v (equal st "exiting for(var1 ;2;3)4") T
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5 :v (equal st "exiting switch (1)2") T

6 :v (equal st "exiting {1}") T

7 :exit (push-aclosure ac) (eval-aclosure ac1)

8 :av (equal st "exiting 1(2)") T

9 :exit (eval-aclosure ac1)

10 :do (eval-aclosure ac)))

11 :exit (error ac "return"))

Для случаев, представленных в строках 4-6 также происходит восстановление старых

ячеек памяти для переменных в строке 7 с продолжением передачи управления.

Единственный случай, когда передача управления завершается – это выход из вызова

функции (строка 8).

Оператор return с аргументом. Операционная семантика для оператора return, воз-

вращающего значение, разбивается на несколько стадий.

Для начальной стадии (она всегда имеет имя nil) имеем следующее определение:

1 (aclosure ac :attribute "opsem" :type "return1" :instance i :do

2 (update-push-aclosure ac "stage" "storing return value")

3 (clear-update-eval-aclosure ac "instance" (aget i 1)))

В строке 2 в стек окружения откладывается стадия "storing return value", которая

потом перехватит возвращаемое функцией значение и передаст его за пределы вызова

функции.

В строке 3 запускается вычисление выражения, связанного с оператором return через

атрибут 1. Заметим, что если при вычислении выражение произойдет исключительная

ситуация (например, будет послан сигнал в Си), то отложенная стадия "storing return

value" не будет вычисляться, так как будет удалена из стека механизмом просачивания

исключительной ситуации подобно тому, как просачиваются операторы передачи управ-

ления.

Стадия "storing return value" определяется следующим образом:

1 (aclosure ac :attribute "opsem" :type "return1"

2 :stage "storing return value" :value v :do

3 (update-eval-aclosure ac :stage "propagation"
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4 :av "return value" v))

В строке 2 в параметре v сохраняется вычисленное значение выражения, связанного с опе-

ратором return. В строках 3-4 запускается стадия "propagation", которая просачивает

это значение до выхода из вызова функции.

Стадия "propagation" определяется в основном аналогично единственной стадии опе-

ратора return без аргумента:

1 (aclosure ac :attribute "opsem" :type "return1"

2 :stage "propagation" :match

3 :p (pop-aclosure ac) ac1 :v (not (null ac1)) ac1

4 :do (match :ap ac1 "stage" st :do (nmatch

5 :v (equal st "exiting for(var1 ;2;3)4") T

6 :v (equal st "exiting switch (1)2") T

7 :v (equal st "exiting {1}") T

8 :exit (push-aclosure ac) (eval-aclosure ac1)

9 :av (equal st "exiting 1(2)") T

10 :exit

11 (update-push-aclosure ac :stage "returning value")

12 (eval-aclosure ac1)

13 :do (eval-aclosure ac)))

14 :exit (error ac "return1"))

Единственное отличие заключается в том, что после выхода из вызова функции (стро-

ка 12) выполняется еще одна стадия "returning value" оператора goto, которая делает

значение выражения последним вычисленным значением, помещая его в атрибут value

текущего агента.

Операционная семантика этой последней стадии выполнения оператора goto опреде-

ляется следующим образом:

1 (aclosure ac :attribute "opsem" :type "return1"

2 :stage "returning value" :do (aget ac "return value"))

Эта стадия просто возвращает значение атрибута "return value" из контекста вычисле-

ния атрибута opsem в качестве значения этого атрибута.



176 Ануреев И.С. Операционная семантика операторов передачи управления в языке C на языке ABML

8. Операционная семантика моделей операторов, связанных с

операторами передачи управления

Выполнение оператора switch разбивается на 8 стадий, каждая из которых моделиру-

ет отдельный аспект его выполнения: сохранение контекста, вычисление управляющего

выражения, сопоставление меток (несколько стадий) и восстановление окружения. Ниже

приведено формальное описание этих стадий на языке ABML.

На нулевой стадии осуществляется переход к стадии "entering switch(1)2" (строка

2), которая перед выполнением оператора switch сохраняет ячейки памяти, связанные с

переменными, объявляемыми в этом операторе на верхнем уровне:

1 (aclosure ac :attribute "opsem" :type "switch (1)2" :do

2 (update-eval-aclosure ac :stage "entering switch (1)2"))

Cтадия "entering switch(1)2" моделируется следующим образом:

1 (aclosure ac :attribute "opsem" :type "switch (1)2"

2 :stage "entering switch (1)2" :instance i :agent a

3 :ap i "variables" vars :ap (mo) varlocs :do

4 (update-push-aclosure ac :stage "executing 1")

5 (dolist (var vars varlocs)

6 (aset varlocs var (aget a "location" var))))

В строке 3 выполняется присваивание параметру vars списка переменных, объявленных

на верхнем уровне, и инициализация параметра varlocs пустым изменяемым объектом.

В строке 4 откладывается в стек выполнение стадии "executing 1", которое вычисляет

управляющее выражение оператора switch, хранящееся в атрибуте 1.

После выполнения строк 5-6 параметр varlocs хранит отображение переменных из

списка vars в ячейки памяти, связанные с ними до начала выполнения оператора switch.

Значение этого параметра возвращается в качестве значения атрибутного замыкания.

Стадия "executing 1" определяется следующим образом:

1 (aclosure ac :attribute "opsem" :type "switch (1)2"

2 :stage "executing 1" :instance i :value v :do

3 (update-push-aclosure ac

4 :stage "exiting switch (1)2"
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5 :av "variable context" v)

6 (update-push-aclosure ac :stage "executing 2")

7 (update-eval-aclosure ac :instance (aget i 1)))

В строке 2 в параметре v сохраняется значение переменной varlocs, вычисленной на

предыдущей стадии.

После выполнения строк 3-5 в стек окружения сохраняется стадия

"exiting switch(1)2", которая восстанавливает старые ячейки памяти, связанные с пе-

ременными, при завершении выполнения оператора switch.

В строке 6 в стек сохраняется стадия "exiting switch(1)2", отвечающая за выполне-

ния тела оператора switch.

В строке 7 вычисляется управляющее выражение оператора switch.

Операционная семантика стадии "executing 2" определяется следующим образом:

1 (aclosure ac :attribute "opsem" :type "switch (1)2"

2 :stage "executing 2" :instance i :agent a :value v

3 :ap i 2 sts :do

4 (update-eval-aclosure ac :stage "nomatch"

5 :av "current" 0 :av "bound" (length sts)

6 :av "statements" sts :av "pattern" v))

В строке 2 в параметре v сохраняется значение управляющего выражения, вычисленного

на предыдущей стадии.

В строке 2 в параметре sts сохраняется список операторов, составляющих тело опера-

тора switch.

Строки 4-6 запускают выполнение стадии "nomatch", которая осуществляет последова-

тельный просмотр операторов списка в случае, если еще не найдено сопоставление с case-

меткой. Эта стадия использует параметры "current", "bound", "statements" и "pattern",

хранящие позицию текущего оператора, число операторов в списке, список операторов и

вычисленное значение управляющего выражения.

Стадия "nomatch" определяется следующим образом:

1 (aclosure ac :attribute "opsem" :type "switch (1)2"

2 :stage "nomatch" :ap ac "current" j :ap ac "bound" k

3 :ap ac "statements" sts :ap "pattern" p :match
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4 :v (< j k) T :p (nth j sts) st :do

5 (nmatch

6 :v (is-instance st "case1") T

7 :exit (match :v (= (aget st 1) p) T

8 :do (update-eval-aclosure ac :stage "match"

9 :av "current" (+ j 1))

10 :exit (update-eval-aclosure ac

11 :av "current" (+ j 1)))

12 :v (is-instance st "default") T

13 :exit (update-eval-aclosure ac :stage "match"

14 :av "current" (+ j 1))

15 :do (update-eval-aclosure ac :av "current" (+ j 1))))

В строке 4 выполняется проверка перебраны ли все операторы из списка. Если да, то

стадия завершается. Также в этой строке параметру st присваивается текущий оператор

в качестве значения.

В строке 6 рассмотрен случай, когда текущий оператор является case-оператором. В

этом случае в строке 7 выполняется проверка, совпадает ли метка case-оператора со зна-

чением управляющего выражения. Если совпадает, то в строках 8-11 выполняется переход

к стадии "match", которая продолжает проход по операторам списка, зная, что сопостав-

ление уже произошло.

В строке 12 рассмотрен случай, когда текущий оператор является default-оператором.

В этом случае также выполняется переход к стадии "match".

В строке 15 рассмотрен случай, когда текущий оператор не является ни case-оператором,

ни default-оператором.

Стадия "nomatch" задается следующим атрибутным замыканием:

1 (aclosure ac :attribute "opsem" :type "switch (1)2"

2 :stage "match" :ap ac "current" j :ap ac "bound" k

3 :ap ac "statements" sts :match

4 :v (< j k) :do

5 (update-push-aclosure ac :av "current" (+ j 1))

6 (clear-update-eval-aclosure ac :instance (nth j sts)))
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В строке 6 выполняется текущий оператор, а в строке 5 осуществляется переход к следу-

ющему оператору.

И последняя стадия "exiting switch(1)2" определяется следующим образом:

1 (aclosure ac :attribute "opsem" :type "switch (1)2"

2 :stage "exiting switch (1)2" :agent a

3 :ap "variable context" varlocs :do

4 (dolist (var (attributes varlocs))

5 (aset a "location" var (aget varlocs var))))

В строке 3 в параметре varlocs сохраняется старое отображение переменных в связанные

с ними ячейки памяти.

При выполнении строк 4-5 эти старые связи переменных и ячеек памяти становятся

актуальными и сохраняются в текущем агенте.

Заметим, что при определении операционной семантики оператора switch рассматри-

валось только нормальное последовательное выполнение этого оператора. Это справедли-

во и для других операторов. Этого достаточно, поскольку распространение (propagation)

и обработка исключительных ситуаций обеспечивается операторами, связанными с по-

рождением таких ситуаций (операторами передачи управления, операторами порождения

исключений и т. п.).

9. Родственные работы

Исследования в области формальной семантики языков программирования имеют дли-

тельную историю и охватывают широкий спектр подходов – от классических структурной

операционной семантики и операционной семантики малого шага до денотационных, ак-

сиоматических и гибридных формализаций [26, 45]. В последние годы наблюдается устой-

чивый интерес к развитию формальных моделей семантики промышленных языков про-

граммирования, прежде всего языка C и C-подобных языков, что обусловлено их широким

применением в системном программировании и критически важных программных компо-

нентах [18, 21, 36].

Операционная семантика языка C и его подмножеств. Язык C традиционно рас-

сматривается как один из наиболее сложных объектов для формальной семантики из-за

низкоуровневой модели памяти и неопределённого поведения. Формальные семантики C и
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его подмножеств (например, Clight в CompCert) стали предметом активного исследования,

как в классических работах по механизации семантики [12], так и в современных обзорах

и улучшениях семантических моделей [47, 60]. Верифицированный компилятор CompCert

является краеугольным камнем исследований корректности компиляции C-программ на

промышленном уровне [18, 34] и продолжает развиваться [32, 54]. Дополнительные про-

екты, такие как Checked C, предлагают более безопасные расширения C с формальными

семантическими моделями [1, 14, 15, 22, 35]. Семантики C в виде операционных семейств

используются для доказательства корректности оптимизаций и анализа поведения в слу-

чае неопределенного поведения [48, 55].

Формальные семантики C-подобных языков. Помимо C, значительное число ис-

следований посвящено семантике C-подобных языков. Например, для Rust разработаны

исчерпывающие операционные семантики, включая формальные модели владения и за-

имствования [5, 27, 59]. LLVM IR как объединенное промежуточное представление также

изучается с точки зрения формальных семантик [10, 23, 33, 37, 61, 61], что важно для

семантики оптимизаций и трансформаций.

Онтологические и ориентированные на знания подходы к семантике. Исполь-

зование онтологий и моделей знания становится всё более распространённым в семанти-

ческих исследованиях. Онтологии формализуют концепты, отношения и правила в пред-

метной области, что улучшает семантическую интерпретацию сложных систем [19, 24].

Хотя большинство работ по онтологиям фокусируются на семантике естественных язы-

ков или интеграции данных, методы онтологического моделирования также применялись

для описания программных систем и представления семантики языков программирования

[2, 41, 42].

Современные подходы к формальным семантикам взаимодействуют с логикой и по-

строением онтологий [25, 52], обеспечивая основу для семантической интеграции и дока-

зательств верификации.

Некоторые подходы используют методы онтологий совместно с логическими выводами

и переносом знаний для динамических систем, что близко к концепции онтологической

семантики исполнения [3, 7, 8, 28].
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Атрибутные грамматики и расширенные модели исполнения Исследования ат-

рибутных грамматик расширили классические синтаксические грамматики, включая се-

мантические атрибуты и контекстно-чувствительные преобразования [16, 40, 50]. Эти мо-

дели стали основой для дескриптивных семантик, где семантика операций определяется

не только формальными правилами, но и дополнительной структурной информацией о

контексте исполнения [13, 40, 50].

Атрибутные грамматики остаются важным инструментом для определения семантики,

особенно в расширенных моделях исполнения, где семантика контекста учитывается более

гибко [6, 29, 55].

Современные расширения включают поддержку динамического контекста, агентных

систем и взаимодействия с внешней средой [13, 51, 53].

Связь с задачами анализа и верификации программ. Формальные семантики ак-

тивно используются в статическом анализе, доказательстве корректности и проверке оп-

тимизаций [4, 9, 11, 17, 31, 38, 39, 43, 49, 57, 58, 62].

Семантика LLVM IR, а также моделей C и Rust, обеспечивает основу для автоматиче-

ской верификации и анализа системного программного обеспечения [10, 20, 56].

Онтологическая операционная семантика обещает более лёгкую интеграцию с система-

ми логического вывода, поскольку онтологии являются стандартным формализмом для

представления знаний и могут напрямую связываться с автоматизированными анализа-

торами [30, 44, 46].

Сравнение с настоящей работой. В отличие от большинства исследований, где се-

мантика операторов передачи управления задаётся в рамках фиксированной модели со-

стояний, настоящая работа предлагает интерпретацию операционной семантики как дина-

мики онтологических моделей, обеспечивая модульность и концептуальную целостность

спецификации. Это позволяет естественно выразить нелокальную передачу управления и

восстановление контекста исполнения, что остаётся сложной задачей для традиционных

подходов.

10. Заключение

В данной работе был предложен онтологический подход к заданию операционной се-

мантики операторов передачи управления языка C с использованием предметно-ориенти-
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рованного языка ABML. Показано, что системы переходов, традиционно применяемые

для определения операционной семантики, естественным образом интерпретируются как

дискретные динамические системы и могут быть формализованы в терминах онтологиче-

ского моделирования.

В рамках работы была построена онтология операторов передачи управления, охва-

тывающая операторы goto, break, continue и return, а также онтологии конструкций, ре-

агирующих на передачу управления, включая помеченные операторы, блоки и оператор

switch. Для этих онтологических моделей была задана операционная семантика в виде

атрибутных замыканий относительно атрибута opsem, вычисляемых в контексте агентов

и окружения.

Существенным результатом является адаптация языка ABML к задачам задания се-

мантики языков программирования. Уточнение понятия атрибутного замыкания, введе-

ние стадий вычисления и явное моделирование контекста выполнения позволили выразить

сложные аспекты семантики, такие как нелокальная передача управления и восстановле-

ние состояния после завершения операторов.

Предложенный подход обладает рядом преимуществ по сравнению с традиционными

формализациями. Он обеспечивает модульность спецификаций, возможность повторного

использования онтологических моделей, а также естественную расширяемость при до-

бавлении новых конструкций языка. Кроме того, онтологическое представление создает

предпосылки для интеграции с инструментами анализа знаний, логического вывода и ве-

рификации.

В дальнейшем представляется перспективным расширение разработанной модели на

другие конструкции языка C, включая выражения, функции и механизмы обработки ис-

ключений, а также применение подхода к другим языкам программирования. Отдельный

интерес представляет использование онтологической операционной семантики для ана-

лиза свойств программ, построения интерпретаторов и разработки формальных средств

верификации.
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56. Van Oorschot D., Huisman M., Şakar Ö. First steps towards deductive verification of LLVM

IR // International Conference on Fundamental Approaches to Software Engineering /

Springer. — 2024. — P. 290–303.

https://arxiv.org/abs/2401.16277
https://arxiv.org/abs/2401.16277


System Informatics (Системная информатика), No. 29 (2025) 187

57. Vst-a: A foundationally sound annotation verifier / Zhou L., Qin J., Wang Q., Appel A. W.,

and Cao Q. // Proceedings of the ACM on Programming Languages. — 2024. — Vol. 8, no.

POPL. — P. 2069–2098.

58. VST-Floyd: A separation logic tool to verify correctness of C programs / Cao Q., Beringer L.,

Gruetter S., Dodds J., and Appel A. W. // Journal of Automated Reasoning. — 2018. —

Vol. 61, no. 1. — P. 367–422.

59. Wang F. e. a. KRust: A Formal Executable Semantics of Rust // arXiv preprint

arXiv:1804.10806. — 2018. — Access mode: https://arxiv.org/abs/1804.10806.

60. Wils S., Jacobs B. Certifying C Program Correctness with Respect to CompCert with

VeriFast // arXiv preprint arXiv:2110.11034. — 2021. — Access mode: https://arxiv.org/

abs/2110.11034.

61. Zakowski Y. e. a. Modular, Compositional, and Executable Formal Semantics for LLVM

IR. — 2021. — Access mode: https://dl.acm.org/doi/10.1145/3473572.

62. Zhao Y., Sanan D. Rely-guarantee Reasoning about Concurrent Memory Management:

Correctness, Safety and Security // arXiv preprint arXiv:2309.09997. — 2023.

63. Ануреев И.С. Язык спецификации дискретных динамических систем, ориентирован-

ных на знания, структурированные в онтологиях // Системная информатика. —

2025. — no. 29. — P. 137–158.

https://arxiv.org/abs/1804.10806
https://arxiv.org/abs/2110.11034
https://arxiv.org/abs/2110.11034
https://dl.acm.org/doi/10.1145/3473572


188 Ануреев И.С. Операционная семантика операторов передачи управления в языке C на языке ABML



System Informatics (Системная информатика), No. 29 (2025) 189

УДК 004.451.2, 004.82, 004.021, 519.6, 004.42

Операционная семантика выражений

в языке Rust на языке ABML

Бодин Е.В. (Институт систем информатики СО РАН)

Ануреев И.С. (Институт систем информатики СО РАН)

В статье рассматривается формальное описание операционной семантики выраже-

ний языка программирования Rust с использованием предметно-ориентированного

языка моделирования ABML. Основное внимание уделяется динамическим аспектам

вычислений, включая управление памятью, владение, заимствование и проверку кон-

фликтов доступа на этапе выполнения.

Предлагаемый подход опирается на онтологическое представление синтаксических

и семантических сущностей Rust, что позволяет единообразно описывать выражения,

блоки и структуры данных как элементы единой вычислительной модели. В отличие

от традиционных формализаций, модель явно включает метаданные безопасности,

необходимые для воспроизведения механизмов ownership и borrow checking.

Особенностью работы является использование иерархической модели памяти, поз-

воляющей корректно описывать частичное заимствование структур и доступ к их

полям. Это обеспечивает более точную динамическую семантику по сравнению с плос-

кими моделями памяти и демонстрирует соответствие формальных правил реальному

поведению программ на Rust.

Полученная операционная семантика является исполняемой и может служить ос-

новой для анализа программ, прототипирования интерпретаторов и дальнейших ис-

следований в области формальной верификации языков с управляемой безопасностью

памяти.

Ключевые слова: операционные семантики, онтологии языков программирования,

модели языков программирования, атрибутные замыкания, ABML, Rust, управление

памятью, онтологическое моделирование

1. Введение

Современные языки программирования системного уровня все чаще ориентируются

на строгие гарантии безопасности памяти, которые должны обеспечиваться без значи-

тельного снижения производительности. Язык Rust представляет собой один из наиболее

успешных примеров такого подхода, сочетая низкоуровневый контроль над ресурсами с
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формально заданными правилами владения и заимствования. Эти правила традицион-

но проверяются на этапе компиляции, однако их точная семантическая интерпретация

требует аккуратного формального описания.

Формальная операционная семантика играет ключевую роль в понимании поведения

программ, анализе корректности и построении инструментов верификации. Для языков

с нетривиальной моделью памяти, таких как Rust, стандартные подходы, основанные на

простых состояниях вида «память—окружение», оказываются недостаточными. В част-

ности, они не позволяют напрямую выразить ограничения, связанные с одновременным

доступом к данным, жизненным циклом значений и частичным заимствованием состав-

ных объектов.

В данной работе предлагается использовать онтологический подход к заданию опера-

ционной семантики, реализованный с помощью языка ABML [21]. В рамках этого подхода

вычислительное состояние рассматривается как совокупность объектов и их атрибутов, а

динамика исполнения описывается через вычисление и обновление этих атрибутов. Такой

взгляд позволяет естественным образом интегрировать в модель дополнительные семан-

тические слои, в том числе метаданные, отвечающие за безопасность памяти.

ABML ранее применялся для формального описания семантики языковых конструк-

ций, включая операторы передачи управления в языке C [20]. Эти исследования показали,

что онтологическое моделирование обеспечивает модульность, расширяемость и исполня-

емость семантики. Настоящая статья развивает данный подход применительно к языку

Rust, фокусируясь не на управляющих конструкциях, а на выражениях и связанных с

ними механизмах работы с памятью.

В статье формализуются базовые синтаксические сущности Rust, включая выражения,

объявления переменных и блоки, а также вводится иерархическая модель локаций памя-

ти. Особое внимание уделяется операционной семантике заимствования, разыменования и

присваивания, а также алгоритму динамической проверки конфликтов, моделирующему

поведение borrow checker. Рассматриваемые примеры демонстрируют, как предложенная

модель воспроизводит как корректные сценарии доступа к данным, так и ситуации, при-

водящие к ошибкам выполнения.

Таким образом, целью работы является построение исполняемой операционной семан-

тики выражений Rust на основе ABML, которая не только отражает ключевые свойства

языка, но и может служить фундаментом для дальнейших исследований в области фор-
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мальных методов, анализа программ и разработки инструментов поддержки Rust.

Статья организована следующим образом. В разделе 2 вводится онтология выражений

и типов данных языка Rust, описываются базовые синтаксические сущности и их семан-

тические роли в вычислительной модели. В разделе 3 рассматриваются модели агентов

и окружения, используемые для представления состояния вычислений, включая иерар-

хическую модель памяти и метаданные безопасности. Раздел 4 посвящен формальному

заданию операционной семантики выражений Rust на языке ABML, включая объявления

переменных, вычисление базовых выражений, присваивание и доступ к полям структур.

Также в нем подробно рассматривается операционная семантика заимствования, разы-

менования и универсальное правило проверки заимствований, моделирующее поведение

borrow checker. В разделе 5 приводятся иллюстративные и комплексные примеры выпол-

нения программ, демонстрирующие работу иерархической проверки конфликтов и ча-

стичного заимствования структур. Далее следует раздел «Родственные работы», в кото-

ром проводится сопоставление предложенного подхода с существующими формализация-

ми семантики Rust и других языков программирования. В заключении подводятся итоги

работы и обсуждаются направления дальнейших исследований.

2. Онтология выражений и типов данных языка Rust

В данном разделе вводится онтология выражений, констант и типов данных. В онто-

логическом подходе к спецификации операционной семантики языков программирования

[20] онтология конструкций языка Rust описывается набором типов языка ABML, полное

описание которого можно найти в [21].

2.1. Имена

В этом подразделе описываются типы для разных видов имен, используемых в Rust-

программах:

1 (typedef "name" (uniont symbol string))

2 (typedef "variable" "name")

3 (typedef "field name" "name")

4 (typedef "struct name" "name")

Таким образом, все имена моделируются лисповскими строками.
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2.2. Константы и значения

В этом подразделе описываются типы для разных видов констант языка Rust, а также

значений, которые могут возвращать выражения на этом языке:

1 (typedef "constant" (uniont "i32 value" "bool value"))

2

3 (typedef "i32 value" int)

4 (typedef "bool value" (enumt "true" "false"))

5 (typedef "()" (enumt "()"))

6

7 (typedef "value" (uniont "constant" "()" "reference"))

8

9 (mot "reference" :at "location" "location"

10 :at "lifetime" "lifetime")

11

12 (typedef "location" (uniont "simple location" "struct location"

13 "field location"))

14 (mot "simple location")

15 (mot "struct location" :amap "field name" "location")

16 (mot "field location")

17

18 (mot "lifetime")

Экземпляры типов "i32 value" и "bool value" являются моделями значений типов

i32 и bool языка Rust. Язык Rust имеет и другие примитивные типы, но мы для про-

стоты в этой статье ограничиваемся только этими двумя. Остальные типы моделируются

аналогичным образом.

Тип "()" моделирует значение () в языке Rust типа unit.

Тип "location" моделирует локации (адреса, ячейки памяти) в языке Rust. Мы выде-

ляем 3 подтипа локаций – локации, связанные с переменными примитивных типов; лока-

ции, связанные с переменными типа структуры и локации, связанные с полями структуры.

В языке Rust имеются и другие составные типы помимо структур, например, кортежи, но

мы для простоты ограничиваемся только структурами, поскольку моделирование значе-
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ний других составных типов делается аналогичным образом.

Тип "lifetime" моделирует ссылки, которые связаны с локациями и имеют время

жизни.

Тип "lifetime" определяет значения, которые описывают время жизни для ссылок.

2.3. Типы данных

В этом подразделе собраны типы языка ABML, моделирующие типы языка Rust. Для

простоты мы ограничиваемся небольшим набором типов, но это набор несложно расши-

рить:

1 (typedef "type" (uniont "i32" "bool" "unit" "struct name"

"struct type"

2 "&T1" "&mutT1"))

3

4 (typedef "i32" (enumt "i32"))

5 (typedef "bool" (enumt "bool"))

6 (typedef "unit" (enumt "unit"))

7 (cot "struct type" :amap "field name" "type")

8 (cot "&T" :at "type" "type")

9 (cot "&mutT" :at "type" "type")

Типы "i32" и "bool" моделируют типы i32 и bool языка Rust.

Тип "unit" моделирует тип unit языка Rust.

Тип "struct type" моделирует типы структур, задавая их поля и типы этих полей.

Типы "&T1" и "&mutT1" моделируют типы для обычных и мутабельных ссылок.

2.4. Выражения

Модели выражений языка Rust, рассматриваемые в этой статье, на языке ABML опре-

деляются следующим набором типов:

1 (typedef "expression" (uniont "variable" "constant" "1.2" "&1"

2 "&mut1" "*1" "1+2"))

3

4 (mot "1.2" :at 1 "expression" :at 2 "field name")

5 (mot "&1" :at 1 "expression")
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6 (mot "&mut1" :at 1 "expression")

7 (mot "*1" :at 1 "expression")

8 (mot "1+2" :at 1 "expression" :at 2 "expression")

9

10 (mot "1=2" :at 1 "identifier" :at 2 "expression"

11 :at "type" "type")

12 (mot "let1: =2" :at 1 "identifier" :at 2 "expression"

13 :at "type" "type")

14 (mot "let mut1: =2" :at 1 "identifier" :at 2 "expression"

15 :at "type" "type")

16 (mot "{1}" :at 1 (listt "expression"))

Они моделируют небольшой, но достаточный набор выражений для описания основных

концепций операционной семантики языка Rust. Заметим, что для моделей выражений

assign, let и let mut языка Rust, мы считаем, что тип атрибута 1 известен и хранится в

атрибуте "type".

3. Модели агентов и окружения

Состояние программы в ABML моделируется агентом, который оперирует знаниями о

памяти и окружении. Для языка Rust множество агентов определяется следующим типом:

1 (mot "agent"

2 :at "location" (cot :amap "variable" "location")

3 :at "mutability" (cot :amap "variable"

4 (enumt "mutable" "immutable"))

5 :at "location value" (cot :amap "location" "value")

6 :at "location type" (cot :amap "location" "type")

7 :at "borrows" (cot :amap "location" (listt "borrow"))

8 :at "lifetimes" (cot :amap "lifetime" (listt "location"))

9 :at "value" "value"

Атрибут "location" связывает переменные программы с локациями.

Атрибут "mutability" определяет, является ли эта связь мутабельной или нет.

Атрибуты "location value" и "location type" задают значения, хранящиеся в лока-
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циях и типы этих значений, соответственно.

Атрибут "borrows" определяет стеки заимствований для локаций.

Атрибут "lifetimes" описывает, как локации распределяются по времени жизни.

Атрибут "value" – это стандартный атрибут языка ABML, который хранит последнее

вычисленное значение.

Заимствования и время жизни определяются следующим образом:

1 (mo "borrow" :at "lifetime" "lifetime"

2 :at "kind" (enumt "free", "shared", "unique"))

3

4 (mo "lifetime")

4. Операционная семантика моделей выражений

В данном разделе задается исполняемая семантика конструкций Rust в виде атрибут-

ных замыканий [21]. В отличие от традиционных интерпретаторов, семантика на языке

ABML описывает не просто изменение значений, а трансформацию базы знаний агента,

включая обновление метаданных безопасности.

Семантика Rust разбивается на семантику мест (возвращает локацию), семантику r-

значений (возвращает значение) и семантику операторов (изменяет содержимое аген-

та), которые задаются атрибутными замыканиями для атрибутов "place", "rvalue" и

"statement", соответственно.

4.1. Семантика мест

Семантика мест определяется для выражений типов "variable", "1.2" и "*1".

Для моделей переменных семантика определяется следующим образом:

1 (aclosure ac :attribute "place" :type "variable" :do

2 (update-push-aclosure ac :av "stage" "returning value")

3 (update-push-aclosure ac :av "stage" "checking location"))

4

5 (aclosure ac :attribute "place" :type "variable"

6 :stage "checking location" :instance i :agent a

7 :ap a (aseq "location" i) loc :match

8 :v (not (null loc)) T
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9 :do loc

10 :exit (co "stop next aclosure" :av "type" "error" :av

"aclosure" ac))

11

12 (aclosure ac :attribute "place" :type "variable"

13 :stage "returning value" :value loc :do loc)

Таким образом, возвращается локация, связанная с переменной, в том случае, если та-

кая связь есть. В противном случае, выполнение программы останавливается и выдается

ошибка.

Семантика операции доступа к полю структуры задаются аналогичным образом:

1 (aclosure ac :attribute "place" :type "1.2" :do

2 (update-push-aclosure ac :av "stage" "returning value")

3 (update-push-aclosure ac :av "stage" "checking field location")

4 (update-push-aclosure ac :av "stage" "evaluating 1")

5

6 (aclosure ac :attribute "place" :type "1.2" :stage "evaluating 1"

7 :instance i :ap i 1 v1 :do

8 (clear-update-eval-aclosure ac :attribute "place"

9 :instance v1)))

10

11 (aclosure ac :attribute "place" :type "1.2"

12 :stage "checking field location" :value v1 :agent a :instance i

13 :ap i 2 v2 :ap v1 (aseq "fields" v2) loc :match

14 :v (not (null loc)) T

15 :do loc

16 :exit (co "stop next aclosure" :av "type" "error" :av

"aclosure" ac))

17

18 (aclosure ac :attribute "place" :type "1.2"

19 :stage "returning value" :value loc :do loc)

Семантика операции * определяется следующими замыканиями:



System Informatics (Системная информатика), No. 29 (2025) 197

1 (aclosure ac :attribute "place" :type "*1" :do

2 (update-push-aclosure ac :av "stage" "returning value")

3 (update-push-aclosure ac :av "stage" "evaluating 1"))

4

5 (aclosure ac :attribute "place" :type "*1" :stage "evaluating 1"

6 :instance i :ap i 1 v1 :do

7 (clear-update-eval-aclosure ac :attribute "rvalue"

8 :instance v1))

9

10 (aclosure ac :attribute "place" :type "*1"

11 :stage "returning value" :agent a :value ref

12 :ap ref "location" loc :ap a (aseq "location value" loc) v :do

13 v)

4.2. Семантика r-значений

Семантика r-значений определяется для выражений типов "value", "place", "&1",

"&mut1", "&*1", "&mut*1", "*1" и "1+2".

Тип "place" определяется как объединение следующих типов:

1 (typedef "place" (uniont "variable" "1.2"))

Семантика значений задается следующим образом:

1 (aclosure ac :attribute "rvalue" :type "value" :do

2 (update-push-aclosure ac :av "stage" "returning value")

3

4 (aclosure ac :attribute "rvalue" :type "value"

5 :stage "returning value" :instance i :do i)

Следующие атрибутные замыкания задают семантику типа "place":

1 (aclosure ac :attribute "rvalue" :type "place" :do

2 (update-push-aclosure ac :av "stage" "returning value")

3 (update-push-aclosure ac :av "stage" "checking location")

4 (update-push-aclosure ac :av "stage" "evaluating location"))
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5

6 (aclosure ac :attribute "rvalue" :type "place"

7 :stage "evaluating location" :do

8 (update-eval-aclosure ac :attribute "place"))

9

10 (aclosure ac :attribute "rvalue" :type "place"

11 :stage "checking location" :agent a :value loc

12 :ap a (aseq "borrows" loc) st :ap (car st) "kind" kd :match

13 :av (or (equal kd "free") (equal kd "shared")

14 (equal kd "unique"))

15 :do loc

16 :exit (co "stop next aclosure" :av "type" "error" :av

"aclosure" ac))

17

18 (aclosure ac :attribute "rvalue" :type "place"

19 :stage "returning value" :agent a :value loc

20 :ap a (aseq "location value" loc) v :do v)

Для операции &p семантика определяется следующим образом:

1 (aclosure ac :attribute "rvalue" :type "&1" :do

2 (update-push-aclosure ac :av "stage" "returning value")

3 (update-push-aclosure ac :av "stage" "checking location")

4 (update-push-aclosure ac :av "stage" "evaluating location")

5

6 (aclosure ac :attribute "rvalue" :type "&1"

7 :stage "evaluating location" :instance i :ap i 1 v :do

8 (clear-update-eval-aclosure ac :attribute "place"

9 :instance v)))

10

11 (aclosure ac :attribute "rvalue" :type "&1"

12 :stage "checking location" :agent a :value loc

13 :ap a (aseq "borrows" loc) st :ap (car st) "kind" kd :match
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14 :av (or (equal kd "free") (equal kd "shared"))

15 :do loc

16 :exit (co "stop next aclosure" :av "type" "error" :av

"aclosure" ac)))

17

18 (aclosure ac :attribute "rvalue" :type "&1"

19 :stage "returning value" :agent a :value loc

20 :v (mo "lifetime") lt :ap a (aseq "borrows" loc) bor :do

21 (aset a

22 :av (aseq "borrows" loc)

23 (cons (mo "borrow" :av "lifetime" lt :av "kind" "shared")

24 (aseq a "borrows" loc))

25 :av (aseq "lifetimes" lt) (list loc))

26 (co "reference" :av "location" loc :av "lifetime" lt))

Условием выполнимости этой операции является тот факт, что локация для места p не

должна быть эксклюзивной. Заметим, что мы не утверждаем, что она должна быть сво-

бодной или разделяемой, поскольку хотим иметь расширяемую модель.

Семантика для операции &mut p определяется аналогичным образом:

1 (aclosure ac :attribute "rvalue" :type "&mut1" :do

2 (update-push-aclosure ac :av "stage" "returning value")

3 (update-push-aclosure ac :av "stage" "checking location")

4 (update-push-aclosure ac :av "stage" "evaluating location")

5

6 (aclosure ac :attribute "rvalue" :type "&mut1"

7 :stage "evaluating location" :instance i :ap i 1 v :do

8 (clear-update-eval-aclosure ac :attribute "place"

9 :instance v)))

10

11 (aclosure ac :attribute "rvalue" :type "&mut1"

12 :stage "checking location" :agent a :value loc :instance i

13 :ap a (aseq "borrows" loc) st :ap (car st) "kind" kd :match
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14 :av (and (or (equal kd "free") (equal kd "unique"))

15 (clear-update-eval-aclosure ac :attribute "mutable"

16 :instance (aget i 1))

17 :do loc

18 :exit (co "stop next aclosure" :av "type" "error" :av

"aclosure" ac)))

19

20 (aclosure ac :attribute "rvalue" :type "&mut1"

21 :stage "returning value" :agent a :value loc

22 :v (mo "lifetime") lt :ap a (aseq "borrows" loc) bor :do

23 (aset a

24 :av (aseq "borrows" loc)

25 (cons (mo "borrow" :av "lifetime" lt :av "kind" "unique")

26 (aseq a "borrows" loc))

27 :av (aseq "lifetimes" lt) (list loc))

28 (co "reference" :av "location" loc :av "lifetime" lt))

Только условия выполнимости другие: локация для места p должна быть эксклюзивной,

а само место мутабельным. Мутабельность места определяется набором атибутных замы-

каний для атрибута "mutable".

Для операции &*p семантика определяется следующим образом:

1 (aclosure ac :attribute "rvalue" :type "&*1" :do

2 (update-push-aclosure ac :av "stage" "returning value")

3 (update-push-aclosure ac :av "stage" "checking location")

4 (update-push-aclosure ac :av "stage" "evaluating location")

5

6 (aclosure ac :attribute "rvalue" :type "&*1"

7 :stage "evaluating location" :instance i :ap i 1 v :do

8 (clear-update-eval-aclosure ac :attribute "place"

9 :instance v)))

10

11 (aclosure ac :attribute "rvalue" :type "&*1"
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12 :stage "checking location" :agent a :value loc :instance i

13 :ap a (aseq "borrows" loc) st :ap (car st) "kind" kd :match

14 :av (is-instance (aget i 1) "&mutT1")

15 :do loc

16 :exit (co "stop next aclosure" :av "type" "error" :av

"aclosure" ac)))

17

18 (aclosure ac :attribute "rvalue" :type "&*1"

19 :stage "returning value" :agent a :value loc

20 :v (mo "lifetime") lt :ap a (aseq "borrows" loc) bor :do

21 (aset a

22 :av (aseq "borrows" loc)

23 (cons (mo "borrow" :av "lifetime" lt :av "kind" "shared")

24 (aseq a "borrows" loc))

25 :av (aseq "lifetimes" lt) (list loc))

26 (co "reference" :av "location" loc :av "lifetime" lt))

Для операции &mut*p семантика определяется аналогичным образом:

1 (aclosure ac :attribute "rvalue" :type "&mut*1" :do

2 (update-push-aclosure ac :av "stage" "returning value")

3 (update-push-aclosure ac :av "stage" "checking location")

4 (update-push-aclosure ac :av "stage" "evaluating location")

5

6 (aclosure ac :attribute "rvalue" :type "&mut*1"

7 :stage "evaluating location" :instance i :ap i 1 v :do

8 (clear-update-eval-aclosure ac :attribute "place"

9 :instance v)))

10

11 (aclosure ac :attribute "rvalue" :type "&mut*1"

12 :stage "checking location" :agent a :value loc :instance i

13 :ap a (aseq "borrows" loc) st :ap (car st) "kind" kd :match

14 :av (and (equal kd "unique")
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15 (is-instance (aget i 1) "&mutT1"))

16 :do loc

17 :exit (co "stop next aclosure" :av "type" "error" :av

"aclosure" ac)))

18

19 (aclosure ac :attribute "rvalue" :type "&mut*1"

20 :stage "returning value" :agent a :value loc

21 :v (mo "lifetime") lt :ap a (aseq "borrows" loc) bor :do

22 (aset a

23 :av (aseq "borrows" loc)

24 (cons (mo "borrow" :av "lifetime" lt :av "kind" "unique")

25 (aseq a "borrows" loc))

26 :av (aseq "lifetimes" lt) (list loc))

27 (co "reference" :av "location" loc :av "lifetime" lt))

Семантика операции * определяется следующими замыканиями:

1 (aclosure ac :attribute "rvalue" :type "*1" :do

2 (update-push-aclosure ac :av "stage" "returning value")

3 (update-push-aclosure ac :av "stage" "evaluating 1"))

4

5 (aclosure ac :attribute "rvalue" :type "*1" :stage "evaluating 1"

6 :instance i :ap i 1 v1 :do

7 (clear-update-eval-aclosure ac :attribute "rvalue"

8 :instance v1))

9

10 (aclosure ac :attribute "rvalue" :type "*1"

11 :stage "returning value" :agent a :value ref

12 :ap ref "location" loc :ap a (aseq "location value" loc) v :do

13 v)

Операция + определяется следующим образом:

1 (aclosure ac :attribute "rvalue" :type "1+2" :do

2 (update-push-aclosure ac :av "stage" "returning value")
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3 (update-push-aclosure ac :av "stage" "evaluating 2")

4 (update-push-aclosure ac :av "stage" "evaluating 1")

5

6 (aclosure ac :attribute "rvalue" :type "1+2"

7 :stage "evaluating 1" :instance i :ap i 1 v1 :do

8 (clear-update-eval-aclosure ac :attribute "rvalue"

9 :instance v1)))

10

11 (aclosure ac :attribute "rvalue" :type "1+2"

12 :stage "evaluating 2" :value v1 :instance i :ap i 2 v2 :do

13 (clear-update-eval-aclosure ac :attribute "rvalue"

14 :instance v2 :av "v1" v1)))

15

16 (aclosure ac :attribute "rvalue" :type "1+2"

17 :stage "returning value" :ap "v1" v1 :value v2 :do (+ v1 v2))

Подобным образом определяются и другие бинарные операции.

4.3. Семантика операторов

Семантика операторов определяется для выражений типов "1=2", "let1=2",

"letmut1=2" и "{1}". При определении семантики для этих выражений характерными

являются стадии "updating agent" и "checking location". Первая определяет, как мо-

дифицируется агент, а вторая – условия выполнимости операции.

Операция "1=2" определяется следующим образом:

1 (aclosure ac :attribute "statement" :type "1=2" :do

2 (update-push-aclosure ac :av "stage" "updating agent")

3 (update-push-aclosure ac :av "stage" "evaluating 2")

4 (update-push-aclosure ac :av "stage" "checking location")

5 (update-push-aclosure ac :av "stage" "evaluating 1")

6

7 (aclosure ac :attribute "statement" :type "1=2"

8 :stage "evaluating 1" :instance i :ap i 1 v1 :do
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9 (clear-update-eval-aclosure ac :attribute "place"

10 :instance v1)))

11

12 (aclosure ac :attribute "statement" :type "1=2"

13 :stage "checking location" :value loc :agent a

14 :ap a (aseq "borrows" loc) st :ap (car st) "kind" kd :match

15 :av (or (equal kd "free") (equal kd "unique"))

16 :do loc

17 :exit (co "stop next aclosure" :av "type" "error" :av

"aclosure" ac))

18

19 (aclosure ac :attribute "statement" :type "1=2"

20 :stage "evaluating 2" :value v1 :instance i :ap i 2 v2 :do

21 (clear-update-eval-aclosure ac :attribute "rvalue"

22 :instance v2 :av "v1" v1)))

23

24 (aclosure ac :attribute "statement" :type "1=2"

25 :stage "updating agent" :ap "v1" v1 :value v2 :do

26 (aset a "location value" v1 v2))

Условие выполнимости операции требует, чтобы локация, являющаяся результатом вы-

числения значения атрибута 1, была или свободной, или эксклюзивной, а место 1 мута-

бельным.

Семантика операции "let1=2" имеет вид:

1 (aclosure ac :attribute "statement" :type "let1=2" :do

2 (update-push-aclosure ac :av "stage" "updating agent")

3 (update-push-aclosure ac :av "stage" "evaluating 2"))

4

5 (aclosure ac :attribute "statement" :type "let1=2"

6 :stage "evaluating 2" :value v1 :instance i :ap i 2 v2 :do

7 (clear-update-eval-aclosure ac :attribute "rvalue"

8 :instance v2))
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9

10 (aclosure ac :attribute "statement" :type "let1=2"

11 :stage "updating agent" :instance i :ap i 1 x :value v2

12 :v (mo "simple location") loc :do

13 (aset a :av (aseq "location" x) loc

14 :av (aseq "mutability" x) "immutable"

15 :av (aseq "location value" loc) v2

16 :av (aseq "borrows" loc)

17 (list (mo "borrow" :av "kind" "free"))))

Для простоты, мы рассмотрели только случай, когда переменная, являющаяся значени-

ем атрибута 1 имеет примитивный тип. Случай структуры определяется аналогичным

образом.

Операция "letmut1=2" определяется аналогичным образом:

1 (aclosure ac :attribute "statement" :type "letmut1 =2" :do

2 (update-push-aclosure ac :av "stage" "updating agent")

3 (update-push-aclosure ac :av "stage" "evaluating 2"))

4

5 (aclosure ac :attribute "statement" :type "letmut1 =2"

6 :stage "evaluating 2" :value v1 :instance i :ap i 2 v2 :do

7 (clear-update-eval-aclosure ac :attribute "rvalue"

8 :instance v2))

9

10 (aclosure ac :attribute "statement" :type "letmut1 =2"

11 :stage "updating agent" :instance i :ap i 1 x :value v2

12 :v (mo "simple location") loc :do

13 (aset a :av (aseq "location" x) loc

14 :av (aseq "mutability" x) "mutable"

15 :av (aseq "location value" loc) v2

16 :av (aseq "borrows" loc)

17 (list (mo "borrow" :av "kind" "free"))))

Отличается только модификация агента.
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Особенностью семантики блока является его возможность определять локальные вре-

мена жизни и исключать их при выходе из блока:

1 (aclosure ac :attribute "statement" :type "{1}" :agent a

2 :ap a "lifetimes" lfs :do

3 (update-push-aclosure ac :av "stage" "restoring lifetime"

4 :av "lifetime list" (attributes lfs))

5 (update-push-aclosure ac :av "stage" "evaluating 1"))

6

7 (aclosure ac :attribute "statement" :type "{1}"

8 :stage "evaluating 1" :instance i :ap i 1 stl :do

9 (update-eval-aclosure ac :stage "body iteration"

10 :av "current" 0 :av "statements" stl

11 :av "bound" (length stl)))

12

13 (aclosure ac :attribute "statement" :type "{1}"

14 :stage "body iteration" :ap "current" k :ap "statements" stl

15 :ap "bound" n :match

16 :v (< k n) T

17 :do

18 (update-eval-aclosure ac :av "current" (+ k 1))

19 (clear-update-eval-aclosure ac :instance (nth k stl)))

20

21 (aclosure ac :attribute "statement" :type "{1}"

22 :stage "restoring lifetime" :agent a :ap "lifetime list" lfl

23 :match :v (mo) lfs

24 (dolist (lf lfl) (aset lfs lf (aget a "lifetimes" lf)))

25 (aset a "lifetimes" lfs)

5. Верификация правил безопасности на примерах

В данном разделе рассматривается работа интерпретатора ABML на классических сце-

нариях языка Rust. Особое внимание уделяется тому, как динамическая семантика агента

воспроизводит статические проверки компилятора, обеспечивая безопасность работы с па-
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мятью.

5.1. Конфликты заимствования

Основная концепция безопасности Rust заключается в запрете одновременного суще-

ствования разделяемого доступа (чтения) и возможности модификации данных. Это предот-

вращает неопределенное поведение и гонки данных. Рассмотрим пример, нарушающий эти

правила:

1 let mut x = 5;

2 let y = &x; // Shared borrow (разделяемое заимствование)

3 *x = 10; // ОШИБКА: x уже заимствован переменной y

Выполним интерпретацию этих операций в модели на ABML.

Первая инструкция устанавливает следующие связи в атрибутах агента:

1 loc1 := (mo "simple location")

2

3 (aget a "location" x) = loc1

4 (aget a "mutability" x) = "mutable"

5 (aget a "location value" loc1) = 5

6 (aget a "borrows" loc1) = (list (mo "borrow" :av "kind" "free"))

где loc1 – новая локация.

Вторая инструкция модифицирует агента следующим образом:

1 loc1 := (mo "simple location")

2 loc2 := (mo "simple location")

3 lt1 := (mo "lifetime")

4

5 (aget a "location" x) = loc1

6 (aget a "location" y) = loc2

7 (aget a "mutability" x) = "mutable"

8 (aget a "mutability" y) = "immutable"

9 (aget a "location value" loc1) = 5

10 (aget a "location value" loc2) =

11 (co "reference" :av "location" loc1 :av "lifetime" lt1)
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12 (aget a "borrows" loc1) =

13 (list (mo "borrow" :av "lifetime" lt1 :av "kind" "shared")

14 (mo "borrow" :av "kind" "free"))

15 (aget a "borrows" loc2) = (list (mo "borrow" :av "kind" "free"))

16 (aget a "lifetimes" lt1) = (list loc1)

где loc2 – новая локация, и lt1 – новое время жизни.

Третья инструкция начинает с вычисления *x. В этом случае x вычисляется как rvalue

и возвращает число 5, а вычисление *x требует ссылки. Поэтому вычисление операционной

семантики завершается с ошибкой.

5.2. Частичное заимствование структур

Одним из ключевых преимуществ онтологического подхода является возможность точ-

ного моделирования частичного доступа к компонентам сложных данных. В отличие от

систем с «плоской» памятью, блокирующих объект целиком, иерархическая модель ABML

позволяет агенту анализировать доступ на уровне отдельных полей.

1 let mut point = Point { x: 1, y: 2 };

2 let r = &point.x; // Заимствуем только поле .x

3 point.y = 10; // OK: поле .y доступно для записи

В данном примере поле x заимствовано для чтения, что запрещает его изменение. Од-

нако поле y остается свободным и может быть изменено.

Выполним интерпретацию этих операций в модели на ABML.

Первая инструкция устанавливает следующие связи в атрибутах агента:

1 locx := (mo "field location")

2 locy := (mo "field location")

3 locpoint := (mo "struct location" :av "x" locx :av "y" locy)

4

5 (aget a "location" point) = locpoint

6 (aget a "mutability" point) = "mutable"

7 (aget a "location value" locx) = 1

8 (aget a "location value" locy) = 2

9 (aget a "location value" loc_point) =
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10 (mo "struct location" :av "x" locx :av "y" locy)

11 (aget a "borrows" locx) = (list (mo "borrow" :av "kind" "free"))

12 (aget a "borrows" locy) = (list (mo "borrow" :av "kind" "free"))

13 (aget a "borrows" locpoint) = (list (mo "borrow" :av "kind"

"free"))

Вторая инструкция модифицирует агента следующим образом:

1 locx := (mo "field location")

2 locy := (mo "field location")

3 loc_point := (mo "struct location" :av "x" locx :av "y" locy)

4 locr := (mo "field location")

5 lt1 := (mo "lifetime")

6

7 (aget a "location" point) = locpoint

8 (aget a "location" r) = locr

9 (aget a "mutability" point) = "mutable"

10 (aget a "mutability" r) = "immutable"

11 (aget a "location value" locx) = 1

12 (aget a "location value" locy) = 2

13 (aget a "location value" loc_point) =

14 (mo "struct location" :av "x" locx :av "y" locy)

15 (aget a "location value" locr) =

16 (co "reference" :av "location" locx :av "lifetime" lt1)

17 (aget a "borrows" locx) =

18 (list (mo "borrow" :av "lifetime" lt1 :av "kind" "shared")

19 (mo "borrow" :av "kind" "free"))

20 (aget a "borrows" locy) = (list (mo "borrow" :av "kind" "free"))

21 (aget a "borrows" locpoint) = (list (mo "borrow" :av "kind"

"free"))

22 (aget a "lifetimes" lt1) = (list locx)

Третья инструкция также выполняется, так как заимствование наложено только на

locx, а не на locpoint целиком:
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1 locx := (mo "field location")

2 locy := (mo "field location")

3 loc_point := (mo "struct location" :av "x" locx :av "y" locy)

4 locr := (mo "field location")

5 lt1 := (mo "lifetime")

6

7 (aget a "location" point) = locpoint

8 (aget a "location" r) = locr

9 (aget a "mutability" point) = "mutable"

10 (aget a "mutability" r) = "immutable"

11 (aget a "location value" locx) = 1

12 (aget a "location value" locy) = 10

13 (aget a "location value" loc_point) =

14 (mo "struct location" :av "x" locx :av "y" locy)

15 (aget a "location value" locr) =

16 (co "reference" :av "location" locx :av "lifetime" lt1)

17 (aget a "borrows" locx) =

18 (list (mo "borrow" :av "lifetime" lt1 :av "kind" "shared")

19 (mo "borrow" :av "kind" "free"))

20 (aget a "borrows" locy) = (list (mo "borrow" :av "kind" "free"))

21 (aget a "borrows" locpoint) = (list (mo "borrow" :av "kind"

"free"))

22 (aget a "lifetimes" lt1) = (list locx)

Этот пример наглядно демонстрирует точность онтологического моделирования: агент

«понимает», что заимствование части объекта не эквивалентно блокировке всего объекта,

что полностью соответствует семантике разделенного заимствования (split borrowing) в

Rust.

6. Родственные работы

Исследования в области формальной семантики языков программирования, и в особен-

ности языка Rust, в последние годы привлекают значительное внимание научного сооб-
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щества. Это связано с нетривиальной моделью памяти Rust, основанной на концепциях

владения, заимствования и строгих гарантиях отсутствия гонок данных. В результате

появилось множество работ, направленных на формализацию как статических, так и ди-

намических аспектов языка.

Одной из первых работ, целенаправленно описывающих динамическое поведение Rust,

является исполняемая операционная семантика RustSEM [3]. В данной работе авторы

предлагают формальную модель исполнения программ Rust, в которой явно представле-

ны механизмы владения и заимствования. Семантика задается в виде системы переходов

состояний и ориентирована на воспроизведение поведения реальных программ, включая

ситуации, приводящие к ошибкам доступа к памяти. Подход RustSEM демонстрирует воз-

можность динамической проверки корректности работы с заимствованиями, однако мо-

дель в значительной степени опирается на плоское представление памяти.

Схожую цель преследует работа KRust [11], в которой формальная семантика Rust

реализована в рамках K-фреймворка. Использование K позволяет автоматически полу-

чать исполняемый интерпретатор и инструменты анализа на основе формального описа-

ния семантики. Авторы показывают, что предложенная модель корректно воспроизводит

основные элементы языка, включая перенос владения (move), заимствования и мутабель-

ность. Семантика KRust была сопоставлена с тестами официального компилятора Rust,

что подтверждает ее практическую применимость.

Отдельное направление исследований связано с формализацией заимствований через

символические модели. В работах по проверке корректности заимствований посредством

символьной семантики [6, 7] предлагается формализм LLBC (Low-Level Borrow Calculus),

который служит промежуточным уровнем между высокоуровневым Rust и низкоуров-

невыми моделями памяти. Авторы доказывают корректность символьной семантики по

отношению к операционной, что позволяет использовать модель для формальной вери-

фикации свойств программ, связанных с безопасностью памяти.

Дальнейшим развитием этого направления является инструмент Aeneas [8], ориенти-

рованный на верификацию программ Rust путем перевода в функциональные представ-

ления. В данной работе операционная семантика Rust редуцируется к чистой семантике,

в которой управление памятью и адресами заменяется абстрактными понятиями владе-

ния и займов. Такой подход облегчает доказательство функциональной корректности, но

абстрагируется от многих деталей реального исполнения.
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Фундаментальной работой в области формального обоснования Rust является проект

RustBelt [15]. В нем авторы вводят формальный язык λRust и задают его операцион-

ную семантику, что позволяет строго доказать безопасность ключевых механизмов Rust,

включая отсутствие использования после освобождения (use-after-free) и гонок данных. В

отличие от исполняемых семантик, RustBelt ориентирован прежде всего на доказательство

теоретических свойств языка, а не на моделирование конкретных сценариев выполнения

программ. В RustBelt предлагается логическая семантика для подмножества Rust и до-

казываются ключевые свойства безопасности памяти [10, 12, 15]. Хотя исходная версия

RustBelt была опубликована ранее, последующие работы существенно расширили этот

подход, включая поддержку relaxed memory и unsafe-кода [1, 12, 13].

Развитие RustBelt привело к созданию RustHornBelt и RefinedRust, которые объединя-

ют логические и типовые методы верификации и обеспечивают высокую степень автомати-

зации доказательств [9, 14, 16]. Эти работы демонстрируют, как операционная семантика

Rust может быть связана с логическими моделями и доказательными системами.

Параллельно развиваются практико-ориентированные средства верификации, такие

как Verus и Flux, использующие расширенные типовые системы и SMT-решатели для

доказательства свойств программ [5, 18, 19]. Эти инструменты опираются на формальные

семантические модели Rust, хотя и не всегда задают их явно в операционной форме.

Отдельный класс исследований посвящен aliasing-моделям и динамической семантике

заимствований, включая Stacked Borrows и его расширения, которые уточняют допусти-

мые сценарии доступа к памяти во время выполнения [4, 17]. Эти модели оказывают

существенное влияние на современные формализации Rust и интерпретацию unsafe-кода.

Существуют также работы, фокусирующиеся на концептуальном и когнитивном анали-

зе модели владения Rust. Так, в [2] предлагается концептуальная модель ownership-типов,

которая формализует интуитивные представления о владении и заимствовании и сопо-

ставляет их с реальными правилами языка. Хотя данная работа не задает операционную

семантику напрямую, она вносит существенный вклад в понимание связи между статиче-

скими и динамическими аспектами Rust.

На этом фоне предложенная в настоящей статье операционная семантика выраже-

ний Rust на языке ABML занимает промежуточное положение между теоретическими

и практико-ориентированными подходами. В отличие от большинства существующих мо-

делей, она использует онтологическое представление вычислительного состояния и иерар-
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хическую модель памяти, что позволяет естественно выразить частичное заимствование

и динамическую проверку конфликтов доступа. Таким образом, работа дополняет суще-

ствующие исследования, предлагая альтернативный, онтологически обогащенный способ

формализации семантики Rust.

7. Заключение

В статье была представлена операционная семантика выражений языка Rust, форма-

лизованная с использованием онтологического и атрибутно-ориентированного подхода,

реализованного в языке ABML. Предложенная модель ориентирована на точное воспро-

изведение динамического поведения программ с учетом ключевых гарантий безопасности

памяти, характерных для Rust.

Одним из основных результатов работы является введение иерархической модели па-

мяти, в которой локации могут представлять как целые структуры, так и их отдельные

поля. Такая организация памяти позволяет корректно моделировать частичное заимство-

вание и отражает реальные правила доступа к данным, применяемые в языке Rust. В

сочетании с метаданными живучести, мутабельности и активных заимствований эта мо-

дель обеспечивает строгую динамическую проверку конфликтов.

Разработанная операционная семантика описана в виде исполняемых правил, что от-

личает ее от чисто декларативных формализаций. Это делает возможным использование

модели не только для теоретического анализа, но и для экспериментального исполнения

программ, трассировки вычислений и исследования граничных случаев поведения меха-

низмов ownership и borrow checking.

Сравнение с предыдущими работами, использующими ABML для описания семантики

других языков и конструкций, показывает универсальность выбранного подхода. Онтоло-

гическое представление синтаксических и семантических сущностей позволяет постепенно

расширять модель, добавляя новые конструкции языка Rust без радикального пересмотра

уже существующих определений.

В перспективе предложенная семантика может быть расширена для поддержки более

сложных элементов языка, таких как функции, замыкания, обобщенные типы и парал-

лельные вычисления. Кроме того, она может служить основой для построения формаль-

ных инструментов анализа и верификации программ на Rust, а также для сопоставления

динамической семантики с результатами статического анализа компилятора.
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В целом, работа демонстрирует, что онтологический и атрибутно-ориентированный под-

ход в сочетании с ABML является эффективным средством формализации языков про-

граммирования с развитой моделью безопасности памяти и открывает новые возможности

для исследований в области формальных семантик.
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