System Informatics, No. 21 (2022), December 15th, 2022 1

UDC 004.05, 372.8

Teaching the Discipline “Software Testing and Verification” to

Future Programmers

Sergey Staroletov

(Polzunov Altai State Technical University)

An introduction to the study of quality assurance methods is essential to understand the devel-
opment of complex and reliable software. Nevertheless, the modern software industry requires the
earliest possible launch of a product to the market, and the methods of formal specification and
verification of programs do not find much interest among the broad mass of future programmers.
In this article, the author proposes to organize a dedicated discipline and conduct seamless train-
ing in testing, test-driven development and formal verification using various methods for writing
program specifications and using software tools for program checking. The purpose of discussing
discipline is to redefine the attitude of future developers towards software quality, its specifica-
tion and automatic checking. Within the framework of this article, the author considers his own
discipline, which combines two courses — software testing and formal verification. The proposed
approach of teaching is primarily practice-oriented and includes teamwork. In accordance with
the current curriculum, the discipline is held in the last semester for undergraduate students (4th
course). The material of the article is based on the author’s five-year experience of teaching the
subject to students of the Software Engineering specialty. The article offers rather voluminous
and descriptive examples of specifications and programs in model languages.

Keywords: teaching, software models, testing, specification, formal verification.
1. Introduction

The development of reliable programs is inconceivable without the organization of the industrial
testing process in accordance with the latest established trends in software engineering. In order to
obtain a holistic picture by future software engineers, it is advisable to introduce a special discipline
in which quality assurance methods in software development are studied. At the same time, this
course should be expanded with formal verification methods, which have recently been developed
as one of the directions of modern software engineering devoted to proving the behavior of program
models for the operation of software systems in conditions with increased reliability requirements.
The combination of testing, test driven development, static analysis, and formal verification allows
the software engineers to seamlessly move from tests to models and choose the right quality assurance

method based on labor costs and system requirements.

Пользователь
Typewriter
, December 15th, 2022

2 Staroletov S.M. Teaching Software Testing and Verification

Setting up an author’s new course is always fraught with difficulties. In this article, the author
presents a plan for conducting classes in his discipline related to testing, formal specification and
verification methods in order to take care of the quality of software by future programmers. Since the

course was made from scratch, there were some reasons for creating it.

After the transition to a two-level education system in our country (undergraduate student+master,
442 years) from a 5-year education system (specialist or engineer), the question arose of revising the
curriculum with the development of new disciplines. Note, we use a competency-based approach,
which means that the Ministry of Education lowers the expected competencies from above, and then
the University itself decides which disciplines are needed for covering them. At the same time, the
current elaborations by the departments were mostly used and, as a rule, the existing disciplines
were updated. The same cannot be said about some competencies that required the creation of new
disciplines. For example, for the discipline under discussion, the competency “the ability to apply
testing and verification methods” was set (however, it does not imply which methods and whether
they should be formal — this should be decided locally depending on the qualifications of lecturers).
At the same time, this competency belongs to the professional type, and not general, which implies

the obligatory study of the discipline by all groups of the specialty.

Since the author had a background both in the fields of formal verification and model based testing,
had industrial experience and understood that formal methods are primarily applicable to study the
latest achievements in the field of software engineering (nevertheless, their applicability in industry
is limited by time and complexity), then he enthusiastically started creating this course. The main
goal was to introduce as much specifications as possible into the development process and show
that program correctness is only possible if there exist additional artifacts that the future developer
should pay attention to. If these artifacts are expressed formally, then this opens the door to prove
the correctness of systems with complicated quality requirements. If informally, then it offers at
least manual or automatic regression check, which allows taking into account incremental changes in

constantly changing software.

The resulting course for the 4th year of the specialty “Software Engineering” [56] has the following
structure: 8 lectures, 8 labs for 17 weeks, the assessment includes three equally weighted components:
the attendance, semester work (weighted by 8 labs) and a final test, which will be discussed later. The
author already has five years of teaching experience of the discipline, so some modules have been
updated due to the feedback. The course has also served as the basis for more streamlined courses

for “Computer Science” specialty as well as for college students with less lab work and almost no

System Informatics, No. 21 (2022) 3

formal verification material. The author created a textbook in Russian [57] for the course, but it is not
available in the public domain, however, this article describes the main points from there. Preliminary
requirements for students are the following: (1) knowledge of mathematical logic as well as theory of
algorithms and (2) practical skills in writing programs in modern IDEs. The skills obtained as a result
of mastering the discipline are used in the implementation of the graduation projects by students and

(possible) in their future work.

Verification of Model of Business Tests for Model (Business Acceptance Verification of
Model of Business requirements of Business i testing Acceptance testing
requirements requirements results
Verification of Model of) Tests for) Soflwave Functional Verification of
Model of Syslem System /| Model of System testing Functional
requi s System J testing results
s
T
I
|

<A

/\ C _requiremen

LTL Spin [\ E
Verification Model of Tests for \(Subsyslzms Integration Verification of IBM RT
of Model of High-level Model of testing Integration B _
High-level design High-level testing results R
design deslqn
MBT
Spec
Verification Model of Tests for \/ Verification of
of Model of Low-level Model of testmg Component xUnit
Low-level design Low-level tesnng results [---- o0
deslqn o
Verification Model of Unl(tests Unl(s Unit testing ‘erification of Unit
of program program testing results
units units \L

Verification Program Verification of
of code lines verification of code
ines = static analisys

Fig. 1. Triple-V model and tools

The author would like to highlight two key points on which the approach to this discipline is
based: (1) the theorem on the undecidability of testing within the framework of the existing theory of
algorithms and (2) the Triple-V model, indicating levels and specific tools for the application in the
course.

Let us assume that the program works in a simple single-tasking environment, has a set of control
states, and after each step of transition to the next state, the values of variables are output. If after
the completion of the program, the output is exactly equal to the expected one, then the program is
recognized as a correct one. The problem of testing is whether it is possible to make such a check for
any program P according to its description, or formally, for the input X, the output Y and the Godel

number N, (P) to make a translation:

X *« Ny(P)*Y = {true, false}

Then the given problem is undecidable, since it is a more general case of the translatability problem,
which is closely related to the CircuitSAT and to the Halting problem which are undecidable problems

[23]. Thus, testing (using current assumptions about algorithms on current computer architectures)

4 Staroletov S.M. Teaching Software Testing and Verification

cannot show the correctness of a program only using data from its code. This all implies either a
transition to the search for errors or counterexamples (that is, violations of the correctness of work),
or to the use of artifacts (models and specifications) additional to the code. Also, if it is impossible
to prove the complete correctness of the program, then one should use as many projections of the
programs into different models and apply different methods to check different aspects of the programs,
which is called the principle of methodological diversity.

To solve problems with the impossibility of proving programs by testing, formal verification meth-
ods are began to develop, which are according to Clarke “mathematically based languages, tech-
niques, and tools for specifying and verifying systems that operate reliably despite this complexity”
[12]. A prospective review on the occasion of the fortieth anniversary of formal methods was pub-
lished in the work [8]. Also of note are the annual workshops: International Symposium on Formal
Methods [31], NASA Formal Methods [43], and Model Checking Software [32].

In [20], the Triple-V (triple-waterfall) model of software development is considered. The Triple-V
scheme is an idealized scheme with maximum quality control for systems that are decomposed into
modules, components and subsystems. Here at each development phase the result is a model and
the phases of verification of model tests (left) as well as verification phases of test results (right) are
added. We consider a modified model of the Triple-V, indicating the possible tools and methods for
some levels, which are studied in the discussed discipline (Fig. 1).

As for related works, today the trend is to create open courses and present them at specialized
international workshops. In particular, in the field of formal methods, the community holds a Formal
Methods Teaching Workshop (FMTea). For example, in 2021, ten significant works were published
[19] with the presentation of their courses, including the use of formal methods in games, working
with Dafny and Isabelle tools. In 2023, a lot of papers were submitted for the outgoing workshop
[21], it is due to the large number of online seminars and the dissemination of information about the
workshop during the pandemic.

In the next section with eight subsections, we consider all the components of the discipline plan,
and in conclusion, we discuss the results of conducting final test for the discipline. It should also be
noted that we use a language-agnostic approach: by the 4th year, students already code in various pro-
gramming languages. Therefore, we present examples in different languages that are most convenient

for showing each new approach in specification, testing, and verification.

System Informatics, No. 21 (2022) 5

2. Structure of the discipline

2.1. Software specification and black box testing

The purpose of the first module is to prepare students for writing natural language specifications
and black box testing them. To begin with, the concept of a software bug is introduced as a violation
of the specification (after all, as it was shown before, just a program in any form is not enough).
Consequently, students become technical writers and manual testers. However, it is proposed to write
not just textual descriptions, but rather formal specifications according to the famous Hoare triples

approach [24] (if it is understood in a worldly sense):
{Precondition} Program action{ Postcondition(result)}

By the time of this course, the trainees already know how to create interactive programs or web
applications in different languages. In addition, during four years of training, everyone has a number
of programs passed as a result of laboratory works. These programs, obviously, were made in the last
moments and have bugs. Such programs are supposed to be described and tested.

An example specification for an engine ECU simulation program is shown in Table 1. There is
also a related publication [59] on demonstration of using industry standards and the Hoare triples
approach to check non-trivial cyber-physical models.

Since we also promote the importance of describing the software architecture in some other
courses, in addition to the text specification, it is proposed to draw a diagram on the software in
the form of a UML use-case diagram, where the actor is a window or program mode which is associ-
ated with other actors and transition conditions between them. As a result, the specification will be in
two formats — textual and graphical, and a potential tester can think over test scenarios in advance. All
students are divided into minigroups of about three people, choose its software and distribute work
within the group.

When the artifacts are ready, the minigroup submits them along with the program to a GitHub/Git-
Lab repository and waits for the submitted programs from other minigroups to appear. Then they
start writing about the bugs found by others in a bug tracker, in this case using the “Issues” tool.
To learn how to describe correct bug reports, the author suggests getting acquainted with public bug
trackers (for example, Google Chrome [33], etc.) and taking into account the 4W+1H principle [1].
As aresult, we will get the involvement of students in the specification and finding bugs from friends,

especially from those who did not specify their software in enough detail.

Staroletov S.M. Teaching Software Testing and Verification

Specifications in tabular form for an engine model

Precondition / Action

Postcondition

The ambient temperature is greater
than -30 and less than 0, the battery
voltage is greater than or equal to
12V, or the ambient temperature is
greater than or equal to O, the bat-
tery voltage is greater than or equal

to 11V / Start button pressed

A message about the successful start of
the engine is shown, the output parame-
ters panel displays the current parameters
of the engine, the slider “Battery voltage”
and “Current value, V” on the input pa-
rameters panel increases over time until
it reaches 14, the “Current state” on the
launch panel changes from “Engine is not

running” to “Engine is running”

The engine is not started, the am-
bient temperature is below -30, or
the ambient temperature is above -
30 and less than 0, the battery volt-
age is less than 12V, or the ambient
temperature is greater than or equal
to 0, the battery voltage is less than

11V / Start button pressed

A message is shown stating that the en-

gine cannot start

Engine is running / Start button

pressed

A message is shown stating that the en-

gine has been started before

Engine is running / Stop button

pressed

“Engine was stopped” message is dis-
played, “Outputs” set to zero, “Current
Status” on Launchpad set to “Engine is

not started”

Invariants: the program is not closed, there are no messages about
exceptional situations, the information in the program window cor-

responds to its internal state

Table 1

System Informatics, No. 21 (2022) 7

The work of the minigroup is judged on the details of specifications and the quality of bug reports
from others. This topic also explains testing standards [29] and provides links to the International
Software Testing Qualifications Board training syllabuses [30] for those who are interested in the

professional work of a tester.

2.2. Code level. Unit testing and project documentation

After testing systems without knowledge of their internal organization, we move on to unit testing

the code. Such testing can be formally represented as:

/\ Macti<$1'-xn> - Retea:pect(Mi>

M;eTestcase

where M., (x1..x,,) is the result of running the tested method (function) M; with the specified param-
eters 1.7y, Retegpect 1 the expected return value of the method. Methods (functions) are grouped
into test cases. Conjunction means that if one of the tested values does not correspond to the expected,
the operation of the entire test suite is considered incorrect. While the pioneering standard for such
type of testing was proposed in 1987 [9], the commence of industrial applicability of this method was
done around 1998 by the famous people in Java software engineering, Kent Beck and Erich Gamma,
who invented JUnit [6].

During the labs, students are required to understand that it is necessary to build the code in such a
way that it becomes checkable by the unit testing method. For arbitrarily written software, where 1/0
calls are mixed with program logic, such checking is difficult to perform without refactoring the code,
so here the author reminds students of the need for organization of architecture with separation of
responsibility [37] and design patterns [17]. Students should also understand that writing unit tests is
on the developers’ duty and the unit testing is primarily a development methodology, not a pure testing
methodology. However, writing such artifacts as tests today is the preferred way to organize a project
by default. Now starting the project from main() is not practical until the logic has been well tested
(by running only the tests, not the project as a whole). The lecturer can also make some technical
introductions about xUnit frameworks as well as testing support by modern IDEs (for example, [34]),
and about the need for a CI process in a project when tests are run when they are committed to the
version control repository [7].

This all allows us to get rid of regression errors, i.e. errors associated with new changes that are
correct in themselves but lead to the inoperability of already written code. Thus, with the support of

previously written tests, it is possible to conduct regression testing at the code level. Therefore, with

8 Staroletov S.M. Teaching Software Testing and Verification

such testing, we can solve a very important problem for modern software, which is distinguished by
its incremental structure.
To support teamwork when writing specifications, the following techniques are suggested:
* Tests for a code should not be written by the person who wrote the code.
» To make it easier for others to write tests, the developer is advised to make specifications for
the methods that are supposed to be tested.
* The specifications at this stage should not be formal but should be sufficiently capacious, in
particular, each parameter and return value should be described.
* Documentation is proposed to be made in the JavaDoc annotation format, or rather, in a more
generalized form for all major programming languages processed by the DoxyGen tool [14].

An example of such a specification for a matrix processing library:

J %k

* Bring the matrix to a triangular form

* (@param matrix - nonzero original matrix

* @param col - complement of matrix, column vector of
size as number of rows of original matrix (may be null)
* (@param useMainElement - the parameter indicating whether
to use the main (maximum modulo) element and rearrange
rows, @see maxPosInColumn

* @return Returns the number of row permutations, while
changing the original matrix

* @throws Exception when original matrix 1is degenerate
*/

public static int toTriangleMatrix(double[][] matrix,

double|[] col, boolean useMainElement) throws Exception {

It was noticed that when writing specifications and writing tests based on them, students begin to
have questions about their completeness. So, we can think that the approach of creating informal (but
nevertheless at least some) specifications and tests in accordance with them is the first step towards

creating future formal specifications.

System Informatics, No. 21 (2022) 9

2.3. *DD development methodologies. Test Driven and Behaviour Driven

Development

Considering the methodologies in software engineering over time, we can state that by now the
process has moved from “code writing” programming methodologies named *OP (like OOP and
AOP), to development methodologies (something more significant than just writing code) named
*DD, with examples will be considered here: MDD, TDD and BDD.

Remembering that the unit testing approach is a development methodology and that we consider
teaching it for student programmers. Therefore, it is required to dive into programming at this stage,
but with the use of modern methodologies that assume that the code is not a primary, but a secondary
stage of the development. The article by Harry Robinson [53] presents the application of graph
theory to the tests generation. The program here is given by a transition system, that is, the graph
is a model, and then the code and tests can be obtained from it. In the modern development of
cyber-physical systems (see our already mentioned article [59]), engineers (1) build a physical model
based on diagrams using formulas according to physical laws, (2) simulate its operation (analogous to
testing with the analysis of graphs) and (3) finally, based on this model, the code for a microcontroller
and workpieces for tests can be generated. All of the above corresponds to MDD — the Model Driven
Development approach, where there is an initial abstract model and everything else in the development

comes from it.

=

Code

Fig. 2. On the left is the unit testing process (the code encourages us to write a test), on the right is the TDD development process (the

test encourages us to write new code)

If we consider a development process, where the initial attribute is a test, then we move on to
the test driven development (TDD) process [5]. The author of the methodology is Kent Beck, one
of the developers of JUnit [6]. It should be noted here that this approach was borrowed (as Beck
notes) from the development of programs on punched cards, when the developer saw the input and
output sequences and thought about what transformations should be applied to obtain the latter. This
methodology, in addition, expects the writing of program code (changes) only after the discovery

of the fact of not passing any test (Fig. 2) and assumes to use the laziness of the human being.

10 Staroletov S.M. Teaching Software Testing and Verification

Therefore, these changes should be minimal and it is sufficient to pass only the failed test. Thus, for
further implementation, we need to think about tests and evolve the code according to them. In this
case, when developing in the IDE, we immediately have the opportunity to create the code templates

we need, which speeds up the development (see Fig. 3).

@Test

void calcAdd2and2Test() {
Calculator calculator = new Calculator();
Assertions.assertEquals(4, calculator.add(2, 2));

¥ ® Create method 'add'

Fig. 3. Creating a method during a test writing

As for the sufficiency of the method for passing the test, it is initially written trivially:

public double add(double a, double b) {

return 4;

Further, when other tests appear, the implementation can turn into a set of switches by parameters of
the method and return the expected constants, which can later be generalized into formulas. However,
this code can be used at any stage (it is already in the working state on given inputs according to
the tests), can be transferred to other team members to develop other modules, or demonstrated to
customers. At the same time, some generalization can be done later if there is time.

The process of performing work on the TDD part by the students consists in receiving a task for
the implementation of a computer system or game (which can be completed in a short time), and
proceeding to individual implementation according to the task using the methodology, starting with
tests. In the time of the development, each step (written test or added/changed code) is committed to
the student’s private git repository, and when submitting the assignment, the project is shown to the
teacher in the form of a sequence of changes.

However, the current applicability of the TDD process is limited due to the following things:

* the developer thinks too much about the code;

* the customer is not involved into the process;

* managers think that the process is costly;

* small amount of companies still use it because of lack for experience how to setup this process.

The BDD (Behavior driven development) methodology was proposed to involve customers and
domain experts in the development and testing process. These people write specifications (work

scripts) for the system, how they expect the system to work correctly, then the specifications are tied

System Informatics, No. 21 (2022) 11

to program objects and become unit tests. At the same time, the developer can set up IDE and see
which specification (and not the test!) is being executed and what are the results of its checking.
The implicative Gherkin language [54] with constructions of the form given, where, and, then is used
here as a specification language. It creates the illusion of writing specifications in natural (controlled)
language. The approach was first implemented for Ruby in the Cucumber framework, ported to
major programming languages, and, at least the author knows, it is actually used in the industry in
web development companies, where specifications come from real customers. So, an example of

BDD scenario:

Scenario:
Given I have my software calculator
When I have entered 2 as first operand
And I have entered 2 as second operand
And I press ’'Add’

Then The result should be 4

In the case of Java, a Step Definition file for the scenario is then generated using IDE tools. It
contains ready-made methods for the given natural language scenario (iHaveMySoftwareCalculator,
iHaveEnteredAsFirstOperand, iHaveEnteredAsSecondOperand, iPressAdd, theResultShouldBe). The
developer’s task is now to implement the code for creating an environment for a test object (its creation

and passing parameters), and then check the expected and actual values:

public class MyStepdefs {
private Calculator calc;

int operandl, operand2, result;

@Given (""I_have_my, software_calculators")
public void iHaveMySoftwareCalculator () {
this.calc = new Calculator();
}
@When (""I_have_entered_(\\d+) _as,_first operands")
public void iHaveEnteredAsFirstOperand (int number) {
this.operandl = number;

}

12 Staroletov S.M. Teaching Software Testing and Verification

public void iHaveEnteredAsSecondOperand (int number) {
this.operand?2 = number;

}

@And (""I_press, Add’'s")

public void iPressAdd() {

this.result = calc.add(operandl, operand2);

}

@Then (""The_result_should_be_ (\\d+)S$")

public void theResultShouldBe (int expected) {
Assert.assertEquals (expected, this.result, 1le-5);

}

Thus, we got a mapping of texts in controlled natural language into unit test-style calls. The initial
specification can be written by a non-programmer, and then the developer should take care of the code
so that this specification is executed correctly. Here one can also use all the assumptions of the TDD
approach about the minimum code for passing tests. In addition, current implementations support
tabular data values for working with datasets. The task for students here is also to implement their
previous exercise, but now with the Cucumber-like environment set up and the specifications (not

tests) written in advance than the code.

2.4. Functional automated testing

Testing programs with user interaction requires writing automation scripts that replace manual
testers. If there is a means of recording and reproducing such scripts, then, it allows us to set the initial
conditions for the test (by influencing the controls), perform the necessary actions (button click, for
example), and read the resulting state of the program from its user interface. When conducting this
course, the author all the time defends the approach in modern testing — what the teacher can enter
with his own hands and check with his own eyes, it could be done automatically and this should be
done on each commit of a change. Therefore, we are here learning how to manage programs and do
“assert” to check the expected value against the actual one, but in this case, at the functional level by
managing a ready-made application with its user interface.

When conducting practical tasks, we are primarily interested in an automation tool that allows

System Informatics, No. 21 (2022) 13

us to record scripts in the form of programs in some programming language. Here one can fully
control the setting of the initial values for the program, make different loops with different data, and
compare the results. Historically, automation has been well implemented for programs under MacOS
from Apple. In fact, all MacOS programs have some kind of interface for “listening to what they
tell us from the outside” and in the Automator tool [35], one can record and play scripts in a special
language. Further, a good support for Ul scripts was implemented [4], and a functional test for the
designed solution in the XCode environment is launched as a unit test. For Windows and Linux,
the IBM Rational tester [28] has historically been a good tool, allowing the users to write scripts in
Java, support tests by datasets and other program management. It does not require source code, all
operations are carried out according to a user interface model that the program can access. In this
approach, it is also possible to express functional tests as unit tests. However, times and technologies
are changing, and the most popular automation tool in the world today is Selenium [55]. It targets for
modern web-based applications that work in the browser, so it is advisable to focus on it.

Selenium consists of three parts: Selenium IDE for writing and playing scripts, Selenium Web-
Driver for controlling the browser programmatically, and Selenium Cloud for running scripts on the
server. Selenium IDE operates as a browser plugin that works with the DOM model of the current
document and intercepts events when clicking on links, submitting forms, and so on. Also, it provides
a context menu where the user can choose, for example, which element on the page can be verified
now. For each action, a certain log is generated in the form of Selenium commands, which can be
then replayed. Manual testers usually limit themselves to recording sequences of working with the
web application under test, where they click on elements and make sure that the required element is
on the page. For example, when the user successfully logs in, an element to edit user’s data appears —

its presence can show us that the user is logged in:

open /blog/login

clickAndWait link=Registration

type id=inputEmail serg_soft@mail.ru
type id=inputPassword password
clickAndwWait //button[@type='submit’]
verifyElementPresent link=Edit my data

clickAndWait link=Exit

The considered log is a specification, according to which it is possible in the future to generate a

program code for different programming systems using a set of Selenium WebDriver libraries. This

14 Staroletov S.M. Teaching Software Testing and Verification

allows testers to write initial scripts, and developers integrate them into their development tools to
control the browser from programs.

An example of the generated code from the given log:

driver = new FirefoxDriver();

driver.Navigate () .GoToUrl (baseURL + "/blog/login");

driver.FindElement (By.LinkText ("Registration™)) .Click () ;
driver.FindElement (By.Id ("inputEmail™)) .Clear () ;
driver.FindElement (By.Id ("inputEmail")) .SendKeys

("serg_soft@mail.ru");
driver.FindElement (By.Id ("inputPassword")) .Clear();
driver.FindElement (By.Id ("inputPassword")) .SendKeys

("password") ;
driver.FindElement (By.XPath ("//button[@type='submit’ ")) .

Click();

Assert.IsTrue(IsElementPresent (
By.LinkText ("Edit my data"))); //assertion

driver.FindElement (By.LinkText ("Exit")) .Click () ;

One may notice that this code is the secondary artifact derived from the initial specification in the
form of Selenium commands. Such specifications are easier to write, modify, and maintain.

A developer with some experience will be able to further learn WebDriver commands and inte-
grate them into unit tests, as well as use such commands in writing programs in accordance with the
discussed TDD and BDD methodologies.

Lab assignments in this module include writing various scripts for existing programs, checking
their correct state on key interface elements, and developing a simple web application with authenti-

cation using BDD and WebDriver.

2.5. Static checks and dynamic program analysis

Static analysis is very important in the modern world of programming. A large number of vulner-
abilities today arise from code written with incorrect assumptions or gross errors. Modern languages
like Kotlin, Swift and Rust are come with built-in null-safety and type checking, while classic lan-

guages like C/C++ or Java are neither memory-safe nor type-safe. At the same time, a lot of modern

System Informatics, No. 21 (2022) 15

code is written (and is being written) in unsafe languages. Therefore, it makes sense to use tools that
check the source code and identify typical instances of potentially unsafe behavior. Static checkers
or linters analyze the abstract syntax tree of the program (this is shown for example in our work [60])
in order to find typical errors and vulnerabilities. They also build a limited control flow graph to find
potential paths with erroneous behavior and use various heuristics. Now in industrial development
processes, it is good practice to launch a static analyzer during the build of a project using a CI tool,
so it is necessary to accustom future developers using such tools. We consider both the easy-to-use
cppcheck [36] and PVS-Studio [52] built into the development environment, as well as the popular
SonarQube [13].

For complex programs, especially those working in a multi-threaded environment and dealing with
memory in a non-trivial way, static checking will not do much. For these purposes, dynamic analyzers
are used, in particular the Valgrind tool [44]. One can execute a long-running tool like a server for a

while and observe possible incorrect operation and memory leaks.

The labs consist of checking past code of the students and discussing the output of analyzer with
the teacher to get feedback on their code. In this case, the students can learn something new about

writing quality code based on messages from analysers.

2.6. Hoare triples. Deductive verification. Code Contracts

At this point, the students already have a good idea of what the specifications and Hoare triples
are, and it is time to try to check them at the code level. Bertrand Meyer’s Eiffel language was the first
attempt to exploit Hoare’s ideas in a general-purpose object-oriented programming language [16]. At
the same time, the so-called contracts have been introduced as part of the syntax of the language:
preconditions and postconditions have been added to methods, and invariants have been added to
classes. Of the interesting things, Eiffel offers the generation of random tests under the contract and
introduces its own multithreading model based on contracts [42]. However, for an average developer,
learning new languages just because the contracts can be specified there does not seem to make sense.
Therefore, it is better to learn how to write contracts for existing languages using syntactic extensions
or annotations. The most successful state-of-the-art product for developers, according to the author,
is the experimental MS Code Contracts tool by Microsoft Research, which integrates the contracts
approach into the C# language [40].

An example of a contract for the “Student” class that can be checked right in the development

environment [18] (code like stud.age = 10 will violate the contract and get highlighted):

16 Staroletov S.M. Teaching Software Testing and Verification

public Student (String name) {
Contract.Requires (name != null,
"Name_,should _not be_empty");
Contract.Requires (name.Contains (" "),
"Name_,should_have at ,least 2 _words");
this.name = name;
this.age = 16;

this.yearOfAdmission = DateTime.Now.Year;

[ContractInvariantMethod]

private void ObjectInvariant () {

Contract.Invariant (this.name!= null && this.age >= 14
&& this.age <= 80 && this.yearOfAdmission > 2000,

"Student’s _fields_are _not_set _correctly");

Let us now consider more complex contracts for the container class “Student group”. The method that
adds the “Student” object to the list checks that the specified object is not empty and it is not in the
current list. It is checked by using the lambda predicate in C#. The postcondition is that the number

of elements in the list has increased by 1 and the list contains the added element:

protected List<Student> list { get; set; }

public GroupStudents () {

list = new List<Student>();

public void AddStudent (Student stud) {
Contract.Requires(stud !'= null);
Contract.Requires (! this.list.Exists(x => x.number ==

stud.number && x.name == stud.name));

System Informatics, No. 21 (2022) 17

Contract.Ensures (list.Count ==
Contract.0OldvValue(list.Count) + 1);
Contract.Ensures (list.Contains (stud));

list.Add (stud);

As for the class invariant, consider the code to ensure that there will never be two students with the

same number in the list:

[ContractInvariantMethod]

private void GroupInvariant () {
Contract.Invariant (Contract.ForAll (list, x =>
Contract.ForAll (list,
y => (x =y && x.number != y.number)

] (x ==y && x.number == y.number)

)))i

Thus, this approach allows us to embed correctness conditions inside classes and check them using
contract library methods, C# language tools, and possibly auxiliary methods. At the same time, there
is no talk of any sufficiency of such a check.

To specify contracts for code with improved reliability requirements, we consider the Frama-C
approach [22] (an extensible platform for static and dynamic analysis) and its WP (Weakest Precon-
dition) subsystem for specifying formal specifications for C code. This approach allows developers to
specify contracts in the form of an ISO-standardized extension for C [2]. The place for the contracts
is in code comments with special keywords (vs the informal specification we learned in Section 2.1).
Here, in order for the contract to be proved automatically, it is necessary to set postconditions with
all changing variables in the function, as well as invariants for loop, essentially turning an impera-
tive program into a predicative functional one. This is all done by hand, and since we will have two
representations of the same code, we can guarantee its quality according to our assumptions if the
contracts are proven. An example of the applicability of the approach for standard library functions
on the example of working with files is well considered in the article [51]. For a different example,

consider the open-source C-code of the ArduPilot project for Arduino:

18 Staroletov S.M. Teaching Software Testing and Verification

float get_1i (PID xpid, float error, float dt) {
if ((pid->ki !'= 0) && (dt !'= 0)) {
pid->integrator += ((float) error x pid->ki) = dt;
if (pid->integrator < —-pid->imax) {
pid->integrator = -pid->imax;
} else
if (pid->integrator > pid->imax) {
pid->integrator = pid->imax;
}
return pid->integrator;
}

return 0O;

}

In the next snippet, we show a specification for the function. Here \old is a memory state before

calling the function and \at(..., Post) — after calling it:

ensures ((pid->ki != 0) && (dt != 0)) ==> \at (pid->integrator, Post

CheckUp ((float) (\old(pid->integrator) + ((float) error * pid->ki)
* dt), (int)pid->imax);
ensures ! ((pid->ki != 0) && (dt != 0)) ==> \at(pid->integrator,
Post) ==
\old (pid->integrator) ;
ensures ((pid->ki != 0) && (dt != 0)) ==> \result == \at (pid—>
integrator, Post);

ensures ! ((pid->ki != 0) && (dt != 0)) ==> \result == 0;

Firstly, it can be seen that the function changes the value of pid->integrator and there are three cases:
* pid — integrator < -pid — imax: it is limited to -pid — imax;
* pid — integrator > pid — imax: it is limited to pid — imax;
* otherwise, that is, (pid — integrator >= -max) and (pid —integrator <= max): do not change
of pid — integrator.

At the same time, there must first be a change of pid — integrator to error * (pid — ki) * dt. Therefore,

System Informatics, No. 21 (2022) 19

the solution is to create a set of lemmas and an axiomatic that is used as a function in the ensures
section. Secondly, it can be noted that the function returns O if the first condition does not hold and
does not change the value of pid — integrator. To describe the postcondition, the description of the

guard conditions in the form of implications can be performed.

axiomatic CheckAxiomatic {
logic float CheckUp{L} (float integrator, integer max);
lemma CheckUpMin{L}: \forall float integrator, integer max; (
integrator < -max) ==>
CheckUp (integrator, max) == (float)-max;
lemma CheckUpMax{L}: \forall float integrator, integer max;
integrator > max ==>
CheckUp (integrator, max) == (float)max;
lemma CheckUpNorm{L}: \forall float integrator, integer max; (
integrator >= -max) && (integrator <= max) ==> CheckUp (
integrator, max) == integrator;

}

In general, there is a good manual with a large number of discussed specifications of well-known
algorithms from Fraunhofer [3].

When performing laboratory work on these topics, students in minigroups propose contracts for
their existing code, analyze examples for Frama-C and try to specify some of the algorithms previ-

ously written on their own.

2.7. Model Based Testing. MS Specification Explorer

In this module, we move from code to formalized behavioral models and consider the model
based testing approach. This approach is interesting in that it can automatically generate unit tests
from specified behavioral automata. The author believes that the best tool that combines research and
industry for this approach is Microsoft Spec Explorer [39], originally created by MS Research for
internal purposes of testing Office and Internet Explorer (however, the tool does not work with the
latest versions of MS Visual Studio). The approach is based on the ASM theory [10]. An overview of
the approach in a pioneering version of the tool is done in the paper [46].

To demonstrate the approach, let us briefly consider an example of describing the behavior of a

login-password application in the special CordScript language [38]:

20 Staroletov S.M. Teaching Software Testing and Verification

machine LoginScenario () :Main where ForExploration = true {
Initialize; (EnterLogin; EnterPassword; call Login;
((return Login/0; ResultFail) {0,1}))+;
((return Login/1l; ResultOK) |

(return Login/2; ResultOver))

Here we are modeling that Login() can return ResultOK on success, ResultFail on failure, and Resul-
tOver if the number of login attempts has been exceeded. For such a model, SpecExplorer generates

the automaton representation shown in Fig. 4. Actions here are not states, but arcs. Next, using the

nitialize()

EnterLogin(_

Fig. 4. A login model

parallel composition operation, we intersect the behavioral automaton with the system model:

machine LoginScenarioSliced() :Main
where ForExploration = true {

LoginScenario || ModelProgram

machine TestSuite () :Main where ForExploration = true,
TestEnabled = true

{

construct test cases for LoginScenarioSliced()

System Informatics, No. 21 (2022) 21

Here Model Program is originally written in C# and presents a simplified model for implementation
of the program under test with some special annotations. Spec Explorer itself builds an automaton
based on this program. Ultimately, a suite of unit tests is built from the parallel composition and
generated as suites that can be run like regular tests in Visual Studio.

Labs on this topic include studying ways to specify the behavior of programs in the form of au-
tomata, implementing simple model programs and generating unit tests for them, as well as introduc-

ing errors into specifications and models in order to check the generated unit tests.

2.8. Model Based Checking. SPIN tool

In this module, we move from automata models of specifications to their expression in the form of
formulas of temporal logics. In accordance with the considered test undecidability theorem, additional
artifacts are needed besides the code. In the case of the model based checking method, the program
is replaced by its model (in the form of automata or some executable model), and in addition, the
requirements for the model are set in the form of temporal formulas. If the executable model has
the form of a program in a language with strict semantics, then it is possible to prove its correctness
with respect to given formulas with requirements. Such a proof, however, does not guarantee the
correctness of the original program in a real-world programming language, since such languages have
very complex semantics that cannot be expressed formally, or program verification will be possible in
this case only for simple programs due to inefficiency caused by the complexity.

This section discusses the SPIN model checker (or verifier) created by Gerard Holzmann [26].
The advantages of this product are that the model programs for it are expressed in the special Promela
language, which corresponds to the CSP formalism [25] and is somewhat similar in syntax to the
original EMC language [11] implemented by Clarke as the first model checking system. Requirements
for programs are expressed in the LTL language [47] (in the form of predicates with boolean and
temporal operators over the key variables of the program). The use of SPIN in teaching to software
engineering students is especially useful, since here the model is expressed in code that they are able
to understand. The ability to model interacting processes with the SPIN system allows us to simulate
interactions between models of microservice programs, which is relevant today.

In the course of teaching, we learn the syntax of the Promela model language [48] and the syntax
of LTL formulas for expressing various requirements patterns [15]. We also study some internals of
model checking according to Clarke’s works [41] and issues of their implementation in SPIN from

Holzmann’s articles [26]. We also touch the main problem of state explosion [41] in the model

22 Staroletov S.M. Teaching Software Testing and Verification

checking and the optimization methods implemented in SPIN to somewhat bypass it.

Previously, the author created a sufficient number of good examples demonstrating the Promela
language and the tasks solved on it. In a very basic example, we consider a service system as pro-
cesses interacting in a given sequence [49]. Following this example, students can make models of
the interaction of windows or screens in a program or models of interacting microservices. There is
also a good and complex model of a partitioned operating system scheduler presented in article [61].
In Fig. 5, we show how the current implementation of the operating system model works: processes

make system calls as messages and our scheduler encoded in Promela schedules them.

threadPiT2:1:4

182 IntErruptHandlErtO”/’m
182 1242

207 210

207 \ 270

Fig. 5. Simulation of an OS model in iSpin

An interesting feature of the model checking is the generation of a counter-example when a re-
quirement formula is violated. This provides a transition sequence that leads to a violation of the
requirement. If we negate the LTL formula with the requirement, then the verifier will try to generate
a path from the initial state to the accepted state, which can find a solution to the problem given as
a transition system. Therefore, to solve search problems, one can encode behavior using all possible
non-deterministic transitions and deny the requirement that the problem be solvable. An example of
solving the Hanoi Towers problem is given below. Here we introduce arrays rod; by the number of
rods that store the numbers of disks on the rod (count; denotes the count of disks on the ith rod), and
in the following Promela code we just try to non-deterministically move a disk from the top to the

other rod or not move it:

System Informatics, No. 21 (2022) 23

do
countl > 0 —-> {
disk = rodl[countl-1]; //get the top disk from the rod 1
//and try moving it to 1lst rod
if //here we try to move a disk...

i (count2==0 || (count?2 < N && rod2[count2-1] > disk)) —>

printf ("Disk_%d_from 1 _to_2_\n", disk);
rod2[count2] = disk;
moves++;

countl—-—;

count2++;

}
//...or refuse to move it and try other branches
::(count2==0 || (count2 < N && rod2[count2-1] > disk)) —>
skip;
fi

}

//1->3; 2->1; 2->3; 3->1

od

1tl count_check { [] (count3 != 5) }

During the proof of the negation that the problem can be solved, the verifier will try all the branches
and find a solution to the Hanoi Towers problem. The full solution is given in [50]. This approach
can solve difficult problems, especially when using the Swarm Model Checking technology [27].

As for laboratory work, students are invited in minigroups to describe models of their interacting
programs in a simplified form and come up with requirements for them, showing the teacher the

results of simulation and verification in the iSpin tool.

24 Staroletov S.M. Teaching Software Testing and Verification

3. Results and Conclusion

In this discipline, the basics methods and tools for testing and verification are studied. The fact that
the subject is compulsory suggests that it is aimed at the average student programmer. Nevertheless,
the author believes that the majority of students, as a result of studying the course, have practically
successfully mastered all of the listed methods, or at least understood what is intended for what.
During the teaching of the course, a final test of 70 questions was prepared (the online test is available

under the link [45]). It has already been passed by 175 students, the results are shown in Fig. 6.

6 7 12 13 14 15 16 17 18 19 20 21 22 24 25 26 27 28 29 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 63
Fig. 6. Distribution of correct answers in the final test

The OX axis shows the number of correct answers, and the OY axis shows the number of passes
for that correct answers. The maximum score is 63/70 or 90%. The accuracy of answers on the right
side of the graph is greater, which indicates rather good mastering of the discipline by students.

Over the five years of teaching the discipline, it was necessary to change the distribution of labora-
tory work depending on the readiness of the audience (specifically, in the field of mathematical logic).
In some years, testing methods occupied a significant amount of time, while there were also student
groups that understood the examples well and made their own unique formal models. Teamwork in
minigroups of three people eliminates the unpreparedness of some students and allows students to
achieve basic mastery of the competencies considered.

It can be concluded that when training young developers, if from the very beginning they have
an understanding of the methods and tools for testing and verification and the need to set an initial
specification of the behavior of the software system, then in the future, they would be ready to produce
software of a different quality level.

As for a further work, it is planned to expand the material of the manual and the course with
an introduction to the verification of cyber-physical systems using formal methods. An example of
specification and verification of stability properties for a continuous-time system has already been

created [58].

System Informatics, No. 21 (2022) 25

Abbreviations. The following abbreviations are used in this paper:
ACSL ANSI/ISO C Specification Language

BDD Behavior Driven Development
LTL Linear Time Logic

MBC Model Based Checking

MDD Model Driven Development
MBT Model Based Testing

SPIN Simple Promela Interpreter
Promela Protocol meta-language

TDD Test Driven Development

Bibliography

1. 4W1H & 5SWI1H with examples : 2022. URL: https://readandgain.com/2022/07/05/4w1h-5w1h-
with-examples/.

2. ACSL: ANSI/ZISO C Specification / Baudin P., Filliatre J.-C., Marché C., Monate B., Moy Y., and
Prevosto V. 2015. URL: https://frama-c.com/download/acsl.pdf.

3. ACSL by example, towards a verified C standard library / Burghardt J., Ger-
lach J., Gu L., Hartig K., Pohl H., Soto J., and Vollinger K. // DEVICESOFT
project publication. Fraunhofer FIRST Institute (December 2011). 2016. URL:
https://www.cs.umd.edu/class/spring2016/cmsc838G/frama-c/ACSL-by-Example-12.1.0.pdf.

4. Apple. Ul Testing in Xcode : 2015. URL: https://developer.apple.com/videos/play/wwdc2015/
406/.

5. Beck K. Test-driven development: by example. Addison-Wesley Professional, 2003.

6. Beck K., Gamma E. Test infected: Programmers love writing tests // Java Report. 1998. Vol. 3,
no. 7. P. 37-50.

7. Beller M., Gousios G., Zaidman A. Oops, my tests broke the build: An explorative analysis
of travis CI with github // 2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR) / IEEE. 2017. P. 356-367.

8. Bjgrner D., Havelund K. 40 years of formal methods // International Symposium on Formal Meth-
ods / Springer. 2014. P. 42-61.

9. Board I. IEEE standard for Software unit Testing. ANSI/IEEE Std 1008-1987 // IEEE Computer
Society, New York, YK1987. 1987.

10. Borger E., Stirk R. F. Abstract state machines: a method for high-level system design and analy-

26

1.

12.

13.

14.
15.

16.

17.

18.

19.
20.

21.
22.

23.
24.

25.
26.

27.

Staroletov S.M. Teaching Software Testing and Verification

sis. Springer, 2007.

Clarke E. M., Emerson E. A., Sistla A. P. Automatic verification of finite-state concurrent systems
using temporal logic specifications // ACM Transactions on Programming Languages and Systems
(TOPLAS). 1986. Vol. 8, no. 2. P. 244-263.

Clarke E. M., Wing J. M. Formal methods: State of the art and future directions / ACM Comput-
ing Surveys (CSUR). 1996. Vol. 28, no. 4. P. 626-643.

Code Quality and Code Security : 2022. URL: https://www.sonarqube.org.

Doxygen — Generate documentation from source code. 2022. URL: https://www.doxygen.nl.
Dwyer M. B., Avrunin G. S., Corbett J. C. Patterns in property specifications for finite-state verifi-
cation // Proceedings of the 21st international conference on Software engineering. 1999. P. 411—
420.

Eiffel: analysis, design and programming language / Bezault E., Howard M., Kogtenkov A.,
Meyer B., and Stapf E. / ECMA International, Tech. Rep. ECMA-367. 2006. URL:
https://www.ecma-international.org/publications-and-standards/standards/ecma-367/.

Elements of Reusable Object-Oriented Software / Gamma E., Helm R., Johnson R., and Vlis-
sides J. // Design Patterns. Massachusetts: Addison-Wesley Publishing Company. 1995.
Féahndrich M. Static verification for code contracts // International Static Analysis Symposium /
Springer. 2010. P. 2-5.

Ferreira J. F., Mendes A., Menghi C. Formal Methods Teaching. LNCS 13122. 2021.

Firesmith D. Using V Models for Testing : 2013. URL:
https://insights.sei.cmu.edu/sei_blog/2013/11/using-v-models-for-testing.html.

Formal Methods Teaching Workshop : 2022. URL.: https://fmtea.github.io.

Frama-C: A software analysis perspective / Kirchner F., Kosmatov N., Prevosto V., Signoles J.,
and Yakobowski B. // Formal Aspects of Computing. 2015. Vol. 27, no. 3. P. 573-609.

Garey M. R., Johnson D. S. Computers and intractability. 1979.

Hoare C. A. R. An axiomatic basis for computer programming // Communications of the
ACM. 1969. Vol. 12, no. 10. P. 576-580.

Hoare C. A. R. Communicating sequential processes. 1985.

Holzmann G. J. Software model checking with SPIN // Advances in Comput-
ers. 2005. Vol. 65. P. 77-108.

Holzmann G. J., Joshi R., Groce A. Swarm verification techniques // IEEE Transactions on Soft-

ware Engineering. 2010. Vol. 37, no. 6. P. 845-857.

System Informatics, No. 21 (2022) 27

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.
44.

45.

46.

IBM. IBM Rational Functional Tester : 2022. URL: https://www.ibm.com/products/rational-
functional-tester.

IEEE/ISO/IEC International Standard for Software and systems engineering—Software testing—
Part 3:Test documentation - Redline // ISO/IEC/IEEE 29119-3:2021(E) - Redline. 2021. P. 1-
274.

International Software Testing Qualifications Board : 2022. URL: https://www.istgb.org.
International Symposium on Formal Methods, https://link.springer.com/conference/fm : 2021.
International ~ Symposium on Model Checking Software : 2022. URL:
https://link.springer.com/conference/spin.

Issues - Chromium : 2022. URL: https://bugs.chromium.org/p/chromium/issues/list.

Jetbrains. IDEA. Testing : 2021. URL: https://www.jetbrains.com/help/idea/testing.html.
Kissell J. Take Control of Automating Your Mac. Alt concepts, 2022.

Marjamaki D. Cppcheck — Online Demo : 2022. URL: http://cppcheck.net/demo/.

Martin R. C. SRP: The Single Responsibility Principle // Agile Software Development: Principles,
Patterns, and Practices. 2003.

Microsoft. Cord Syntax Definition : 2013. URL: https://msdn.microsoft.com/en-
us/library/ee691953.aspx.

Microsoft. ~ Spec Explorer 2010 Visual Studio Power Tool : 2013. URL:
https://marketplace.visualstudio.com/items?itemName=SpecExplorerTeam.SpecExplorer2010
VisualStudioPowerTool-5089.

Microsoft. Source code for the CodeContracts tools for .NET : 2015. URL:
https://github.com/Microsoft/CodeContracts.

Model checking and the state explosion problem / Clarke E. M., Klieber W., Novacek M., and
Zuliani P. // LASER Summer School on Software Engineering / Springer. 2011. P. 1-30.
Morandi B., Bauer S. S., Meyer B. SCOOP-A contract-based concurrent object-oriented pro-
gramming model // Advanced Lectures on Software Engineering. Springer, 2007. P. 41-90.
NASA Formal Methods Symposium, https://link.springer.com/conference/fm : 2022.

Nethercote N., Seward J. Valgrind: a framework for heavyweight dynamic binary instrumenta-
tion // ACM Sigplan notices. 2007. Vol. 42, no. 6. P. 89-100.

Online test on testing and verification : 2017. URL.:
https://onlinetestpad.com/t/testingverification.

Online testing with model programs / Veanes M., Campbell C., Schulte W., and Tillmann N. //

28

47.

48.
49.

50.

51.

52.
53.

54.

55.
56.

57.

38.

59.

60.

61.

Staroletov S.M. Teaching Software Testing and Verification

Proceedings of the 10th European software engineering conference held jointly with 13th ACM
SIGSOFT international symposium on Foundations of software engineering. 2005. P. 273-282.
Pnueli A. The temporal logic of programs // 18th Annual Symposium on Foundations of Computer
Science (SFCS 1977) / IEEE. 1977. P. 46-57.

Promela grammar. URL: http://spinroot.com/spin/Man/grammar.html.

Promela samples — cafe : 2020. URL.: https://github.com/SergeyStaroletov/PromelaSamples/blob/
master/cafe.pml.

Promela samples — Hanoi Puzzle : 2020. URL: https://github.com/SergeyStaroletov/Promela
Samples/blob/ master/HanoiPuzzle.pml.

Promsky A. V. C program verification: verification condition explanation and standard library //
Automatic Control and Computer Sciences. 2012. Vol. 46, no. 7. P. 394-401.

PVS-Studio : 2022. URL.: https://pvs-studio.com/en/.

Robinson H. Graph theory techniques in model-based testing // International Conference on Test-
ing Computer Software. 1999. URL: http://www.harryrobinson.net/GraphTheoryInMBT.pdf.
Rose S., Wynne M., Hellesoy A. The Cucumber for Java book: Behaviour-driven development
for testers and developers // The Cucumber for Java Book. 2015. P. 1-338.

Selenium automates browsers : 2022. URL: https://www.selenium.dev.

Software Engineering. Federal Standard [in Russian] : 2017. URL: https://fgos.ru/fgos/fgos-09-
03-04-programmnaya-inzheneriya-920/.

Staroletov S. Basics of Software Testing and Verification [in Russian]. Lanbook, Saint Petersburg,
2020. P. 344. — EDN SGQVLL. URL: https://e.lanbook.com/book/138181.

Staroletov S. Automatic proving of stability of the cyber-physical systems in the sense of Lya-
punov with KeYmaera // 2021 28th Conference of Open Innovations Association (FRUCT) /
IEEE. 2021. P. 431-438.

Staroletov S. Modeling the Anti-Lock Braking System in Scilab and Its Checking for Com-
pliance with Uniform Requirements // International Conference on Industrial Engineering /
Springer. 2021. P. 413-424.

Staroletov S., Dubko A. A Method to Verify Parallel and Distributed Software in C# by Doing
Roslyn AST Transformation to a Promela Model // System Informatics. 2019. Vol. 15. P. 13—
44. URL: https://system-informatics.ru/files/article/staroletovdubko.pdf.

Staroletov S. M. A formal model of a partitioned real-time operating system in Promela // Pro-

ceedings of the Institute for System Programming of the RAS. 2020. Vol. 32, no. 6. P. 49-66.

System Informatics (Cucremuas undpopmaruka), No. 21 (2022), December 15th, 2022 29

YK 004, 929

Enn Tyugu: a Deported Estonian and a Soviet Academician

Irina Krayneva (A.P. Ershov Institute of Informatics Systems, SB RAS),

Merik Meriste (Tallinn University of Technology)

Killu Sanborn (Oxford Finance LLC)

This work is dedicated to an Estonian scientist in Computer Science, Enn Tyugu (1935-
2020). The two landmark events of his biography are his deportation in 1941 and his interest in
computers. The topic appears relevant since in the post-Soviet (the same as in the USSR)
environment research on the life paths of the representatives of deported nations was scarce; we
know little about their life and the life of their progeny; there are no studies or ego-documents
shedding light on the everyday aspect of their lives in deportation. We will not elaborate on the
issue of access of science and technology specialists (technocrats) to political power and

administrative decision-making and will limit our interest to their socio-professional identities.

Keywords: history of informatics, Enn Tyugu, deportation, programming, STEM, PRIZ, Start

1. Introduction

Though the focus of our study is Enn Tyugu, we are also going to dwell on the stories of
two of his colleagues in Computer Science, the children of Baltic deportees born in the 1950s,
who acquired their key competencies in the USSR/Russia. They are Irina Virbitskaite (born 1956)
[22] and Algirdas Pakstas (born 1958) [3]. Their stories are the stories of success. Moreover, in
his memories, Tyugu mentions several people of the same age as his elder brother Ants (1921-
1996) [42]. Hopefully, that the story of the person who, as many his compatriots [14], managed to
overcome the absence of freedom and deprivation when forced to accept the rules of other

Пользователь
Typewriter
, December 15th, 2022

30 Krayneva I., Meriste M., Sanborn K. Enn Tyugu: a Deported Estonian and a Soviet Academician

people’s game, will be informative and educational. It should shed more light on the system of the
late-Soviet society, eloquently presented by A. Yurchak [49].

Several items shaping the context of our study are as follows. The first is the degree of liberty
of a Soviet person and scientist, striving for self-improvement. Isaiah Berlin, discussing the
correlation of “positive” and “negative” freedoms?®, came to the conclusion that ... pluralism,
with its demand for a certain amount of “negative” freedom, is a truer and more humane idea than
the aspirations of those who try to find the ideal of the “positive” self-realization of classes,
peoples and entire humanity in large authoritarian and strictly disciplined societies. It is truer at
least because it acknowledges the diversity of human goals, many of which are incompatible with
each other and are in the state of eternal competition” [5].

The approach followed by A. Yurchak, whose heroes — Soviet people — neither dissidents nor
supporters of the Soviet regime, were the so-called “normal”? people, demonstrates that they
managed to find the ways to exist and coexist that were different from the aforesaid types of
freedoms, namely in communities and among the “fellow public”.?® By studying the mentality of a
small group of scientists, we will discover ways of existence discovered by Yurchak as well as
some phenomena similar to a combination of Berlin’s “positive” and “negative” freedoms, which
also takes the mentality of scientists beyond the binary description (i.e. for or against the Soviet
system).

In contrast to Yurchak, we reveal the stratum of “fellow people” basing on socio-professional
principles, i.e. independent of biographical facts, such as being a deportee or a
dissident/advocate.* Underlying this stratum were common professional interests and strive to
become proficient in the new and then exotic field - computers. Moreover, being part of a broader
stratum of scientific workers whose outstanding role in the industrial society is noted in the works

of sociologists, futurologists and philosophers highlights Enn’s belonging to a certain community

! Negative freedom (characteristic for liberal societies, according to Berlin) is the “freedom from”, i.e. freedom from
external intrusion, especially coming from the state bureaucracy. Violence is the main threat for freedom. This means
that understanding “politics” is reduced to attempts of establishing a “peaceful order”, and settle conflicts between
individuals, groups, and institutions. Positive freedom is the “freedom to”, i.e. freedom of self-development and self-
expression. This freedom requires power (state or other) guaranteeing the process of personality formation and
setting its parameters. Berlin considers this type of freedom to be typical for socialist societies.

2 By “normal”, A. Yurchak means people of the late-Soviet period, whose life was relatively free from state control
and ideology, and was not necessarily perceived as juxtaposition to socialism or the state. See A. Yurchak,
Everything was forever ..., [49, p.193].

3 Communities and the “fellow public” — in Yurchak’s works, contexts of dominant ideology and authoritative
discourse identified the “fellow people” not based on the same social origin or belonging to the same class, but by the
perception of authoritative discourse (i.e. ideological slogans). [49, p. 249].

4 The children of Baltic deportees were not subjected to repressions in their study, work and career. This is different
from what happened to those who ended up on occupied territories during the Great Patriotic War. See refer. 24, p.
13-15.

System Informatics (Cucremuas unpopmaruka), No. 21 (2022) 31

[47]. It stemmed from the technological determinism typical of the Soviet society, technocracy,
and absolutization of scientism. Anthropologically, these ideas formed the image of the
“technocratic man”, armed with knowledge and capable of modifying nature and society on the
basis of scientific and rational approaches [34]. These phenomena formed in the wake of
modernization, which was accompanied by excessive expectations of the society addressed to
science and technology. We will not elaborate on the issue of access of science and technology
specialists (technocrats) to political power and administrative decision-making, and will restrict
ourselves to their socio-professional identities; however, we must remark that this stratum failed
to avoid the so-called “public addresses” (slogans) urging the workers of science to become active
participants in building the communist society — this goal was included in the Program of the
Soviet Communist Party of 1961. The community of those involved in software development
formed during the Cold War and atomic projects. Though the development of computers in the
USSR was not directly connected to the national atomic project, it shortly became a key customer
[23]. Computer development in the USSR in the fifties was yet another major Soviet project, on a
par with the atomic project, albeit on a lesser scale. Understaffing, as pointed out many times by
academician Andrei Ershov (1931-1988), the informal leader of Soviet programmers [6],
indicated the limitations of this project, and Ershov did his best to handle this problem. Among
other things, the Department of Programming, Computing Center, SB AS USSR, in Novosibirsk,
which he led from 1957 to 1988, trained programmers of the highest qualification as the national
departments of the Soviet Academy of Sciences did not have Dissertation Councils specializing in
system programming or software engineering. Few programmers chose to defend dissertations:
their priority was keeping pace with the development of program systems. Nevertheless, Ershov
encouraged defending dissertation theses in programming and hand-picked the most talented
programmers. His extensive ties in the academic world and the reputation of the Novosibirsk
programming school helped him to solve this task.

This paper is based on the memories of E. Tyugu published in Estonian [42], memories of other
programmers, as well as materials from the Academician A. P. Ershov Electronic Archive [2].
The memories of Enn Tyugu can be divided into several periods: first, from his childhood to
deportation in June, 1941; second, being in Bashkiria as a deportee until April 1946, when he
managed to return to Estonia thanks to the efforts of his father’s sister, aunt Amanda. His
memories of this period provide rare evidence of the life of the representatives of the Baltic
peoples deported to Russia. The third period is his life in Haabersti, a suburb of Tallinn, which
lasted until 1959, when he began his two-year training course in computing sciences in the
Leningrad Polytechnic Institute. The longest period of his life in the Soviet Union (1959-1991) is

32 Krayneva I., Meriste M., Sanborn K. Enn Tyugu: a Deported Estonian and a Soviet Academician

closely connected with computers. The final, post-Soviet period, began on January 1, 1992, when
Tyugu went to Sweden as a professor of software engineering to work in the Royal Swedish
Technological Institute (Kungliga Tekniska Hogskolan, KTH), and lasted until 2000. Afterwards,
he returned to Estonia, to the Tallinn Technological University, and combined his tenure with
working in the Center of Collective Cyber-defense Competency until his retirement in 2016.
While working abroad, Tyugu maintained a close connection with his Estonian colleagues through
joint European scientific research projects.

2. How it begun

Enn Tyugu was born in a family of telegraph workers. His father, Harald Tyugu (1891-1942),
came from a family of farmers. He moved to the city of Paide, where he studied telegraphing.
Here, he met his future wife, Elfride Nael (1899-1945). Her mother was the manager of a ham
and sausage factory in Poltsamaa. In Paide, Elfride also learned telegraphing (she was
ambidextrous and could operate the Morse key equally well with both hands). This was probably
the very beginning of the establishment of the national scientific and technical intelligentsia in
Estonia.

When she was 16, Elfride left home with her sweetheart, who had been ordered to work in
Tambov, a town southwest from Moscow. While they were in Tambov, the Revolution happened
and the Civil War began, which made the return to Estonia problematic. Telegraph operators were
in high demand by the Reds, the Whites and the Greens alike. There is a family legend that Harald
tried to stop the use of telegraph poles for firewood by one of the war parties; as a result, he was
arrested and sentenced to execution. His wife saved him by bribing the guards with two loaves of
bread. When they returned to Estonia in 1920, they saw that the hair of Enn's father, aged 29, had
gone completely grey. Soon, their first son, Ants, fourteen years older than Enn, was born. Back
in his home country, Harald completed a correspondence course and got a degree in Law at Tartu
University. He became a lawyer in the Main Post Office; he made laws and resisted the attempts
of illegal connection to the radio.

Enn’s memories of his early childhood were joy-filled and calm; they had plenty of food; his
nanny, and elder brother took good care of him. The family spent winters on the Kunder Street in
Tallinn, and summers in their summerhouse, then under construction, in the suburbs of Haabersti.
The area is now part of the city. The wooden house in Tallinn, with a shared hall and stone
staircase, was a product of the pre-war construction boom. Enn recollected: “Our apartment was
small by modern standards, but back then, my mother and father said, somewhat proudly, that we

had a “two-room apartment with commodities”. This meant that we had tap water and our own

System Informatics (Cucremuas unpopmaruka), No. 21 (2022) 33

toilet; the house was heated by a wood stove. There was a shared bathroom and laundry room in
the basement” [42, p.21]. Both the city apartment and summer house had telephones installed
(sic!). The first stage of Enn’s life was coming to its end.

Estonia was annexed to the Russian Empire in 1721, according to the Treaty of Nystad after
the Great Northern War as part of two provinces — Estland and Livonia. In February 1918, Estonia
became an independent parliamentary republic.® It remained one until the Soviet occupation of
1940, according to a secret supplementary protocol of the Molotov-Ribbentrop Pact of 1939 [41].
On September 28, 1939, the USSR forced Estonia to sign a mutual assistance treaty, which
allowed the USSR to place its army, navy and air force bases and troops on the Estonian territory;
the contingent of the troops was later increased. From June through August 1940, the state
executive organs, police, army, financial and economic systems of the Estonian Republic were
dismissed; education institutions were reorganized according to the Soviet model, and all public
organizations were dissolved. On June 14 and 15, 1940, the“elections” of new parliaments,
according to the directions of the USSR representatives, were held simultaneously in the three
Baltic republics. At the simultaneous sittings of these “parliaments,” the three Baltic nations were
declared Soviet Socialist Republics. They petitioned for acceptance into the USSR. The land

became state-owned, banks and industrial enterprises were nationalized [15]. Tyugu recalled:

“That winter (1940) there was trouble in the air. My parents were fluent in German
and Russian. Their speaking foreign languages, something that had not happened
before, irritated me. Now | realize that they did not want to discuss the unpleasant

events occurring in Estonia and other places with me around» [42, p.27].

His favorite children’s magazine, Play and Enjoy, was renamed into Work and Enjoy, and
began to publish stories about pioneers and kolkhozes. Harald Tyugu was offered a job — head of a
communications department in Western Estonia, but he declined.

By the summer of 1941, Estonia was completely sovietized. The process was accompanied by
arrests, executions and deportations of citizens: like in the other two Baltic republics, it was the
elite that got prosecuted: local and national-level politicians, prominent figures in economics and
finance, military officers, active members of the Kaitseliit (Estonian Self-defense Union), wealthy

peasants, professionals, etc.® Then came June 14, 1941. Over 10,000 people, whole families, were

® On February 2, 1920, Russia acknowledged Estonia’s independence. On September 22, 1921, Estonia became a
member of the League of Nations.
6 The same is true about Soviet Russia/USSR in pre-war years [33].

34 Krayneva I., Meriste M., Sanborn K. Enn Tyugu: a Deported Estonian and a Soviet Academician

deported from Estonia. About 3,000 men and 150 women wore separated from the rest and placed
into camps, where most of them were executed or perished. The remaining women and children
were sent to special settlements in the Urals and in Siberia. According to the White Book, over
53,000 people were repressed in Estonia in June, 1941 [19, p.14-15].

3. Deportation

When a truck with soldiers and their commanding officer drove into their yard, Enn was alone
with his mother. Elfride called her husband at work and her older son in his city apartment. They
decided to stay together; some other families decided to disperse or hide. Enn and his mother were
brought to the city, where the family reunited for a short period. Later, they were separated: men,

youngsters and elderly people were placed into different trucks:

“My parents had a good idea of what life was like in Russia based on their
experience, we took as many clothes as we could, and some food for the journey... My
mother was happy because she found a place on the upper shelf, next to a barred
window, where the air was fresh, and | could stay on the shelf and look outside through
the bars” [42, p. 29].

Cars with men were separated midway. Enn never got to see his father again. Harald Tyugu
died on March, 17, 1942, in the Sosva division of the North-Urals Camp (Sevurallag) in the
Sverdlovsk Oblast: the high mortality of prisoners in the Sevurallag, especially in 1941-1942, was
the result of harsh working (logging) and living (unsanitary) conditions, as well as of poor
nutrition [37, p. 41].

The second stage of their travails began, but the little boy was oblivious to the tragedy. He
enjoyed traveling by train, on a steamboat, and on a cart pulled by horses. His new friend, the 14-
year old Karl Tiidus, carved wooden chess figures for him. Enn remembered the unfamiliar taste
of the food that they were given during a stop in a school building. At last, they reached their
deportation destination — the town of Urzhum in the Kirov Oblast, Bashkiria. His older brother
Ants and other young men were taken to a logging camp on the river Vyatka, about 500 miles
away from Urzhum. Enn and his mother settled in a shoemaker’s house. The population of the
town was about 10,000; there were some stone houses and churches used as warehouses; roads,
dusty in the summer, dirty in fall and spring, and snowy in winter. Lapty, starvation, lice, a vodka

factory that supplied its product both to the nearby and remote villages.

System Informatics (Cucremuas unpopmaruka), No. 21 (2022) 35

Enn’s mother was lucky to get a job at a ski factory: she knew Russian. Enn had to spend
plenty of time alone. Elfride worked long hours, and every evening brought something to eat in a
half-liter mason jar, her worker’s lunch. Soon, Enn went to kindergarten. By learning poems by
heart for the New Year show, he got his first Russian lessons. This was important, because he did
not speak or understand Russian and so could not communicate. Food was becoming more and
more difficult to procure. Elfride sold most of the things she had brought to the town and decided
to move to a village. They stayed in the house whose owner had been arrested for taking wood
planks from the kolkhoz yard to repair his cart. Their landlord and her daughter Galka, who was
four years older than Enn, got on well. Enn quickly adapted to the new environment and made
friends with local kids. They went to the forest to pick berries and to the little river Urzhumka,
where he learned to swim; he herded the village cows. While the parents worked in the field, the
children were on their own. They ate potatoes baked in embers with salt and garlic, young sprouts
of horsetail, onions, and sorrel, and stole peas from the kolkhoz field: “We knew all the edible
plants in the forest. I still know which herbs are edible and which are poisonous” [42, p. 44].

Elfride asserted her status among the villagers by helping illiterate women read and answer
letters from the front. Sometimes, they went to see Ants. He was working as a lumberjack with
other Estonian young men, and spent 16 years in Russia. The story of these men testifies to their
perseverance and resourcefulness and to the lack of qualified male workers during the wartime.
Ants was a blacksmith, an electrician, and a radio operator; le learned to drive a truck. He got a
degree from the Sverdlovsk Polytechnic Institute (correspondence course) and worked as an
automation engineer in Estonia. Ants’ peers from the Jacob Westholm boys’ school in Tallinn
were with him in the logging camp. Later, they became known in various fields: Uno Kopvillem,
a physics professor [7, p.36]; Juhan Tuldava (Haman),’ a linguist, Doctor of Philological Sciences
and professor of the Tartu State University; Juhan Zimmermann, a figure skating coach and a civil
court judge [17] — almost all of them were educated remotely in the logging camp. On September
1, 1942, Enn went to school. Russian was a difficult subject for him, while mathematics was a
success. Enn borrowed books from the school library. Despite the hardships, his mother did her
best to educate her son: she invited an elderly Estonian lady to teach him German. Her strategy

was understandable: she valued education and chose the language she herself knew well.

7 Juhan Tuldava (1922-2003, pseudonym Arthur Johan Haman) was an Estonian linguist and Soviet spy. Graduated
from the Kirov Pedagogical Institute in 1948 with a degree in English language and literature. Started cooperation with
the USSR National Security. The MGB and KGB gave him the agent names Voronin and Skvortsov. He published
books in the Estonian language and memoirs under the name Arthur Haman “Sébrad ja vaenlased : mdlestuskilde”
(Tallinn : "Kodumaa" viljaanne, 1967).

36 Krayneva I., Meriste M., Sanborn K. Enn Tyugu: a Deported Estonian and a Soviet Academician

Enn was adapting well: he completed his third school year with distinction and was awarded
an honorary certificate. Life was getting back on track. In the spring, they planted the garden, like
all other villagers: potatoes, rutabaga and onions, valuable sources of food in winter. The fall
harvest was excellent, and the mother was optimistic about the upcoming winter, as she wrote in
her letter to Amanda in October 1944. This was when she learned that the Red Army had
occupied Tallinn once again. In winter, Elfride’s main chore was providing firewood. Then, the
irreversible happened: she contracted a strep infection. Despite all efforts of the doctor, E.
Tuldave, to save her by blood transfusions, she died of sepsis in Urzhum on April 5, 1945, aged
45 [42, p.45].

Enn was left under the care of his older brother, who was away most of the time. He continued
going to school in Urzhum. His Russian teacher fed him, and he helped her correct homework. By
that time, Enn had become good at Russian grammar; moreover, he read a lot: Tom Sawyer,
Treasure Island... The pain of his loss was gradually going away... Soon, Enn did a very manly
thing: he persuaded an employee of the city council to sign up him and his brother for a labor
camp, like other Estonians; soon, they had moved to a new place. Here, lots of Estonians worked
in the fields to supply the army. Ants got a job at the radio station, and Enn went to the
neighboring villages to buy potatoes, bravely covering long distances. The Estonians established
correspondence with their homeland and even got parcels with Christmas gifts. The head of the
labor camp, colonel Schwartz, tried to arrange decent living conditions for his subordinates. A sort
of a foster home was organized for the children who had lost their parents: it was warm, and there

was food.
4. Coming home

In the spring of 1946, Enn returned home: “What happened was that a quiet man named Stepan
Shubin came to us, with compliments from aunt Amanda. He met colonel Schwarz and they
agreed that the latter would take me to his regiment in Estonia upon his return from vacation.
Stepan had a document stamped by the NKVD, stating that Enn Tyugu, born on May 20, 1935,
was granted a permit to reside in the Estonian Soviet Socialist Republic” [42, p. 49]. Two girls
who had also lost their parents, Airi Airing and Maret Looderaud, joined them. Enn and his aunt
settled in the summer house built by his father. Every winter, the house had to be insulated. The
parents’ house in Tallinn had burned down in a bombing raid in 1944 during the advance of the
Red Army.

Those were difficult times. In 1941, an anti-Soviet guerilla movement, the so-called “Forest
Brothers” (“metsavennad”) emerged in the Baltic States. In Estonia, over 40,000 people joined.

System Informatics (Cucremuas unpopmaruka), No. 21 (2022) 37

The movement remained active until the mid-1950’s. At the same time, the national economy of
the ESSR was being restored according to the Action Plan of 1944. The plan for the 4™ Pyatiletka
(five-year industrial plan), 1946-1950, provided an investment of 3.5 billion rubles into the
economy of Estonia, which was 1.7-2.9 times greater than the amounts allocated to other
republics, including Latvia and Lithuania with their bigger populations. Per capita investment into
the Estonian economy exceeded the average for the USSR by around 30% in 1940-1950 and by
17% in 1951-1955. In the 1960s through 1990s, despite the general standoff with the West,
Estonia had the most intensive economic connections with other countries, especially in the area
of Computer Science [18]. It had good scientific connections with Denmark and Sweden, and
good educational and trade connections with Finland. The Soviet-Finnish economic cooperation
in the area of IT went through a joint Soviet-Finnish enterprise called Elorg Data, founded in
1974. 58% of the share capital belonged to Elektronorgtekhnika, an enterprise of the USSR
Ministry of Foreign Trade [36]. Estonian specialists in Elorg Data were able to learn foreign
programming technologies. Thanks to the Finns, by the late 1980s, some elements of modern
computer architecture, such as e-mail, appeared in the AS ESSR institute of Cybernetics.
Scientific exchange benefited the process of training specialists in both countries: when in the late
1980s and early 1990s Finnish universities lacked teaching staff, they invited specialists from
Estonia [18, p. 115].

Computing sciences got a boost in the Soviet Baltic in the late 1950s and early 1960s within
the development of cybernetics; in a broader context, it was part of the scientific and
technological modernization of the Soviet economy and rehabilitation of cybernetics. Cybernetics
was perceived in the Soviet Union as the engine driving the building of the Communist society, as
declared by the Communist Party Program in 1961 [20, p. 312]. This is yet another telling
evidence of the technological determinism of the Soviet society of the time, facilitated by many
eminent scientists [4]. A number of institutes of cybernetics were formed within the Soviet
Academy of Sciences, including the institute in Tallinn in 1960; in 1976, a Special Design Bureau
of Computing Machines was formed within the Institute.® Such institutions emerging in the
system of the Academy of Sciences and higher education of the Baltic republics became basic

8 After the fall of the USSR, the AS ESSR Institute of Cybernetics became a semi-autonomous research institute of the
Tallinn Technical University, and was closed after a structural reform. From January 1, 2017, specialists in phonetics
and speech technologies and the laboratories of control systems and software were reassigned to the Department of
Scientific Software at the New School of Information Technologies; specialists in wave technology, nonlinear
dynamics, photoelasticity and from the Laboratory of Systems Biology were reassigned to the Department of
Cybernetics of the New School of Science.

38 Krayneva I., Meriste M., Sanborn K. Enn Tyugu: a Deported Estonian and a Soviet Academician

organizations for many computational sciences, programming, network technologies, and related
special education.

The emergence of these institutions in the Baltics had internal economic reasons. The
establishment of the Institute of Cybernetics in Estonia was dictated by explosive development of
the chemical and energy industries (based on slate mining), where automation and controlling
tools played a key role [16, p. 63]. Also, reforms aimed at the decentralization of the Soviet
economy in 1957-1965 stimulated the development of the Baltic republics. New scientific and
technical areas required new skills. A number of specialists in computer science for the Baltic
republics were trained in the 1960s in the Leningrad Polytechnic Institute (LPI) and Moscow
Energy Institue (MEI). Initially, there were about 25 students in Moscow and Leningrad.
Specialists of the highest qualification were trained in Novosibirsk, Kyiv, and Minsk [12].

As mentioned above, Enn Tyugu had excelled in math in elementary school, which may have
affected his choice of the Tallinn Polytechnic Institute as a higher education facility. Upon his
graduation in 1958, he became a designer-engineer at the Tallinn Excavator Factory. According to
his memaoirs, it was then that he had his first experience with computers, which defined his future
life and scientific career [43]. By the end of 1959, what Tyugu had believed to be impossible
happened: he was accepted to the Leningrad Polytechnic Institute for a two-year course in
computing, without leaving work. Ever after, he was grateful to Professor Aleksander Voldek,®
who helped him to get to the Institute where he received a “fantastic” education in computer
science. During this period, Tyugu’s work was connected with the Scientific Research and
Technological Design Institute (1959-1976), where he grew from a staff researcher to the
department head [10].

5. Science and a bit of politics

In the first half of the 1960s, the STEM microcomputer (Specialized Technological Electronic
Machine) was designed and built in the Scientific Research and Technological Design Institute.
Extremely reliable for the time, it was used in the technology department of the Kirov Factory in
Leningrad (not in the computing center, though, as it required round-the-clock maintenance) [43,
p. 13]. Similar computers were built for other major factories in the USSR. In 1967, the design
received the State Award of the Estonian SSR. In 1966, Tyugu defended his thesis for the degree

of the Candidate of Technical Sciences (supervised by Georgiy Konstantinovich Goranskiy, who

9 Aleksandr Ivanovich Voldek (1911-1977) — electrical engineer, Doctor of Technical Sciences (1957), Academician
of the Estonian AS (1969), from 1950 through 1961, worked at the Tallinn Polytechnic Institute (currently Tallinn
Technical University), then at the Leningrad Polytechnic Institute (now Peter the Great’s St. Petersburg Polytechnic
University).

System Informatics (Cucremuas unpopmaruka), No. 21 (2022) 39

was the director of the Institute of Technical Cybernetics of the Belorussian SSR Academy of
Sciences in Minsk in 1965-1970).

Eventually, Tyugu received a recommendation to enroll for the Doctorate studies of the SB
AS USSR Computing Center in Novosibirsk Akademgorodok, to the Programming department
led by Andrei Petrovich Ershov [28]. Tyugu had read the work on parallel programming written
by V. Kotov and A. Narinyani in the early 1960s [21], and came to Novosibirsk Akademgorodok
to get to know them closer and to speak at a seminar. In 1970-1971, he became a researcher of the
Computing Center, and Ershov became his scientific consultant in his work on his Doctorate
thesis. Ershov spoke highly of Enn’s progress.

Tyugu came to Akademgorodok when the Khruschov Thaw (Ottepel’), ambiguous as it was,
ended with the suppression of the Prague Spring in 1968 and arrest of the protesters against the
military operation in Czechoslovakia on the Red Square. In the context of the Czech events,
Akademgorodok became one of the centers of the opposition movement. It was caused by the
Process of the four trial in January 1968, when several “dissidents” were prosecuted, including the
journalist A. 1. Ginzburg, poet Yu. T. Galanskov, activist A. A. Dobrovolskiy, and typist V. I.
Lashkova. 46 researchers of the SB AS USSR and the NSU signed a letter protesting the lack of
glasnost during the trial. On March 23, the letter was published in the New York Times, and on
March 27, it was broadcast by the VVoice of America [25, p. 7]. Valeriy Menschikov, a member of
Andrei Ershov’s team, was among those who signed the letter. The reaction of various academic
leaders to the actions of those who signed the letter was not unanimous: Menschikov got out of
the turmoil virtually unscathed — Ershov vouched for him and accepted him as his postgraduate
student.

On March 8-9, 1968, a bard festival was held in Akademgorodok. Alexander Galich, who was
invited to the festival, performed his songs “Goldminer’s Little Waltz” (Staratel skii valsok)'® and
“In the memory of Pasternak”. As a result, the Under the Integral club (Pod integralom),!* which
organized the festival, was closed. Galich’s socio-political satire was condemned by the
Communist Party officials as “food for our ideological enemies”. Vladimir Davydov, a friend of
Tyugu’s and an active participant of the club’s meetings, compiled a remarkable photographic

gallery showing the life of the club members [38].

10 This ballad is a bitter reproach to the indifference of the Soviet society towards the repression of political freedoms
and nonconformists. The majority basically approved the persecution of dissidents with their silence... “Be silent and
you will become a rich man... be silent and you will become a hangman”.

1 Café-club Pod integralom was a discussion club in Novosibirsk Akademgorodok hosting informal talks and meetings
of scientists of different generations. One of the symbols of the Khrushchev’s Thaw; closed in 1968.

40 Krayneva I., Meriste M., Sanborn K. Enn Tyugu: a Deported Estonian and a Soviet Academician

There were some problems of scientific nature, too. The team of Ershov’s Programming
Department was working on the BETA Multilanguage translating system.!? The bottleneck was
developing an internal language for the system, which upset the timeframe of the project. Another
obstacle was conflicts between the people responsible for the task. Tyugu observed it all at BETA
seminars [24, p. 44-51]. However, his own work progressed successfully, despite some problems
with the living conditions: it was difficult for doctorate students from other cities to get decent
housing in Akademgorodok. Tyugu made friends with his colleagues and discovered a passion for
hiking and hunting, fostered by Vladimir Davydov’s enthusiasm.

During his Doctorate studies in the SB AS USSR Computing Center, Tyugu presented his
research at a number of high-ranking national and international conferences. In particular, Tyugu
and his co-authors presented the paper called “A system of modular programming for the Minsk-
22 computer” [40] at the Second All-Union Programming Conference (VKP-2) in Novosibirsk in
1970. The same material served as the basis for his talk at the IFIP-71 Congress in Ljubljana in
Yugoslavia. The Computing Center gave a truly royal gift to Tyugu: he was included in the Soviet
delegation to the Congress though the number of people allowed to participate in the Congress as
the Institute’s employees was strictly limited. The trip, formally qualified as “scientific
tourism,”cost 350 rubles, with a 10 rubles participant fee [27]. The head of the delegation,
Academician A. Dorodnitsyn, signed a permit for the preparation of the necessary documents.

In 1973, Tyugu defended his Doctorate thesis in the Leningrad Electrotechnical Institute,
entitled “Application of computational models in the software for machine-assisted design.” His
opponents were S. S. Lavrov, B. G. Tamm, and N. G. Bondarev. Tyugu remained engaged with
Ershov’s department. In 1979, he was invited to participate in a legendary event of the time —
scientific pilgrimage to Urgench, the native city of Al-Khorezmi [46]. Eventually, Andrei Ershov,
who was the vice-chairman of the Programming committee at the IFIP-1980 Congress and leader
of the Software section, put considerable effort into making sure that the USSR would be properly
represented at the Congress. Vadim E. Kotov and Enn Tyugu were invited speakers. As a member
of the Program Committee, Erhsov helped Tyugu with his talk, both in terms of content and
stylistics. He asked R. M. Berstall, a professor of the University of Edinburgh, “to assist in
assuring the high quality of style and content of Tyugu’s talk [29].

In 1979, when the AS USSR Coordinating Committee on Computing Machines formed the
Commission on System Mathematical Support, headed by Andrei Ershov, Tyugu became part of
its bureau [30] and head of the Workgroup on Program Synthesis [45]. Moreover, he was a

12 BETA, which was not even an abbreviation, was sometimes caustically explained as Big Ershov’s Translator
Adventurism (Bolshaya Ershovskaya Transliatornaya Avantiura).

System Informatics (Cucremuas unpopmaruka), No. 21 (2022) 41

member of the committee on the distribution and use of computing machines in the AS USSR
[31]. In 1981, Tyugu was elected a Corresponding Member of Academy of Sciences of the
Estonian SSR, and in 1985, he became a full member of the Academy and Secretary Academician
of the AS ESSR Department of Informatics and Mechanics (1985-1991).

In 1976-1986, Tyugu headed the Laboratory of Software in the AS ESSR Institute of
Cybernetics. The research program of the laboratory was aimed at problems of programming
automation with applications to engineering calculations. Tyugu suggested an approach to
developing instrumental systems for packaged applications based on automatic program synthesis
(which later became known as “semantic computing networks” and “conceptual programming”).
The idea was further developed by S. S. Lavrov (Leningrad) [26]. Tyugu’s approach was
implemented in the PRIZ program [Russian abbreviation for Program for Solving Engineering
Problems] [35]. Grigoriy Efroimovich Mints (1939-2014), a Soviet dissident mathematician, was
part of the team; upon the termination of his tenure at LOMI (A. V. Steklov Leningrad Division of
Institute of Mathematics), he was accepted to the AS ESSR Institute of Cybernetics (1980-1991),
where he collaborated with Tyugu’s laboratory [44]. An important feature of the approach
implemented in the PRIZ system was the possibility of integrating various software suites into a
single system.

At the end of 1960s, Tyugu suggested organizing winter software schools in Viljandi. Its
participants were the representatives of computer factories from Minsk, Zagorsk, Kyiv, and
Kazan, as well as the masterminds of programming from the Lebedev Institute of Precision
Mechanics and Computer Engineering, Keldysh Institute of Applied Mathematics, V. M.
Glushkov Institute of Cybernetics, Dubna, etc. The agenda included the discussions of the
participants’ own projects as well as the reviews of new foreign software: IBM OS, IBM DOS; by
that time, it had been decided that the IBM 360 computer (1967) was to be copied in the USSR.
The scope of the topics discussed at the schools expanded to include the automata theory (M. A.
Gavrilov, Corresponding Member of the AS USSR) and artificial intelligence (G. Yakobson,
Candidate of Technical Sciences,'* and A. D. Pospelov, Doctor of Technical Sciences). Active
participants of the schools was the team led by V. I. Varshavskiy,** specializing in mathematics,
biology, automata theory, collective behavior, image recognition, information transfer, and

creation of asynchronous electronic devices and systems, took active part in the schools.

13 Gabriel Yakobson is currently in the organizing committee of the CyCon conference devoted to cyber defense and is
the honorable chairperson of the annual conferences CogSiMa (Cognitive Situation Management) in Estonia.

14 Viktor Ilyich Varshavskiy (1933-2005) — cyberneticist, professor, Doctor of Technical Sciences, played a major role
in the establishment of cybernetics and artificial intelligence studies in the USSR. From 1993, he worked in Japan and
Israel.

42 Krayneva I., Meriste M., Sanborn K. Enn Tyugu: a Deported Estonian and a Soviet Academician

In 1985-1988, the team led by Tyugu joined Start, — a Soviet project aimed at creating a 5™
generation computer [9]. This was an attempt of the Academy of Sciences to regain Soviet
positions in the development of computing machines, mainly by large-scale copying of American
computers.’® Participation in this project provided the Estonian team with good financial support
for developing their own ideas. Enn was an active member of the working group that developed
the concept of the project. His responsibilities included the choice of high-level tools for the
creation of intellectual software for the programming system that would enable the creation of
user-friendly user applications. Start teamed up with a large group of researchers and engineers
from the Special Design Bureau of the Institute of Cybernetics. Its tasks included the
implementation of the professional intellectual object-oriented workstation PIRS as part of a
series of high-output modules unified by the Multibus-2 bus and an input-output machine. The
modules of the workstation were the KRONOS processor, data filter, high-resolution raster
display controller, specialized name processor and object memory control processor [39].

During the Perestroika, Tyugu took active part in the social and political life of Estonia. In
1989-1991, he participated in the Congress of People's Deputies of the USSR. Together with
other Estonian deputees, he advocated the rescindment and condemnation of the secret protocols
of the Molotov-Ribbentrop Pact. The People’s Front of Estonia in support of Perestroika became
increasingly insistent on granting independence to Estonia; in the summer of 1988, the Supreme
Soviet of Estonia reinstalled the blue-black-and-white national flag. In November, the Declaration
of Sovereignty was signed, establishing the prevalence of the laws of the Estonian SSR above the
laws of the USSR. On August 20, 1991, the Supreme Soviet of Estonia declared its independence,
legally reinstalling the Estonian Republic. This resolution was followed by the restoration of
diplomatic relationships and recognition of the Estonian Republic by many of the world’s states
[48]. In 1996, Tyugu ran for president, on suggestion of his colleagues from Estonian Business
School and Tallinn Polytechnic Institute in addition, but did not receive enough votes. According
to an interview, becoming a president was not a priority for him; he did not have a specific
program, believing that “the role of the president is to find balance, compromise and moderation”
(exactly the role of the Estonian Republic president today) [32]. Later, he admitted that there had
been some degree of adventurism in his presidential campaign, assuming that his political
ambitions could have interfered with teaching in Sweden. In 2001, he was awarded the White Star

Order of the Third Degree [11]. Along with such masterminds of informatics as la. Penjam, M.

15 On December 30, 1967, the Soviet Communist Party Central Committee and the Cabinet of Ministers adopted the
resolution “On further development and production of computing technology tools”. It installed the strategy of copying
the technologies of IBM and DEC as the official technological policy [1].

System Informatics (Cucremuas unpopmaruka), No. 21 (2022) 43

Meriste, U. Pruuden et al., Enn Tyugu is one of the founders of informatics in Estonia, a country

which has become the leader in IT applications in the Baltic region.
5. Conclusion

Estonians are usually characterized as calm, good-natured, substantial and business-like
people. This is what Enn Tyugu was, judging by his ego document and memories. As a child, he
suffered a serious trauma: lost his parents, home, and motherland. However, even if there is
bitterness in his memories, it is well-concealed. The very form of the memories, written in several
acts, like a play, as well as the name “Life as a Show” move the losses and bitterness into the
background, both structurally and stylistically, and create an illusion of distance between the main
character and the events. Details provided by Enn in his memories, as well as the skills acquired in
his childhood, indicate that the experience was very deep-rooted. He put what nature had given
him to the best possible use, and was persistent in pursuing his goals. Evidence left by Enn about
his childhood is unique to the history of the Soviet multinational intelligentsia, even though the
multinationality was not always by choice.

A look at the history of the study of the relationship between the Soviet scientific elite and
government demonstrates the limitations of its factography and theory specifically in relation to
national peculiarities. The approaches and metaphors used for the “Soviet scientific intelligentsia”
do not apply here. We know that already in the pre-war period, the state became the only
employer of scientific projects, the only source of their material support and the only customer of
practical and scientific results. This situation drew them to the Big Deal of the post-war time — the
reorientation of the Soviet regime towards satisfying the needs of the Soviet intelligentsia and
middle-class bourgeoisie and the implicit return of middle-class values into the Soviet life in
return for loyalty [8, p. 3-5]. The ambiguity of the relationship between the state and society
allowed J. Hellbeck to formulate the concept of “Soviet subjectivity”, i.e. the external loyalty of
Soviet citizens as a cover-up of their “personal core” and private life [13, p.17]. This idea is
supported by the heterogeneity of the scientific elite, a key support of the modernization of the
Soviet society. The relationship of the Soviet scientists and the state was influenced not only by
the awareness of the former that they were in demand in but also by the memory of the trauma
inflicted by the occupation, deportation, destruction of their statehood, and repressions against
their loved ones — the private life component that had been temporarily hidden. As Laozi said,
there is no need to avenge evil — just sit by the river, and eventually you will see the corpse of
your enemy floating by. The resistance of the “Forest Brothers” was suppressed in mid-1950s.

Life in the Baltic States went back to normal, and they became a sort of a showcase region of the

44 Krayneva I., Meriste M., Sanborn K. Enn Tyugu: a Deported Estonian and a Soviet Academician

Soviet Union. They flourished, they became richer and more educated. But the memory of the
past remained. As soon as there appeared an opportunity to regain independence, the Baltic States
used it. Enn Tyugu, whose family had experienced the dread of the steamroller of the Soviet
history, became a parliamentary deputy for the period when the urgent problems of the very

existence had to be solved, but later returned to science. After all, it was his lifetime calling.
References

1. Abramov R., “Soviet Technocratic Mythologies Myth as the Form of Lost Chance Theory:
on the Case of the History of the Cybernetics in the USSR”, Sociology of Science and
Technology (2017), 8, no. 2, 61-73. — In Russian.

2. Academician A. Ershov’s Digital Archive. [Online]. Available:
http://ershov.iis.nsk.su/ru/folders

3. Algirdas Pakstas, Ccv [Online]. Available:
https://prabook.com/web/algirdas.pakstas/263873

4. Berg A. 1, Kitov A. I, and Lyapunov A. A. “O vozmozhnostyakh avtomatizatcii
upravleniya narodnym hoziaistvom”, Problemy Kibernetiki (Moscow.: Fizmatgiz, 1961), 6,
83-100. — In Russian.

5. Berlin Is. Two Concepts of Liberty [Online]. Available: URL:
http://kant.narod.ru/berlin.htm

6. Boulionkov M. and oth. eds., Andrei Petrovich Ershov: uchenyi i chelovek (Novosibirsk:
SB RAS Publ. House, 2006), 24-25. — In Russian.

7. Chudnovsky V.M. “Uno Hermanovich Kopvillem — 90 let”, in Abstracts, Second Sci. Conf.
Oceanography of Peter the Great Bay and Adjacent Area of the Japan Sea (Vladivistok:
Dal’nauka, 2013), 36. — In Russian.

8. Danham Vera S. In Stalin’s time: Middleclass values in Soviet Fiction (Durham, NC: Duke
University Press Books, 1990), 3-5.

9. Draft resolution of the Plenary Session of the AS USSR Coordinating Committee on
Computers, discussing proposals on creating a national 5" generation computer
(Academician A. Ershov’s Digital Archive, f. 602, 1. 1-3).

10. Enn Tyugu’s CV [Online]. Available: https://www.eris.ee/user.cv.preview.php?id=542

11. Enn Tyugu’s Obituary [Online]. Available: URL: https://rus.err.ee/1071469/skonchalsja-
odin-iz-osnovatelej-informatiki-v-jestonii-akademik-jenn-tyugu

12. Gorodnyaya L.V., Krayneva L.A., and Marchuk A.G., “Computing in the Baltic Countries
(1960-1990)”, in Select. Papers SoRuCom-2017. Fourth Intern. Conf. on Computer
Technology in Russia and in the Former Soviet Union (Zelenograd: IEEE PS, 2018), 97—
108. [Online] Available: https://ieeexplore.ieee.org/document/8400356

13. Hellbeck J. Revolution in my Mind: Diaries of the Stalin Era (Revoliutciya ot pervogo litca.
Dnevniki stalinskoi epohi). Moscow: Novoe Literaturnoe Obozrenie, 2017.

14. Helle-Liis Help, Toomas Kodres, Olvi Kuusik, & 14 more. Stolen Childhoods: Stories of
Estonian Children Deported to Siberia. Lakeshore Press,135 pp. August 30, 2014.

15.Hiio T., Maripuu M., Paavle I., eds., Estonia 1940-1945 International Commission
Investigation of Crimes against Humanity (Publisher: Estonian Foundation for the
Investigation of Crimes against Humanity, Jan. 1, 2005).

16. Hogselius P. The Dynamics of innovation in Eastern Europe. Lessons from Estonia, New
Horizons in the Economics of Innovation series. (Cheltenham, UK: Edward Elgar
Publishing Ltd., 2005).

https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Helle-Liis+Help&text=Helle-Liis+Help&sort=relevancerank&search-alias=books
https://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=Toomas+Kodres&text=Toomas+Kodres&sort=relevancerank&search-alias=books
https://www.amazon.com/s/ref=dp_byline_sr_book_3?ie=UTF8&field-author=Olvi+Kuusik&text=Olvi+Kuusik&sort=relevancerank&search-alias=books
https://www.amazon.com/Stolen-Childhoods-Estonian-Children-Deported/dp/0965053903

System Informatics (Cucremuas unpopmaruka), No. 21 (2022) 45

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.
29.
30.
31.
32.
33.
34.

35.

Juhan Zimmermann [Online]. Available: URL:
http://entsyklopeedia.ee/artikkel/zimmermann_juhan

Kaataja S. “Expert groups closing to divide. Estonian—Finish computing cooperation since
the 1960"”, Beyond the divide: entangled histories of Cold War Europe. Eds. S. Mikkonen
and P. Koivunen. (Berghahn Books, 2015), 101-120.

Kangilaski J., Salo V. Okupatsioonide Repressiivpoliitika Uurimise Riiklik Komisjon, The
White book: losses inflicted on the Estonian nation by occupation regimes, 1940-1991
(Tallinn: Estonian Encyclopaedia Publishers, 2005), 14-15.

Kibernetiku — na sluzhbu kommunizmu. Ed. acad. A. I|. Berg, (Moscow-Leningrad:
Gosenergoizdat, 1961), 1, 312. — In Russian.

Kotov V. E. and Narinyani A. S. “Asinkhronnye vychislitelnye protcessy nad pamiatiu”,
Kibernetika, 3 (1966), 63—72. — In Russian.

Krayneva |. Savelova O. Female programming fase (mid 1950s—erly 21% sentury) //
HISTELCON 2021. Selected papers. Ed. By V. Burov. 2021, 1-6.

Krayneva I.A., Pivovarov N.Yu., and Shilov V.V., “Soviet Computing: Developmental
Impulses”, in Selected Papers SoRuCom-2017. Fourth Intern. Conf. on Computer
Technology in Russia and in the Former Soviet Union (SoRuCom), 2018, 13-22.

Krayneva Irina and Cheremnykh Natalia, Put’ programmista (Novosibirsk: Nonparel’,
2011), 44-51. — In Russian.

Kuznetsov I. S. Novosibirskii Akademgorodok v 1968 g.: pismo soroka vosmi.
Dokumentalnoe issledovanie, (Novosibirsk: “Ofset-TM”, 2nd ed., 2015) — In Russian.
Lavrov S. S. “Sintez programm (v chastnosti, sistema SPORA), Kibernetika (1982) 6, 11—
16. — In Russian.

Letter. G. I. Marchuk — A. A. Dorodnitsyn 04.12.1971 (Ibid., f. 437, I. 26.) Workers without
a scientific degree earned 100 to 120 rubles at the time; those with a degree earned up to 250
rubles.

Letter. O. Terno — G. 1. Marchuk, 03.06.1970 (Academician A. Ershov’s Digital Archive,
f. 328, 1. 106).

Letter. A.P. Ershov — R.M. Burstall. 19.11.1979 (Academician A. Ershov’s Digital Archive,
f. 112, 1. 508).

Letter. E.H. Tuygu — A.P. Ershov. 25.12.1978 (lIbid., f. 260, I. 80).

List of members, Commission on System Mathematical Support (Ibid. f. 260, I. 52).

Ldhmus Alo. Professor E. Tyugu is running for President of Estonia. Postiemees, (1996)
Sept, 06.

Makarov V.G. Vysylka vmesto rasstrela: deportatciya intelligentcii v dokumentakh VCHK-
GPU: 1921-1923, (Moscow: Russkiy Put’, 2005). — In Russian.

Makeev S.V. Kontceptcii tekhnokratizma: istoriko-filosofskii analiz, (PhD dissertation.
Deprt. of Philosophy: Moscow State Regional Univ., 2008). — In Russian.

Mints G. and Tyugu E. The programming system PRIZ, Journal of Symbolic Computation
(1988) 5, 3, June, 359-375.

36. Paju P. “Finlandized computing or business as usual? Computer trade between Finland and

the Soviet bloc in the 1970s.” Proc. 24th Intern. Congr. of History of Sci., Technology and
Medicine [Online]. Available: http://www.ichstm2013.com/programme/guide/p/1036.html

37. Pazhit Tu.Iu. “Severo-Uralskii lager NKVD SSSR v gody Velikoi otechestvennoi voiny”,

38.

39.
40.

Voennyi commentator, 2 (2002), 41. — In Russian.

Photo-collection of the Café-club Pod integralom // SB RAS Photographic Archive
[Online]. Available: http://www.soran1957.ru/?id=w20070417_3_6323

Project START, Communications of the ASM (1991), 34, no. 6, June, 30-67.

Speeches, section “G” on 2-ya Vsesoyuznaya Konferentciya po Programmirovaniyu — VKP-
2 (Academician A. Ershov’s Digital Archive, f. 553, 1. 6).

Krayneva I., Meriste M., Sanborn K. Enn Tyugu: a Deported Estonian and a Soviet Academician

41. Stocker L.F. “Brining the Baltic Sea: Networks of Resistance and Opposition during the
Cold War Era”. Thesis submitted for assessment with a view to obtaining the degree of
Doctor of History and Civilization, (Florence: European University Institute, 2012).

42. Téugu Enn. Elu nagu etendus: Siberi ja Kremli kaudu Rootsi Kunigriiki [Life as a Show:
Through Siberia to Kremin and the Kingdom of Sweden], (Tallinn: Kirjastus Varrak, 2017).

43. Tyugu E., “Beginning of Computing in the Soviet Baltic Region”, in Proceedings, Third
Intern. Conf. on the History of Computers and Informatics in the Soviet Union and Russian
Federation: History and Prospects, (Kazan: KNRTU-KAI, 2014), 12-17.

44, Tyugu E. “Grigori Mints and computer science” [Online] Available: URL:
http://kodu.ut.ee/~varmo/tday-kaariku/GMe.pdf/

45. Tyugu E. (1982) Works on system software at the Academy of Sciences of the EStSSR.
[Online]. Available: A. Ershov archive. F. 275. LI. 11-26.

46. Tyugu E.H. The Structural Synthesis of Programs, in Algorithms in Modern Mathematics
and Computer Science. Proc., Urgench, Uzbec SSR, September 16-22, 1979 (LNCS:
Springer, 1981), 122, 290-303.

47.Veblen T.B. The Engineers and the Price System, ed. A. Smirnov. (M.: lzd. dom NIU
«VSHE», 2018), 43.

48. Vosstanovlenie nezavisimosti v 1985-1991, The Estonia Encyclopedia. [Online]. Available:
URL.: http://www.estonica.org/ru/ — In Russian.

49. Yurchak A., Everything was forever, until it was no more. The last Soviet Generation,
(Princeton University Press, 2006).

System Informatics (Cucremuas undopmaruka), No. 21 (2022), December 15th, 2022

YK 81°33:004.822

FeHepaunﬂ JEKCUKO-CHHTAKCHYECCKUX ITATTCPHOB
OHTOJJIOI'MYECCKOI'0 NPOCKTUPOBAHHUS HA OCHOBE BOIIPOCOB

OI€CHKHU KOMIIECTCHIHUHN

Osuunnurxosa K. A. (Hosocubupckuii HayuoHaIbHblil UCCIe008aAMebCKULL
20CY0apCmMBEeHHbLIL YHUGepcumen),

Cuooposa E. A. (Mncmumym cucmem ungpopmamuxu CO PAH)

Pabora nocpsiiena ucciae10BaHUIO MPOOJIEeM aBTOMAaTH3AaLNHU CO3AHUSI OHTOJIOTUI HAayYHBIX
MpeJMETHBIX 00NacTell ¢ NMPUMEHEHHEM METOJOB aBTOMATHYECKOrO aHalu3a TEKCTOB Ha
€CTeCTBEHHOM si3bike. llenpio paboThl siBiseTcs pa3paboTKa METOMOB aBTOMATHUYECKOH
TeHEpaLH JIEKCHKO-CUHTAKCUYECKUX Ma0JI0HOB ISl M3BJICUEHUS! HHPOPMALIUK U TIOTIOJTHEHUS
OHTOJIOTUH Ha OCHOBE AaHaJIMW3a COJEpPXaTeNbHBIX MATTEPHOB OHTOJOTUYECKOIO
MPOEKTHPOBAHUs JJIsl HAy4HBIX OONacTell 3HaHWH, pa3palbaThbiBaeéMbIX B pPaMKax KOHIICIIHH
Semantic Web. IlarTepHbl OHTOJOTHMYECKOTO TPOCKTUPOBAHHS MPEACTABISIIOT COOOH
CTPYKTYPHUPOBAHHOW OIMCAHWE MOHATUI BEPXHETo ypOBHS B TEPMUHAX KJIACCOB, aTPUOYTOB U
OTHOILIEHUH, a TaKKe BKJIIOYAIOT BOMNPOCHI OLEHKHM KOMIIETEHIIMM Ha €CTECTBEHHOM S3BIKE,
CIyXKalue JUisl MOHMMaHHS W KOPPEKTHOW WHTEPIPETAlMd CBONCTB M CBSI3€H ITOHATHUS
MOJIb30BaTENIIMU. B craThe MpemIokeH MOAXOA K TIeHepaluu JIEKCUKO-CHHTaKCHYEeCKUX
NaTTEPHOB Ha OCHOBE BOIPOCOB OLEHKM KOMIeTeHIHH. llpouecc reHepauuu JI€KCHKO-
CHUHTAaKCHYECKMX TNAaTTEPHOB BKIIOYAET TEHEPALMI0O MPEAMETHOrO CJOBaps, BbIAEICHUE
CYLIHOCTEH OHTOJOTMH M (POpMHUpPOBaHME CTPYKTYpbl MAaTTEPHOB Ha OCHOBE CBOMCTB Data
Property u Object Property, u reHepanuio ceMaHTHYECKHUX, TPAMMAaTHYECKUX U ITO3ULIMOHHBIX
orpaHnueHuid. Bompocel OINEHKM KOMIETEHIMH HCHONB3YIOTCS sl BBISBJICHUS
rpaMMaTHYECKUX U MO3MLUUOHHBIX OTPaHUYEHHUH, HEOOXOOUMBIX AJISI TIOMCKA OHTOJOTHYECKUX
OTHOLICHUH B TekcTax. s skcnepruMenTa nenonb3oBasiack oHTosorus «lloanepxka npuHsITHS
pemieHnii B cnab0QOpPMAIM30BAHHBIX OOJIACTSX» M KOPIYC HAay4HBIX TEKCTOB TOH JKe
npenMeTHOH obmacTu. B Xoxe skcmeprMeHTa TONy4YeHBI CIEAYIOUINe Pe3yJbTaThl: CTENEHb
HEOJIHO3HAYHOCTH CTeHEPUPOBaHHBIX M1adigoHOB - 1.5, Fl-Mepa olleHKM KadyecTBO IMOMCKA
aTpuOYTOB W OTHOILICHUH 00BekTOB - Fl-mepa cocraBuia 0,77 mist atpubyroB u 0,55 mis
OTHOIIIEHUH COOTBETCTBEHHO. CpaBHEHHE pe3yJbTaToOB, IOJYYEHHBIX IS 1a0JI0HOB 0e3

rpaMMaTHYECKUX OTpaHWYEHW, W pe3yibTaToB, TMONYyYEHHBIX Ui [a0JOHOB ¢

Пользователь
Typewriter
, December 15th, 2022

48 Oguunnukoga K. A., Cuooposa E.A. Tenepanys 1eKCUKO-CHHTAKCUIECKHX NATTEPHOB OHTOJIOTHYECKOTO ...

rpaMMaTUiYCCKUMHN OTpPaHUYCHUSIMU, IMOKA3ajlo, 4YTO ,I[O6aBJ'I€HI/I€ OFpaHI/I‘leHI/Iﬁ CYHICCTBCHHO

yIyduacT Ka4€CTBO U3BJICUCHUC 00BEKTOB OHTOJIOTHH.

Knrouesvie cnosa: nexcuxo-cunmaxcuyeckuil nammepH, ceHepayusl nammepHoes, 60NpocCsbl
OYEHKU KOMnemeHmHocmu, HnonojlHeHue OHMmMONA02UU, OHNOJIO2UA HaquOﬁ Oeﬂme/szocmu,

nammepHsbl OHMOJ102UHECKO20 NPOEKMUPOBAHUA, U36/IeHEeHUE qubopM(lb;uu.

1. BBenenue

[lon w3BneueHneM WHGOPMALMKM TOHUMAETCS TNPOIECC ABTOMATHUYECKOTO HW3BIICUYCHUS
MOJIE3HOTO0 Marepuaja W3 TEKCTOB HEKOTOpOW MpeaMeTHOW o0macTH, ero obOpaboTka u
ucrnonb3oBaHue. MHTepec K 93Toil mpouenype NoBbIIaeTcsa Onarogaps OOIbLUIOMY 00bEMY
HECTPYKTypUpOBaHHOU MHpopMmaiuu B IHTepHETE.

W3pneuenne wuHGOpMANMM W3 TEKCTOB Y3KOCIEHMAIM3UPOBAHHBIX HAyYHBIX OOacTei
MPEJCTaBIseT HAaUOOJIBIINI UHTEPEC M3-3a MPOOJIEMbI HEJOCTATOYHOTO KOJIMYECTBA Pa3MEUCHHBIX
JaHHBIX. DTO YCIOXKHAET UCTIOJIb30BAaHUE METOA0B MATMHHOTO 00YYEeHHSI U TNIyOOKOro 00y4eHus u
SBJIACTCS TPUYMHON KCIIONB30BAHUS JIPYTMX METOAOB. AIBTEPHATUBHBIM IOAXOJOM SIBISETCS
WCTIOJB30BAHNE METOJOB Ha OCHOBE 3HAHMKW W WX JaJbHEHIIas WHTETpanmusi C METOJaMu
MalIMHHOTO 00yYCHUSI.

CemanTrueckas naytusa (anri. Semantic Web) [6] — 9acTh rio0anbHOM KOHIIETIIMN PA3BUTHSI
cetn WHTepHET, IeNbl0 KOTOPOHl SIBISETCS peamu3alvs BO3MOKHOCTH MAalIMHHOW 00paboTku
nHpopmanuu, JocTynHo Bo BcecemupHoil maytuHe. OCHOBHOW aKIIEHT KOHIIETLMU J€JIaeTcsl Ha
paboTe ¢ MeTaJaHHBIMH, OJHO3HAYHO XapaKTEPHU3YIOUIMMH CBOWCTBA W COJEP’KaHHE PECypCOB.
OHTONOTHUS U S3BIK €€ OMUCAHUS SBIAETCS OJHHM U3 CIOCOOOB CTAaHAAPTU3ALMU MPEACTABICHUS
3HaHUU U UH(pOPMAIMH, TTOAEP>KUBAIOIIEM MAIIMHHYIO0 00paboTKy. Pa3BuTHE 3THX MHCTPYMEHTOB
MOXKET OBITh OOBSICHEHO BOCTPEOOBAHHOCTHIO OHTOJNOTHH [8, 16] kak cmocoba craHmapTHU3AHMH
3HAHWW O MPEAMETHBIX O0JIACTSAX, XpAaHCHHS, HABUTAIIMA W TOMCKA XOPOIIO CTPYKTYPUPOBAHHBIX
JTaHHBIX. YHU(UKAIMSA CPEJCTB MPEICTABICHUS OHTOJIOTUN W CcOo3JaHKHe OaHKa FOTOBBIX pEIIeHUN
[15], BxmIrOUarOmMX ~ CTAHAAPTHBIE OOpa3lbl CYNIHOCTEH OHTOJIOTHH, CTaBUT MEPe
WCCIIEIOBATENISIMI HOBBIC 33/1a49H, & IMEHHO HEOOXOAUMOCTh CO3/IaTh MEXaHU3MbI NCTIOJIh30BAHUS
00pa3IoB rOTOBBIX PEIICHUH ISl TPOSKTHPOBAHUS U Pa3pabOTKH MOJIb30BATEILCKUX OHTOJIOTHH, a
TaK)Ke MHCTPYMEHTHI JIJIsl €€ aBTOMATHU3UPOBAHHOTO MOMOTHEHUSI.

B 3amauax mMmOmMoONHEHUS OHTOJIOTHH HCIIONB3YIOTCS pa3Hble METOABl: METOJbl MAIIMHHOTO
oOydeHus (mpaBwia KiacTepuszanuu win accormarnuu) [9, 10], urepalMioHHBIE METOJBI C

ucrosib3oBanueM rpados [18] u Ha ocHOBe mabIoHOB (marTepHoB) [5, 12, 14].

System Informatics (Cucremuas nndopmaruka), No. 21 (2022) 49

Jliia ynporienust mpoiiecca pa3padoTKU U TOMOTHEHHs] OHTOJIOTHIM B HEKOTOPBIX MCCIEAOBAHUSIX
[7, 19] yxxe Oosee aecsTH JIET MCIOJIB3YETCs MOIX0JI, OCHOBAHHBIA HA MCIIOIb30BAHUHU MMATTEPHOB
onrtonoruueckoro mpoektupoBanus (OIl). Oum mnpexacraBisoT coO0il 33T0KyMEHTHPOBAHHBIC
OIMCaHUs MPOBEPEHHBIX PEHIeHUH 001X MPoOJIeM OHTOJIOTMYECKOro MoaenupoBanus. OQHUM U3
BuJ0B narrepHoB OIl sABISAIOTCS maTtTepHbl COACpPIKAHUS, ONMUCHIBAIOIINE (ParMEHThl OHTOJIOTHH
npeaMetHoi obmactu. ABTopsl Metonosorun XD (eXtreme Design methodology) [6] npeanarator
N00aBJIATh B MATTEPH COAEPKAHMSI HE TOJIBKO ONMCAHUE OJHOIO OHTOJIOIMYECKOIO KJlacca, €ro
aTpuOyTOB M OTHOIIEHWW, HO M Bompochkl oneHku kommeTeHmu (BOK). Bompockl orenku
komrereHu (BOK) - 3To BbIpakeHHbIE Ha €CTECTBEHHOM S3bIKE BOIPOCHI K CTPYKTYpPHBIM
9JIEMEHTaM KJlacca, CIyKalllhe I IOHUMAaHMsS U KOPPEKTHOM MHTEPIPETallUd CBOWCTB U CBS3EH
MOHATHS ToJb30BaTesAMU. Ene onqnum tunom narrepHoB Ol SBASIOTCS JEKCUKO-CUHTaAKCUYECKHE
mabnonsl (JICII). DT martepHbl MPEACTaBIAIOT COOOM CTPYKTypHBbIE 00pa3lbl KOHCTPYKLIUN
S3bIKa, OTPAKAIOIIUE HUX JIEKCUYECKHE U TIOBEPXHOCTHBIE cHUHTakcuuyeckue cBoiictBa. JICII
ONpEAEIAIOT OTOOpa)KEHUE SA3BIKOBBIX E€IUHUI] TEKCTa B OHTOJOIMYECKHE CTPYKTYPBHI.
Uccnenosarenu moryt ucnoiab3zoBaTh JICII mpu pemieHun 3agauyud aBTOMaTHYECKOrO0 MOCTPOEHUS
OHTOJIOTHIA Ha OCHOBE KOPITyca TEKCTOB Ha €CTECTBEHHOM SI3BIKE.

[Tonxon mpencraBieHHbIN B padote [14] onuchIBaeT UCMONb30BAHHUE JIEKCUKO-CHUHTAKCUYECKHIX
[IaTTEPHOB, COOTBETCTBYIOIIMX OHTOJOTMYECKUM MNATTEpHAM IMPOEKTHUPOBAHMS, ISl MOMOIHEHUS
oHtosiornd. B oTimume or marrepHoB Xepct [11], oHm HocaT Oonee oOmMii Xapakrep, 4TO
MO3BOJISICT OXBATHIBATh OOJIbIIIEe KOJIMYECTBO BXOXKIEHUH CYITHOCTEH B TekcTaX. Takue maTTepHbl
MOKa3bIBAlOT BBICOKYIO MOJHOTY M HM3KYI0 TOYHOCTb, TOT/Ia Kak HAaTTEpHbI XepcT, HaoOOpoT,
JEMOHCTPUPYIOT BBICOKYIO TOYHOCTh M3BJI€UEHUSI MH(POPMAIMHU, HO HU3KYIO MONHOTY. PazpaboTka
TaKuX IIa0JOHOB SIBJISIETCS JOCTATOYHO KPOMOTIUBOM pPabOTO#, MOATOMY CYIIECTBYET
HEe00XO0IMMOCTb aBTOMAaTH3aI[1H JIAaHHOTO Mpoliecca.

B cBs3M ¢ 4yacThIM OTCYTCTBHEM pa3MEUEHHBIX JaHHBIX OJHHM W3 aKTUBHO pPa3BHBAEMBIX
MOJIXOMI0B SIBJSIETCS TEHepalusi 3aKOHOMEPHOCTEH Ha OCHOBE HEOOJIBIIOrO KOJIMYECTBA
nH(poOpMallMK, TPEICTABICHHON B CHPAaBOYHBIX MaTepHajaxX, TOJKOBBIX CJIOBapsAX WU
HENOCPEACTBEHHO B OHTOJOrUsX. B naHHON pabore uisi aBTOMaTH4ecKoro (QpopMUpOBAHHUSA
JIEKCUKO-CUHTAKCUYECKUX MOJENEH IpeiaraeTcss UCIOJb30BaTh BOIPOCHI OLIEHKH
KOMIIETEHTHOCTH W HAay4YHbI CJIOBapb. OKCIEPUMEHTAIBHOE HCCIECJOBAHUE TIPOBOJUTCS Ha
Marepuaine, NpeacTaBIeHHOM Ha noprane «llogmepkka OpUHATUS ~— pelIeHUHM B

cnabodopmanuzoBanHbix obnactsx» (https://uniserv.iis.nsk.su/rdms/), u kopmyce Hay4HBIX TEKCTOB

TOM e MPeMETHOM 00IacTu.

https://uniserv.iis.nsk.su/rdms/

50 Oguunnukoga K. A., Cuooposa E.A. Tenepanys 1eKCUKO-CHHTAKCUIECKHX NATTEPHOB OHTOJIOTHYECKOTO ...

2. lloaxoa Kk aBTOMATH3AUY MOMOJTHEHUS OHTOJIOTNH

B xoxe pa6otsl [19] Obutn pa3paboTaHbl MATTEPHBI COACPIKAHUS I HEKOTOPBIX MOHSTHH,
XapakTepHBIX sl OOJBIIMHCTBA HAYYHBIX MpPEIMETHBIX obnacteil: Obvekm ucciedosanus,
Ilpeomem uccnedosanus, Memoo, 3aoaua, Pazoen nayku, Hayunoiii pezynoemam, /lesmenbHocme,
Ilpoexm, Ilepcona, Opeanuzayus, Ilyonuxayus, Ungopmayuonnwvii pecypc u op. Taxke ObLI
orpeziesieH Habop BOMPOCOB OLEHKU KOMIETSHIIUU JJIsl KaXKI0T0 U3 3TUX NarrepHoB. C MOMOIIbIO
HUX OBLIM BBISBJICHBI OTPaHUYCHHUS 1)1 TTATTEPHOB U ONMUCAHBI TPEOOBAHUS K HUM, KOTOPBIE ObLIH
NPEJCTaBICHbBl B BHJE AKCUOM M OrpaHuueHHid. Js KakIoro maTTepHa, NpPEeICTaBIISIOIIErO
KOHIIENT Hay4yHOW mpeametHoit obnactu (HITO), mbl onmpenenuiaun HaOOp KIOYEBBIX aTpHOYTOB,
OJIHO3HAYHO MACHTU(OULIMPYIOIINX KOHKPETHBIN SK3eMILISP Kiacca.

Jnis peanu3ali aBTOMATHYECKOTO TIOMOJNHEHHS OHTOJIOTUM IS KaXJIOro IaTTepHa
COZICp)KaHUSI CTPOUTCS HAOOp JIEKCHKO-CHHTAKCHYECKMX IIA0JOHOB, KOTOPBI OIHCHIBAET
pasnIuyYHbIe CIIOCOOBI MPEACTaBICHUS WH(OPMALMU B HAYYHBIX TEKCTaX HAa OCHOBE HM3BJICUCHHOM
nHpopMaIuu.

PaccmarpuBast JICII kak WHCTPYMEHT TOMOJHECHUS OHTOJIOTMH, MBI OIPEICIIIA JIBE
KJIFOUEBBIC 3aJla4 JUIA JOCTUKEHHS MOCTABICHHOM Lienu. [lepBoil 3amaueil ABIsSE€TCS MU3BICUEHUE
“MeH 00BEKTOB (B TOM YHCIIEe HE BXOJSIIMX B CIOBAph) M 3HAUCHUN WX aTpuOyTOB. BOo-BTOPHIX, 3TO
co3/1aHue 00BEKTOB HA OCHOBE CTPYKTYPHI KJIACCOB OHTOJIOTHA. B cOOTBETCTBUU € ATUMHU 331a4aMu
obutn BbiieieHa aBa tuma JICIL: TepmuHomornueckuit u wuHbopMaioHHbI. B pabote [4]
Mpe/UIO’KeHa apXUTEKTypa CHUCTeMBI Ui TIONOJHEHHS OHTOJOTMHM Ha OCHOBE JIEKCHKO-
CUHTAKCUYECKHUX MATTEPHOB, pealn3yrollas alropuTM momnoiHeHus. [Ipemiaraercs UCHoab30BaTh
CIIeyIOIINe TEXHOJOTUH: CUCTeMa W3BJICUEHHS MPEAMETHON JIEKCUKH U3 TEKCTOB U TMOCTPOSHUS
cinoBapeii KLAN [3], cucrema aHanu3a TEKCTOB Ha ocHOBe ImabsoHoB PatTerm [17], cucrema
anamm3a TekctoB FATON [1]. B3ammoneiictBue ¢ OHTONIOTHEH oOecrieunBaeT CIEHaIbHO
pa3pabOTaHHBIE MOMYJb, HCIOJB3YIONIMHA CpPENCTBA TOJJEPKKH OHTOJOTHYECKH-
OPHUEHTHUPOBAHHOTO MPOTrPaMMHUpPOBaHus 13 oubarorexu owlready? [13].

JICIT aBTOMaTH4YeCKH CTPOSITCSI HA OCHOBE CllOBaped OOIIeHAyuyHOW M MPEeIMETHOW JIEKCUKH U
aKTyaJIbHOM BEpCHHM OHTOJOTMHM HayudHOH mpenMerHoi obnactu. Ha Puc. 1 mpeacraBinena cxema

B3aUMOCBSA3EH KOMIIOHEHTOB CHCTEMBI, ydyacTBYIoIMX B reHeparuu JICII.

System Informatics (Cucremuas nndopmaruka), No. 21 (2022) 51

FATON
- ',J_ _.\
leHepaLus Crnvcok
leHepauus
UHDOPMALMOHHBIX JICTT (== === - rpamMmaTUUecKux
TepmuHonoruueckux J1CMN v
C OrpaHuueHUaMU OrpaHuUeHui
i
i
i
Mogenu BonpocUTENbHbIX
NPpenoXeHu
g leHepaums N
— EOII-ILHI:IX nen OBpaBotka Bonpocos | Bonpocsbl oueHku
lLEL " OLI@HKW KOMMETEHTHOCTU KOMNeTeHuuu
6e3 orpaHuueHuit
' 0BpaboTKa OHTONOrMK, CO3AaHKE U
................... — DHTDHDFHF‘
HanomnHeHu1e cnoeaps

Puc. 1. Cxema 83aumoceazeti komnonenmos cucmemsl, yuacmeyowux 6 cenepayuu JICII.

Ha mepBom sTane reHepanuu npoucxoauT oopaboTka OHTOJIOTHH, CO3/IaHHE M HATIOJHEHUE
cioBapsi. [Tocne yero mpoucXoauT U3BJICUCHUE UMEH KIIACCOB OOBEKTOB, aTPHOYTOB M OTHOLICHHUI
13 OHTOJIOTHUH.

Jannblii 3tanm moapoOHO paccmoTpeH B pabore [3]. Ha mem dopmupyrorcs T-JICIT ¢
WCIOJIb30BAHUEM WHJIMKATOPHBIX TEPMOB, IIOJIYYCHHBIX Ha OCHOBE OHTOJIOTHH, COCpXKAIlne
MEPEMEHHBIC C 3aJaHHBIMH CBOWcTBaMu. (O3HAYMBAaHHE TAKUX MEPEMEHHBIX KOHKPETHBIMHU
(dbparMeHTaMH TEKCTa TIO3BOJIAET TIOJNYYUTh HOBBIE 3HAueHUs. B pesynbrare co37ar0TCs
MHOTOCJIOBHBIC TEPMHHBI JIJISI CIIOBApPSI U MIA0JIOHBI JIJIsl M3BJICUCHUS TEPMHHOB.

Ha cnenyromem sTare mpoucxoaut o0paboTKa BOMPOCOB OIEHKH KOMIIETEHTHOCTH: YIAIISIOTCS
JUIIHAE CUMBOJIBI, CTPOATCS MOJETH BOMPOCHUTEIBHBIX MPEIJIOKESHUNH U U3BIEKAIOTCS TPaMMEMBI.
3arem renepupytorca U-JICII, mis xotopeix TpeOyeTcss uHpOpMamusi O KIFOYEBBIX aTprOyTax
KJIACCOB OHTOJIOTUH, OCOOCHHO MJii OOBEKTOB, CO3/JAIOIIMX IAa0JOHBI (HAIpUMEp, aTpuoyT

HazBanue myist Metoa uccienoBanusi), 1 OTHOIICHUSIX C APYTUMU KJIacCaMH.

2.1. CiioBapb HayYHOM JIEKCUKH

JIns aBTOMATHYECKOTO TIOMOJIHEHUs OHTojoruu ¢ momomisio JICII BaxkHO 0O€CmeunTh
W3BJICYCHHE M3 TEKCTa CHENU(PUYECKHNX TEPMHHOB JAHHOW HAy4YHOU mpeaMeTHou obmactu. s
3TOr0 MPENJIaracTcs MCIOJIb30BaTh CJIOBAapb HAYYHOM JIEKCHUKH, KOTOPBIM BKJIKOYAET HE TOJBKO

oOlIeHAYYHYIO JIEKCUKY, HO U MPEIMETHYIO.

52 Oguunnukoga K. A., Cuooposa E.A. Tenepanys 1eKCUKO-CHHTAKCUIECKHX NATTEPHOB OHTOJIOTHYECKOTO ...

Jlist cozmanust 00IEHayYHOTO CIoBaps ObLIO HEOOXOAMMO COOpaTh TEMATHYCCKU-HEUTPATbHBIN
KOpIyC Hay4HbIX TE€KCTOB. C 3TON LIENBI0 TEKCThI PaCHpenesuINCh MO 5 HAyYHBIM KOJUIEKLUSM,
COOTBETCTBYIOIIUM TYMaHUTApHBIM, €CTECTBEHHBIM, TEXHHUYECKHUM, OOIIECTBEHHBIM WM TOYHBIM
HaykaMm. Bcero mns mpoBeneHus uccienoBanus Obuio codpaHo 100 pycCKOSI3BIYHBIX HAy4YHBIX
nmyoysmkanui, oTHocsmmxcs kK cnucky BAK (Beicmmas arrectaniMoHHas KOMHCCHS) —HIIH
oubnuorpaduueckoit 6aze Hayunbix myomukanuii RSCI (Russian Science Citation Index) umu 6a3e
Hay4YHOU neproauku Scopus. O6muii 06bem koprmyca cocranisier 370,8 ThIC. TEPMHHOB.

Jlnst mpoBeneHusl MCCienoBaHus ObUT co3faH Kopmyc, Briatovaromuii 100 pycCKOS3BIYHBIX
Hay4HbIX TyOnukamuii. Kakmas u3 Hux otHocutcs kK crnucky BAK (Bwicmias arrecrannoHHas
Komuccusi), oubnmorpapuueckoii 6aze Hayunbix nmyOmukanmii RSCI (Russian Science Citation
Index) nmm 6aze Hayunoil mepuommku Scopus. O6mmii o0beM koprmyca cocrasisier 370,8 Thic.
TEPMHUHOB.

Crnenyromuii 3Tan 3aKiIiO4aeTcss B CO3JaHUM M 00pabOTKe OOIIEHAyYHOIO CJIOBaps, KOTOPBIN
aBTOMATUYECKU CTPOUTCS HAa OCHOBE OHTOJIOTMM M KOpIyca TeKCTOB. JlJig pasMEeTKH Hay4dHBIX
TEPMHUHOB HAa OCHOBE aHAJM3a CEMAHTUYECKUX 3HAYCHUH, MPEICTaBICHHBIX B KOpIyce, ObUIN
BBIJIETICHBI 8 YHUBEPCAIbHBIX KiaccoB: Bocnpusmue, Menmanvusie, Cyujecmeogarnue, Cywnocmo,
Coszoanue, Jleamenvnocmo, Pesynomam W Ilpumenenue. Takoe paszielnieHne OCHOBaHO Ha
CEMaHTHUYECKUX 3HAYCHUSX, BBHIPAKECHHBIX B MpeiokeHUsx. Hampumep, yHUBEpCalIbHBIM Kiacc
Jeamenvnocmy BKIO4aeT B ceOd IJIarojbl HECOBEPIIEHHOIO BHUJA, KOTOPBIE ONPENEISIOT
pa3BopauuBaroleecs AeMCcTBHE, COBEpIIAEMOe ¢ MOMOIIbI0, HapuMmep, Memooa ucciredosanus, a
Kiacc Pe3ynbmam — EACTBUE C aKIIEHTOM Ha pe3yJbTaT, MOJy4aeMblid, HAIPUMEP, C MOMOUIBIO
npuMeHeHust Memooa uccnedosanusi. Y HUBEpcaabHbIE KJIACChl MOTYT UCIIOJIb30BaThCs B MAaTTEpHAX
JUIS HAXO0XKJIEHUS! CHHOHMMOB WJIM B CJIy4ae CTaHJapTHBIX (YHUBEPCAIbHBIX) CIIOCOOOB BBIPAKEHUS
OTHOIIIEHUH.

[IpenMeTHBI coBaph cO3aeTCs KaK pacHIMpPEHUE CIOBapsi OOIMIEHAYYHO!N JTEKCUKU U BKJIIOYAET
B ce0sl cloBa U CIOBOCOYETAHUS (TEPMHUHBI), OTHOCAIIUECS K KOHKPETHON MpEeIMETHON 0OIacTH.
Cucrema mnpeaMETHO-OPUEHTHPOBAHHBIX KJIACCOB OCHOBaHa Ha cTpykrype ontoioruu HIIO,
OoTpaxkas HepapxHio ee OOBEKTOB M OTHOLIeHHH. lIMeHa KiiaccoB TEpPMUHOB Ie€HEpUPYIOTCS Ha
OCHOBE Ha3BaHMH OHTOJIOTMYECKUX OJEMEHTOB B COOTBETCTBUM € IIa0JIOHOM:
<Ha3BaHHWeE_KJiacCa.Ha3BaHHE_OTHOIIEeHUd> UJIHU <Ha3BaHHE_KJiacca. Ha3BaHHe_aTTpH6yTa>.
Hanpumep, oTHotenue Memoo uccie0o8anus. ucnonb3yemcs_8.

B cnoBapHo#i cTatbe XpaHUTCS BCsl MH(MOpMalus, HEOOXOoAUMAs Uil U3BJICYEHUS TEpPMUHA U3

TEKCTa W MOJJIEPKKH CIEAYIOIIMX ATAMlOB aHAIN3a TeKcTa. KakIpIii TepMUH ClIoBapsi, HAaWJICHHbBINA B

System Informatics (Cucremuas nndopmaruka), No. 21 (2022) 53

TEeKCTe, CHaOXXeH MOP(OJOTHUECKOM W CEMaHTHUECKOW WH(OpMaluei, KOTOphIe BITOCIEICTBHHI
UCIOJIB3YIOTCA IIpU co3aanuu U npumenenuu JICII.

Hayunbiii crmoBapp mpezactaBiseT co00il MHTETpalMio ABYX CJIOBApeil: YHHUBEPCAIBHOTO U
tematuueckoro. IlosTomy oOH BkIOyaeT B ceOs JBE CaMOCTOSITENIbHBIE HEpapXHU
JIEKCUKO-CEMaHTUYECKUX KIJIACCOB: YHUBEPCAIbHYIO HEPApXUI0 U3 CIOBaps OOIICHAyYHOH JIEKCUKH
U IPEIMETHO-OPUEHTUPOBAHHYIO HEPAPXUI0, OCHOBaHHYIO Ha oHTONoruu (Puc. 2).

Vuueepcanonsiii knacc Cnucox Jiekcem Ipeomemmo-opuenmuposanrstil Kiacc

OOBSCHATh, OIpENeNATh, TpPaKTOBATh,
MeHTAJILHEIE MeTo.IIpeICTABIEH HA
PacIleHHBaTh, PACCMATPHBATH, .. . -

NpeVIOKUTh, BBECTH, pa3paborarh, MeToji.co3MaH B

CO3JaHHE
OITHCaTh, CO31aTh MBTOI[.I[MeeT_aBTOPa

[IPHUMEHATE, IIPHMEHATHCA, HCIIOIIB30BATh, MB'I‘OI[.IICHOJIB3YGTC}I_B

NpHMeHeHHe
HCIIO/TB30BaThCA MeTop IpUMeHsIeTCs K

Puc. 2. (DpaeMeHm NEKCUKO-CEMAHMUYECKUX KIIACCO8 CO30AHH020 cloeapis.

Bce crnoBapHble TEpMHUHBI OTMEYEHBI NPU3HAKAMH M3 NPEIMETHOW W/WIM YHHBEpPCAIHLHOU
nepapxuu. JIEeKCMKO-CEMaHTUYECKUE NPU3HAKU CII0Bapsi ucnonb3yrores npu onucanuu JICII kak

crocoba 0003HaUeHUS TCPMHHOB HpeI[MeTHOﬁ obnactu HAyKH C OHpeﬂCHCHHOﬁ CEMaHTUKOM.

2.2. Bonpochl OlleHKH KOMIIETEHTHOCTH

Ananmu3 BompocoB oueHkH KommereHTHocTH (BOK) mo3Bosissier BBIABUTH HayallbHbIE
CHHTAaKCUYECKHE CBOMCTBA SI3BIKOBBIX BBIPAKCHHIA, ONHCHIBAIOIINX CBS3M MEXKAY HOHATHUSIMH
MIPEIMETHOM 00JIACTH, KOTOPBIE MOTYT OBITH BITOCIIEICTBHUHM YTOUYHEHBI HA OCHOBE KOPITyCa TEKCTOB
[18]. Takum o00pa3zom, BONPOCHl OLEHKM KOMIETEHTHOCTH MOTYT OBITh MCIIOJIb30BaHbl IPH
TeHepalny JEKCUKO-CUHTAaKCUYECKUX MAaTTEePHOB JUIsl YTOUHEHUS CHHTAKCHMYECKUX U MO3UIIMOHHBIX
OTpaHUYCHUH.

MOHO BBIIEIUTH 5 BUIOB BOITPOCOB OIIEHKHA KOMITETEHTHOCTH:

® BOIPOCHI, HE COZEPIKAIIME BONPOCUTENBHBIX CIOB («/Ipumensemcs niu memoo Kk 00vexmy
UCCEO08aAHUSA? »);

® BONPOCH, HE COJAEpKAIlMe 3HAYMUMBIX BOIPOCUTENbHBIX cJOB («Kakoii o06vexm
UCCEO08AHUSL UCCTIe0YemCs 8 0esiMeNbHOCU? »);

® BONpOCHI, COJEpXallUe BOMPOCUTENbHBIE CJOBA, HANpsAMYyI0 He 00Jajaoume
CEeMaHTHKOM, OTHOCALIEH ero k arpulyTy kiacca oHtonoruu («Kezoa ovina oama navana

npoexma? »),

54 Osuunnuxoea K.A., Cuooposa E.A. Tenepauus JIEKCHKO-CHHTAKCHIECKUX NTATTEPHOB OHTOJIOTHYECKOTO ...

® BOIPOCHI, COJAEpXKAalllie€ BOMPOCUTENbHbIE CJIOBa, HANpsAMyl0 He oOjajarolue
CEMaHTHUKOM, OTHOCSIIEH ero K Kiaaccy oHTonoruu («Kmo ucnonvzyem memoo? »);

® BOIIPOCHI, COJEPKAIINE BOMPOCUTENBHBIE CIOBA, HE HECYIINE CEMAHTUYECKOM HArpy3Ku,
KOTOPYI0O MOKHO CBsi3aTh C HEKOTOpbIM KjaccoM oHtonoruu («Kak Hasvigeaemcs
3a0aua? »).

beln cocTaBineH OTHENBbHBIA CIHUCOK BOIPOCUTENBHBIX CIOB TPETbEW M YETBEPTOW IPyIIbI U
N00aBJIEHO COOTHOIIEHUE ¢ aTpUOyTaMH WJIH KJIaCCaMU OHTOJIOTHUHU:

2oe: I'eoepaghuueckoe mecmo.Haszsanue,

koz0a: Ungopmayuonnsiti pecypc.lama, Ilyoruxayus./Jama

kmo: Ilepcona. @amunus, Opeanuzayus.Hazeanue.

JUis KaxJIoro OTHOILIEHWS B OHTONOTMM ObUIM paszpabortansl 1-3 Bompoca OIEHKHU
KOMIIETEHTHOCTH. Hampumep, nns oTHomeHus Meroa.uMeeT aBTopa OBUIHM MPEJIOKEHBI
CIJICAYIOIINE BOTIPOCHL:

Kmo npuoyman memoo?

Kem npeonoorcen memoo?

Kmo sensemcs asmopom memooa?

B nmanHOM ciywyae Bce BONPOCHI SIBIISIIOTCS BOIPOCAMH TPETHETO THIMA, T.K. IJIs 0003HaueHUs
HEM3BECTHOTO CYOBEKTa B PYCCKOM S3bIKE OOBIYHO HCIOJB3YETCS MECTOMMEHue kmo (|
IIPOU3BOJIHBIE OT HETO).

Jlna oTHOMEHUS 3adaya.pewiaemcs ObLUI TPEIJIOKEH TOIHKO OAWH BOMPOC:

«Kaxas 3a0aua pewiaemcs 6 pazoene nayku?»

Hamuyme TOmpKO OJHOTO BapHaHTa MOXHO OOBSCHUTH TEM, YTO JAHHOE OTHOIICHHWE HE
Mpe/rogaracT BapuaTUBHOCTH HAa3BaHMS AaKTAaHTOB B MPEUIOKEHUH, a JaHHBIA TPEIUKAT IMOJHO
OTpa)kaeT OTHOIICHHUE MEXIY HIUMH.

JUis KaxJIoro BOIpOCa OLEHKHM KOMIIETEHTHOCTH CTPOUTCS MOJENIb BONPOCUTEIHHOIO
MIPEUIOKEHUSI.

Mogens BOMPOCHTEIBHOTO MPEUIOKEHUSI COCTOMT M3 OOBEKTOB, UISI KOTOPBIX H3BECTHBI
COOTHECEHHOCTh C Ha3BaHHWEM OHTOJIOTMYECKOIO KJjacca, arpuOyTa WJIM OTHOUIEHUS M
HE0OXOIMMBbIE TPaMMATHYECKUE KAaTEeTOPHUHU.

B mamem moaxonme mpemiokeHO nBe Moxaenn. DopMalbHO WX MOXKHO TIPEICTaBUTHh B
CIIEyIOIlIEM BUJE:

M1=(01, Rel,02) (3.1)

— nns csizu Rel mexay o6sexktamu O, 1 O..

System Informatics (Cucremuas nndopmaruka), No. 21 (2022) 55

M2=(0,D) (3.2)

— g nob6apienus atpudyra D wim coznanus oobekra O.

[TosicHuM HEKOTOpbIE 0003HAUCHUS:

O, O. u O, mpencraBnsitor coboii Habopel (Name, Grammatic), rne Name — Ha3BaHUE
OHTOJIOTHYECKOT0 Kilacca, Grammatic — MHOXKECTBO IpaMMeEM,

D mpencraBnaser coboit HaGop (DataProperty, DataProperty type, Grammatic), rae
DataProperty— nasBanue artpuOyta kmacca, DataProperty type — tum arpmbyra, Grammatic —
MHOKECTBO TPAMMEM,

Rel mpencraBnser coboit HaGop (PWord, ObjectProperty, Grammatic), rne PWord —
KOHKpETHBIN nipenukat, ObjectProperty — oHTONOrMYeckoe oTHOMmEHHE, a Grammatic — MHO)KECTBO
rpaMMeM.

AHanu3 BOMPOCOB OIICHKH KOMIIETCHTHOCTH TO3BOJISCT BBIIEISATH HEKOTOPHIC TPAMMATHUICCKUE

OT'paHUYCHUS Ha ITATTCPHDI.

2.2.1. 'pamMmaTuyecKkne orpaHHYeHMs]

AHanmu3 BOMPOCOB OICHKH KOMIIETEHTHOCTH MPOBOJHMTCS IO TPEM HANpPaBICHUSAM: aHAJIH3
MpearKaTa U aHaJ|3 ero NePBOTO U BTOPOTO aKTAaHTOB.

beima cocraBnena Tabnuia, B KOTOpOW OBUTM OMHMCAHBI IPaMMATHUYECKHE OTPAHHYCHUS IS
BOINPOCOB OLIEHKH KOMMETEHTHOCTH. [loj rpamMmaTHdecKMMM OTpaHHYEHHUSMU Mbl MTOHMMaeM
MOpP(OJIOTHYECKHE CBOMCTBA apTYMEHTOB M CHHTAKCUYECKUE CBSI3U MEX/Ty HUMHU.

AHanm3 BOIIPOCOB OI[EHKH KOMITETEHTHOCTH ITPOBOIUTCS ISl KaXKIOTO BOIIPOCA C TOYKH 3PCHHS
rpaMMeM KaXKI0To pejeBaHTHOro cioBa. K peraeBaHTHBIM CIOBaM OTHOCATCS T€, KOTOPble UMEIOT
HEMOCPEJICTBEHHOE OTHOULIEHHE K OOBEKTaM OHTOJOIMH: Ha3BaHUS KIJIACCOB M aTpuOyTOB U
npeaukaTel. KaaoMy mpennkary COMOCTaBISIOTCS €ro rpaMMaTHYeCKHe KaTerOpuu W Ha3BaHHE
OTHOIICHHS B OHTOJIOTUH, a KAKIOMY aKTaHTy — I'paMMaTHYECKHE KaTeTOPUHM M Ha3BaHWE Kiracca
uu atpudyTa oHtosnoruu (Tadnuna 1).

Bce mopdonornyeckue kaTeropuu CJIOB pacCMaTPUBAIOTCS ¢ TOYKH 3PEHMS PEIEBAHTHOCTH U
HEpPEeJIeBaHTHOCTH. Bo BpeMsi aHaiM3a BBIICTSIOTCS HEpEIeBaHTHBIE TPAMMAaTHYECKHE KaTETOPHH.
Hampumep, ObuTO pemieHo HE y4YHTHIBAaTh Juye riarona. B Bompoce «Kmo npednoswcun memoo
uccnedo6anus?» TIArol CTOUT B 3 JHIE, KaKk U B JIOOOM JIPYyroM IpeIoKeHUH, B KOTOPOM
noJyIeXxaniee BBIPAKEHO HMEHEM COOCTBEHHBIM (MM UMEHaMu COOCTBEHHbIMU). KOMITOHEHT
Ilepcona onpenensieT 00bEKT OJHOMMEHHOTO KJlacca, B KOTOPOM HOAPa3yMeBAaeTCsl HANNYHNE IMEHH

CO6CTBGHHOF0, MMO3TOMY, €CJIM IMOJICKAIICC B MNPCHAIOKCHUU, U3 KOTOPOIro 6y21€T H3BJICKATbCA

56

Oguunnukoga K. A., Cuooposa E.A. Tenepanys 1eKCUKO-CHHTAKCUIECKHX NATTEPHOB OHTOJIOTHYECKOTO ...

nHpopMmanus, OyJeT BBIPAKEHO YEeM-TO IPYTUM, TO TpEUIOKEHHWE He OyneT oOpabdaThiBaThCS

KoHcTpyKuuen <Illepcona, Memoo.umeem asmopa, Memoo uccredoganus™, MOATOMY B JTaHHOM

CJIydac YKa3aHUC Ha JIMIO IJ1aroja MOXXHO OITyCTUTh.

PaCCMOTpI/IM HEKOTOPBIC PCICBAHTHLIC I'PaMMEMBEIL. FpaMMeMa eépemenu peiiCBaHTHa IJII TEX

Clly4aeB, KOT/Ia OJHO3HAYHO OMpeJeieHo BpeMs ux aeiictBus. Tak, Hanpumep, ans atpulyta Jama

(co3manus) kiacca Memoo B maTTepH OyJeT J00aBIATHCS MpoLIeaniee BpeMs riaroia. I pammema

naoejica y CylleCTBUTEIbHBIX 1 MECTOUMEHUM CUMTAETCS PEIEBAHTHOM Il BCEX BOIIPOCOB.

Taxum O6p330M, OBLI COCTaBJIEH CITMCOK PEICBAHTHBIX I'PpaMMEM JJIs1 KaX(HOfI 4aCTH pEUH:

. I'marou: ACIICKTYAJIbHOCTB, IIEPEXOJHOCTD, YHUCIIO, BPEMSA,

e IlpuuacTtue: acneKTyaabHOCTb, 3aJI0T, YHCIIO, BPEMsI

e CyuiecTBUTENBHOE: MAJEXK, YUCIIO, PO

. MecTouMeHuE: MajaexK

2.3. 'eHepanusi JIEKCUKO-CHHTAKCHYECKUX MATTEPHOB

[Iponecc reneparun U-JICIT MoxHO pa3nenuTh Ha HECKOJIBKO ATAIOB:

npeo6paboTka BOIPOCOB OIEHKU KOMIIETEHTHOCTH;
Mopooruueckuii aHaiau3 BOPOCOB OLIEHKH KOMITIETEHTHOCTH;
COIIOCTABJIEHUE C 3JIEMEHTaAMH OHTOJIOTUH;

MMOCTPOEHUE MOJIECJIEH BOTPOCUTENBHBIX MPEITIOKECHUM;

re"epanus pa3Hbix BuioB 1-JICII Ha ocHOBe Mojieneil.

Ha IMEPBOM IHTAIl€ MPOUCXOAUT IIPUBCACHUC BOIIPOCA OLCHKU KOMIICTCHTHOCTH K HYXHOMY

dbopmaty I MpoBeIeHUs JalbHEHIIINX ATanoB. B yacTHOCTH, yAalleHne 3HAKOB MPENUHAHUA.

«B kakoil nestenbHoCcTH yyacTByeT Opranuzanusa?» =>

«B kaxoil nestenbHOCTH yuacTByeT Opranusanus»

Ha »stame MOp(i)OJ'IOFI/I‘IeCKOFO aHajin3a BBIACIAIOTCA PCJICBAHTHBIC T'PaMMCMbI JIA KaXXI0ro

PEICBAHTHOI'O CJIOBA. I[anee MPOUCXOJUT COIMOCTABJICHUC OTHUX CJIOB C KJIaCCaMW, anI/I6YTaMI/I u

OTHOILLICHUSIMU B OHTOJIOTHUHU.

JestenbHocTh Class: [lepcona, Grammemes: I1.11.

Opranusanus Class: Opranusanus, Grammemes: .1

ydactByeT Rel: Opranusanus.yyacTByeT B JlesiTe/ibHOCTH, Grammemes: [HEBO3BpaT.,

HEeCOB. BU/I, HellepeX., e/l. 4., H.B.]

System Informatics (Cucremuas nndopmaruka), No. 21 (2022) 57

B xon1e o6pabotku BOK kaxgoe cioBo OyAeT cONMpOBOXKIATHCS HHPOPMAILIUEH O HEM:
® YaCTh peyH;
® TpaMMaTUYECKHE 3HAYCHUS;
® Ha3BaHHWE OHTOJIOTUYECKOTO KJIacca WM aTpuoyTa,
e Tun atpubyra (nHunMaIM3upyomuii, Data Property, Object Property).
[Toce 0OpabOTKH BOMPOCOB OIIEHKH KOMIIETEHTHOCTH CTPOSTCS MOJEIN BOMPOCUTEIBHBIX
npeuIoskeHuit. i1 KaXk1oro Bompoca B MOJIEI b 100aBIsieTCs:
® COIIOCTaBJICHHBIC C PEICBAHTHBIMU CJIOBAMHU OOBEKTHI OHTOJIOTUH (KJIACCHI M aTPUOYTHI);
® TpeIUKaT B €ro H3HaYaIbHOU (opMe;
® yKa3bIBaeTCs THIM aTpuOyTa (€CJIH OH €CTh);

¢ CIIHMCOK I'rpaMMaTUYCCKUX OFpaHI/I‘ICHHfI.

[Tpumep Moiey BOIPOCUTENIBHOTO MIPEUIOKEHUS:
M= ((esaTenbHocTs, [[I.0.]) (yuacTByeT, OpraHu3alys.y4acTByeT B

JlesITeJIbHOCTH, [HEBO3BpaT., HECOB. BU/I, HENepex., ell. 4., H.B.]) (Opranuzanus, [U.m.])) (3.5)

Ha nocnenneM sTane Ha OCHOBE CO3/1aHHBIX Mojiesel ocyecTniusiercs renepanus U-JICIL.

Scheme

argl: Object:: lestenprocts ([lagex: ‘mp’)

arg2: Term::Opranusanus.yyactByet B aesrenbHoct (Yucno: ‘exn’)

arg3: Object::Opranuzanus (ITagex: ‘um’)

Condition Contact (argl, arg2) = Contact_Object,

Contact (arg2, arg3) = Contact_Object

= arg3::Opranusanus (y4acTByer B aestenapHocTH: argl.Ha3panue)

Ha cxeme moka3aH mpocToil BapuaHT CBs3bIBaHMSA OOBEeKTa Kiacca Memoo ¢ 0OBEKTOM Kiacca
Ilepcona. JInst 3TOr0 paccMaTpUBAIOTCS YK€ TPU apryMeHTa: oOBeKT kiacca [lepcoma, TEpMUH
JIEKCUKO-CUHTAKCUYECKOr o Kilacca Memoo.umeem aeémopa n 00beKT Kitacca Memoo uccnedosanust.
Jlnst yka3aHWsl HA BO3MOXKHOCTh apTryMEHTOB OBITh Pa3/IeICHHBIMH HCIOJIb3yeTCs KOHTAKTHOCTh
(Contact) B paznene ycnoBuit (Condition). Takoil marrepH Oyner oOpaOaTbIBaTh Cllydaud BHJA:
«Memoo “mo3206020 wmypma’ 6vin paspaboman 6 1953 2. amepukaHcKum KOHCYIbMAHMOM

OcbopHomy.

58 Oguunnukoga K. A., Cuooposa E.A. Tenepanys 1eKCUKO-CHHTAKCUIECKHX NATTEPHOB OHTOJIOTHYECKOTO ...

[IpennoxxeHHbIe 3Tambl MO3BOJISIIOT (GOPMUPOBATH WH(OPMALIMOHHBIE JTEKCUKO-CUHTAKCHUECKHE
MOJICJII Ha OCHOBE BOIPOCOB OLIEHKHM KOMIIETEHTHOCTH C YYE€TOM IpaMMaTHYECKUX 3HAUYCHUU

KaXXJ0ro n3 HUx.

3. OneHka KayecTBa reHepanuu

Bo Bpems reneparuu u3 209 BOmpoOCOB OIEHKH KOMIIETEHTHOCTH Obuto copmupoano 200
HenoBTopsitoutuxes mojnened U-JICIL. VYmeHnsblieHune KojinMdyecTBa MOJEIEM IO CpPaBHEHHMIO C
KOJINYECTBOM BOIPOCOB MOXHO OOBSICHUTH TEM, YTO, HECMOTPS Ha pa3Hble BOMPOCHI IS
OTHOIICHUM, OTPAaHUYEHHS HA 0OBEKTHI MOTJIA COBMA/IATh.

bouta BwiOpana ontonorus «llogaepxkka TpUHATUS pelieHHd B crabdodopmanu3oBaHHBIX

npeaMeTHeix obmactsax» (https://uniserv.iis.nsk.su/rdms/) [21], Ha ocHOBe KOTOpOW ObLT CO37aH

cioBaph npenMeTHoil obmactu (129 oO0bEeKTHO-OPUEHTHPOBAHHBIX KiIaccoB M 689 TepMHHOB) U
Kopmyc, coctosmmid u3 31 Hay4HOro TEKCTa TOM jK€ MpeIMETHOW OoO0JIacTH, JUIS IMPOBEICHHS
IKCIIEPUMEHTA IO M3BICUCHHUIO MH(POPMAIMH C HCIOJIb30BAaHUEM CTCHEPHPOBAHHBIX MIA0JIOHOB.
OkcnepuMeHTs! TpoBoaAuIuch B cucreMe FATON.

bbutn Mcnonb30BaHbl CTaHJAPTHBIE METPUKH TOYHOCTH, IMOJHOTHI M F,-Mepwl ais aHanmza
PE3yJbTaTOB U3BJIICUCHUST HH)OPMALIUHL.

B Tabmume 1 mnpeacraBieHbl pe3yiabTaThl TE€HEpAllMd NATTEPHOB C TIPaMMAaTUYECKUMHU
OTpaHUYEHUSIMH (OHU BBIJIEIICHBI CEPBIM) B 0€3 TpaMMaTHUECKUX OTPAHUICHUH.

Tabnuya 1. Pe3ynemamvl 2enepayuu nammepHos

Crenennb HeogHo3Hauynoctu | Tounocrsp | Ilonora F.

- 1,5 0,9710,701,0| 0,96 | 0,98 | 0,81

N3 Tabmuupl BUIHO, YTO TEHEpalus MaTTEpHOB C TPaMMATHUYECKUMHU OTPAaHUUYEHUSMH Jjajia
pe3yNbTaThl HUXKE, YeM 0e3 rpaMMaTHYeCKUX OTpPaHUYCHUN.

Oxuaanock NMoJiydeHUe MOJHOTHI, paBHOUW 1.0, OCKOJIBKY BOIPOCHI OLIEHKH KOMIIETEHTHOCTH
OXBaTHIBAIOT BCE OTHOIIEHUS B OHTOJIOTHU. bBbUIO mojacuuTaHo, 4to 45 BOMPOCOB OICHKU
KOMITETEHTHOCTH HE CPOPMUPOBATH ATTEPHBL. 9 U3 HUX OKA3aJIUCh N30BITOYHBIMU, YTO MPUBEIIO K
YMEHBIUIEHUIO KOJUYECTBA HEMOBTOPSIOIIMXCA MOJENEed N0 CpaBHEHHIO C Bompocamu. B
OCTaBIIUXCA e HE OB OOHAPYKEHBI OTHOIIIEHUS, YeMY CIIOCOOCTBOBAII PSi/I IPUYHH.

Bo-miepBbIX, HEBO3MOKHOCTh CPAaBHEHHSI HEKOTOPBIX OHTOJIOTHYECKUX OTHOIICHUH CO CIIOBAMU B
BOK. K TakuM OTHOIIEHHUSIM MOXKHO OTHECTH sesnsiemcalacmovioPecypca, aeniamoecadacmorio n

aemop-Hepcona. BO-BTOpLIX, ObIM 3aMEuYeHbl OIEYaTKH B HA3BAHUAX OHTOJIOTHYECKHUX

https://uniserv.iis.nsk.su/rdms/

System Informatics (Cucremuas nndopmaruka), No. 21 (2022) 59

OTHOIIEHWA W B CBA3sIX B 0a30BOMl oHTONOTMHM. Tak, Hampumep, OTHOIICHHE
Opeanuzayus.yuacmeyem 6 OeiamenlbHOCMU CBA3bIBAET HE JBa OHTOJIOTMYECKHX KJlacca
Opeanuzayusa n Jeamenvhocms, a OHTOJIOTWYECKUHM Kiacc Opeanuzayus W OHTOJIOTMYECKOE

OTHOLICHHEC Opearmmuuﬂ.yqacm@yem 6 OessmenbHOCHI.

4. JKcepMMEHTHI HA KOPILyCe HAYYHbIX TEKCTOB

Jnist MpOBEACHHUS SKCIIEPUMEHTOB 10 U3BJICUEHUIO WH(POPMAIIUU C TIOMOIIBIO CTeHEPUPOBAHHBIX
naTTepHoB Obut BbIOpanbl oHTOdOrHMs «llogmepkka TpPHUHATHS — pemieHud B ciabo
(dbopMann30BaHHBIX 00JACTIX» U KOPITYC, COCTOSIIIMM U3 31 HaydyHOro TEKCTa TOM K€ MPeAMETHOMN
obnactu. DkcriepuMeHThI poBoauIuch B cucteme FATON.

Jia popManu3anuy NOIyYEHHbIX JAaHHBIX JUISl KaKJOr0 TEKCTa ObUIM aBTOMAaTHUYECKU CO3/1aHbI
TaOJUIIBI, B KOTOPBIX OMHCAaHBI CO3/IaHHBIE OHTOJIOTHYECKHE OOBEKTHI, 100aBICHHBIE aTpUOYTHI U
cBs3u. OHM BBIBOJSTCS B KaXJIOM HOBOW CTpPOYKE B TOH IOCIIEJOBATEIBHOCTH, B KOTOPOM
BCTPEUAIOTCS OOBEKTHI.

JUis CO34aHHBIX OHTOJOIMYECKUX OOBEKTOB CTPOKA COJIEPKUT HA3BAHME OHTOJIOIMYECKOIO
Kiacca, arpudyT Haszeanue W KOHKPETHYIO Jekcemy. Jljis 100aBlIeHHBIX aTpuOyTOB OOBEKTOB
CTpOKa BKJIIOUAeT Ha3BaHHWE OHTOJIOTMYECKOro Kiacca, Ha3BaHHE THUIMA aTpuOyTa M KOHKPETHYIO
JIEKCeMy ero HamMeHoBaHHs. i CO3aHHBIX CBsA3EM MEXIy OOBEKTaMH YKa3bIBaeTCsl KJIacC U
UJCHTU(QUKATOP MNEpBOro OOBEKTa, HA3BAaHUE OTHOIIECHHUS, KJIACC W HUIACHTH(PHUKATOP BTOPOTO
0o0BEeKTA.

OKCTepuMEeHTHl OBITM TPOBEACHBI JJIsi MAaTTEpPHOB 0O€3 TpaMMaTHUYECKUX OTpaHMYeHUH u
MaTTEePHOB, B KOTOPBIE B MpOIECCe TeHepaluy ObUIN J00aBICHBI IPaMMAaTUYECKUE OTPaHUYCHUS.
Pesynbrarel npuBenens! B Tabnuie Hroke (Tabmuia 2), rae cepbiM IIBETOM BBIJCICHBI 3HAUYEHUS
U1 TATTEPHOB 0€3 OrpaHUYEeHUH.

Ta@mua 2. Pe3yfzbmambz uszenederust CyuiHocmu oHmaoJiocuu

/ Tounoctsb | IMoaHoTa F.
Attributes | 0,34 | 0,83 | 0,97 | 0,72 | 0,50 | 0,77
Relations | 0,09 | 0,38 | 1,0 | 1,0 | 0,17 | 0,55

Bce oxxnmaeMbie 00BEKTHI U3BIEKAIOTCS U3 TEKCTOB, TIOITOMY OHM HE OBUTH BHECEHBI B TAOJIHILY.
[TonHoTta noGaBneHuss aTpuOyTOB W OTHOIICHUH TaK)Xe OKa3aach BBICOKOH, YTO TOBOPUT 00

M3BIICUYCHUM OOJIBIICH YacTH (I/IJ'II/I BCCX) OXKHNAACMBIX anI/I6y'TOB n OTHOMCHHﬁ, OJHAaKO HHU3Kad

60 Oguunnukoga K. A., Cuooposa E.A. Tenepanys 1eKCUKO-CHHTAKCUIECKHX NATTEPHOB OHTOJIOTHYECKOTO ...

TOYHOCTh YKa3bIBa€T Ha W3BJICUYCHHE OOJBINOrO0 KOJMYECTBA HEMPABWIBHBIX aTpUOyTOB |
OTHOIIICHUH.

[ToydeHHbIE pe3yibTaThl TOKA3bIBAIOT, YTO TNATTEPHBI C OTPAHUYCHUSMHU 3HAYUTEIHHO
YBEIMYUBAIOT TOYHOCTh J0OABJIEHUS aTpuOyTOB, HO TIPH 3TOM YMEHBIIAIOT IOJHOTY IO
CpPaBHEHUIO C MaTTepHaMHU 0€3 OrpaHUYCHUH.

VYBenuueHne TOYHOCTH W3BICYCHHUS OTHOIICHWH OBUIO JOCTUTHYTO CHadana J00aBIIeHUEM
rpaMMaTUYEeCKUX OTPAaHMYCHUH, a 3aTeM pPEryJupOBaHUEM JO0ABJICHHS CBSI3U C CaMHUM COOOWA.
KomnyecTBO moydeHHBIX 00BEKTOB B OHTOJIOTHH OYAET COBITAIaTh C 0XKHUIaCMbIM.

AHanun3 ommMOO0K OMOT BBISIBUTH MMPUYMHBI OIIMOOYHBIX PE3YyJIbTATOB:

® CIMIIKOM CTPOTHE OTPAHHYCHUS Ha MAJCK apryMEHTOB JIJIsl MATTEPHOB, JOOABIISFOIINX
aTpuOyThl 0OBEKTaM OHTOJIOTHUH;

® HEJOCTATOYHO CTPOTHE OTPAHUYCHHUS HA IIO3UIUI0 apPTYMEHTOB (pacrojioKEeHUE
OTHOCHUTEIILHO JIPYr Apyra) IJisS IMaTTEPHOB, CO3MAMOIIUX CBS3H MEXKIY OOBEKTaMH
OHTOJIOTUU;

® CIIMCKH PAaCCMATPUBAIOTCS KAaK OJTHO MPEIJIOKEHUE, U3-3a 4ero (OPMUPYIOTCS HCHYKHBIC
CBSI3H;

e 00BeKTaM J00aBIsETCS CBSI3b C CAMUM COOOIA.

YBenudeHue IMOJHOTBI MOXHO JIOCTHYb C TOMOIIbIO JTOOABICHUS MATTEPHOB, B KOTOPHIX HE
OyIeT rpaMMaTHYeCKUX OTpaHUYECHUN, HO OYJIeT OrpaHUYEHHE HA KOHTAKTHOCTb.

Jl5ig yay4iieHus TOYHOCTH MOKHO JOOaBUTH MpeIBapUTENbHbIN aHAN3, KOTOPbII MO3BOJIUI OBI
pa3OUTh CIMCOK Ha PParMEeHTHI TEKCTA, YTOOBI N30€KATh HEHYKHOW CBSI3U MEXIY YacCTSIMHU CITHCKA.

Taxxe He0OX0IMMO yOpaTh BO3MOKHOCTh ApIYMEHTOB CO3/1aBaTh CBSI3U C CAMHUM COOOM.

5. 3akiaouyeHnue

Z[aHHaSI pa60Ta SABIIACTCA IMPOAOJIKCHUEM ITHUKJIA pa60T, MNOCBAIICHHBIX MCTOAaM
aBTOMATHYCCKOU reHepanuunu JICKCUKO-CMHTAaKCUYCCKUX MaTTCpHOB OHTOJIOTHYECKOI'O
IMPOCKTUPOBAHMS, NMPCAHA3HAUCHHBIX IJId HU3BJICUHCHUS I/IH(l)OpMaIII/II/I N3 TEKCTOB M IIOINOJHCHUS
oHTOJOTHH. B pa60Te NPEAJIOKECH MOAXO0J K T'CHEpalUuH JICKCUKO-CUHTAKCUYCCKUX ITAaTTCPHOB Ha
OCHOBC OHTOJIOTUMYCCKHUX IIATTCPHOB HITIO. OcobeHHOCTHIO noaxona sABJIACTCA HMCIIOJIB30BAHUC
BOIIPOCOB OLCHKHW KOMIICTCHTHOCTH JJII M3BJICUYHCHHUA TI'PaMMaTHYCCKUX CBOMCTB SI3BIKOBBIX

BBIpa)KCHHﬁ, HCITOJIB3YEMBIX IJIA IPCACTABICHUA MMOHATHH B TEKCTAaX.

System Informatics (Cucremuas nndopmaruka), No. 21 (2022) 61

Bo BpeMs mpoBeneHHs SKCIEPUMEHTOB ObUIM MOJYYEHBI CleAyrouue pe3yiabTatel. [lpu
TeHEpalliu CTENeHb HEOJHO3HAYHOCTH MaTTepHOB coctaBuia 1,5. Ilpu u3BnedeHnun mHbopmanuu
F1-mepa cocraBuna 1,0 ans oowektos, 0,77 mis arpudyroB u 0,55 mis oTHomieHwit. B 1emom,
IIOJlyYEHHbIE PE3yJbTaThl IOKA3bIBAIOT, YTO MATTEPHbl C I'PaMMAaTUYECKUMU OrpaHHYEHHUSIMU
3HAYUTENbHO YBEJIMYMBAIOT TOYHOCTb W3BJIEYEHHUS aTpuUOyTOB M OTHOLIEHUH, HO IpU 3TOM
YMEHBIIAIOT MOJHOTY IO CPAaBHEHUIO C MarTepHamu Oe3 orpaHuueHuil. [IpoBeneHHBIH aHamM3
OMOOK MO3BOJISIET CAETATh MPEANOI0KEHUE, YTO J0OABICHHE HOBBIX MMAaTTEPHOB, KOTOPHIE OYIyT
COJIepKATh TOJIBKO OrpAaHMYEHHE Ha B3aMMOPACIOJIOKEHHE TEPMHMHOB B TEKCTaX, I103BOJIUT
YBEJIIMYUTh TNOJTHOTY. UTO Kacaercsi TOUHOCTH, TO MNpeajaraercs HpOBOAUTH IpeaBAapUTENIbHBINA
aHaJIN3, KOTOPBIH MMO3BOJIMT, B YACTHOCTH, pa30MBaTh CIIUCOK HAa ()parMEHTHI TEKCTa BO M30CKaAHHE

HCIIPaBUJIbHBIX CBsI3EH MCKAY YaCTAMU CITMCKaA.

JlanbHeiye uccienoBanus OyQyT CBsI3aHbI € a) anpoOarueil moaxo1a Ha APYTruX MpeIMETHBIX
obnactax, 0) pacmmpenuem oOyuatomiero kopmyca BOK yTBepAMTENbHBIMU MPEATIOKEHUSIMU
(Hampumep, onpeeNeHUIMU U3 SHIUKIIONEINUYECKUX NCTOYHUKOB 3HAHUIT), YTO MOXKET JaTh OoJiee
MOJIHYIO KapTUHY BO3MOXKHBIX OTPAaHUYEHUH, B) PACCMOTPEHUEM JIPYTUX TUIIOB TPAMMATHUYECKHUX
OrpaHMYeHUll (HampuMep, COTJacoBaHHWE B YHWCJIE U pPOAE), I') MPUMEHEHHEM JUIs TeHepaluu

TCPMHUHOJJIOTHYCCKHUX IMATTCPHOB.

Cnucok JquTepaTypbl

1. T'apanuna, H. O. MynbTHareHTHBIN MOAXOA K M3BJICUEHUIO HHPOPMAILIMK U3 TEKCTOB M MONOJIHEHUIO
ontonorun / H. O. T'apanuna, E. A. CugopoBa // Marepuansl Bcepoccuiickoit KoHdpepeHIHH c
MEXyHapoIHbIM yuactreM «3Hanus — Onronorun — Teopum» (3OHT-2015), 6 — 8 okrsi6ps 2015
r., HoBocubupck. — HoBocubupck: Muctutyt maremaruku um. C. JI. CoboneBa CO PAH, 2015. —T.1.
— C. 50-59.

2. Kononenko U.C., CunopoBa E.A. Meroauka pa3pabOoTKH JEKCHKO-CEMaHTUYECKUX MATTEPHOB IS
W3BJICUCHHS TEPMUHOJIOTUH HAy4YHOU npeaMeTHoi obnactu // CuctemHas nadopmaruka. 2022. Ne 20.
C. 25-46.

3. Cunoposa, E. A. KoMIuIeKCHBII TOAX0]] K UCCIEIOBAHUIO JICKCHYECKUX XapaKTepucTuk Tekcrta / E. A.
Cunoposa // Bectuuk Cubl'YTH, Ne3, 2019. — C. 80-88.

4. 3aropyneko HO.A., Cumoposa E.A., 3aropyneko I'.b., Axmaneesa N.P., Cepsrit A.C. ABTOMaTH3aIIHI
pa3paboOTKH OHTOJNOTHH HAyYHBIX NMPEAMETHBIX 00JacTeld Ha OCHOBE MATTEPHOB OHTOJOTHYECKOTO
npoekTupoBanus // OHronorusi npoekrupoBanus. — 2021. — T.11, Ne4(42). - C.500-520. — DOI:
10.18287/2223-9537-2021-11-4-500-520.

62

10.

11.

12.

13.

14.

15.

16.

17.
18.

Oguunnukoga K. A., Cuooposa E.A. Tenepanys 1eKCUKO-CHHTAKCUIECKHX NATTEPHOB OHTOJIOTHYECKOTO ...

Aguado de Cea, A. Using Linguistic Patterns to Enhance Ontology Development / G. Aguado de Cea,
A. Gomez-Perez, E. Montiel-Ponsoda, M. C. Suarez-Figueroa // In: Proc. Int. Conf. on Knowledge
Engineering and Ontology Development (KEOD 2009) (Funchal - Madeira, Portugal, October 6-8,
2009), 2009. — P. 206-213.

Blomqvist, E. Engineering Ontologies with Patterns: The eXtreme Design Methodology / E.
Blomqvist, K. Hammar, V. Presutti // Ontology Engineering with Ontology Design Patterns. Studies
on the Semantic Web, 2016. — P. 23 — 50.

Gangemi, A. Ontology Design Patterns / A. Gangemi, V. Presutti // Handbook on Ontologies.
Springer, 2009. — P. 221-243.

Ganino G., Lembo D., Mecella M., Scafoglieri F. Ontology population for open-source intelligence: a
GATE-based solution // Software: Practice and Experience. 2018. V. 48. Is. 12.

Gnminger, M. Methodology for the design and evaluation of ontologies / M. Gnminger, M. Fox //
Workshop on Basic Ontological Issues in Knowledge Sharing. Montreal, Canada, 1995. — 10 p.
Guarino, N. OntoSeek: content-based access to the Web / N. Guarino, C. Masolo, G. Vetere // IEEE
Intelligent Systems, 1999. — P. 70-80.

Hearst, M. Automatic acquisition of hyponyms from large text corpora / M. Hearst // Conference on
Computational Linguistics (COLING’92), Nantes, France, Association for Computational Linguistics.
1992. — P. 539-545.

ljntema, W. A lexico-semantic pattern language for learning ontology instances from text / W.
Ijntema, J. Sangers, F. Hogenboom, F. Frasincar // Journal of Web Semantics, 2012. — P. 37-50.
Lamy, J.-B. Owlready: Ontology-oriented programming in Python with automatic classification and
high level constructs for biomedical ontologies / J.-B. Lamy // Artificial Intelligence In Medicine,
2017. - P. 11-28.

Maynard, D. Using Lexico-Syntactic Ontology Design Patterns for ontology creation and population /
D. Maynard, A. Funk, W. Peters // Proceedings of the 2009 International Conference on Ontology
Patterns, vol. 516, 2009. — P. 39-52.

Ontology Design Patterns // Ontology Design Patterns URL.: http://ontologydesignpatterns.org (mata
obpamenus: 20.10.2022). (44)

Petasis G., Karkaletsis V., Paliouras G., Krithara A., Zavitsanos E. Ontology Population and
Enrichment: State of the Art. In: Paliouras G., Spyropoulos C.D., Tsatsaronis G. (eds). Knowledge-
Driven Multimedia Information Extraction and Ontology Evolution. LNCS, V. 6050. Springer, Berlin,
Heidelberg.

Rosenberg, G. Handbook of Formal Language / G. Rosenberg, F. Salomaa, 1996. — 450 p.

Roux, C. An ontology enrichment method for a pragmatic information extraction system gathering
data on genetic interactions / C. Roux, D. Proux, F. Rechenmann, L. Julliard // Proceedings of the First
Workshop on Ontology Learning (OL-2000) in conjunction with the 14th European Conference on
Artificial Intelligence (ECAI 2000), Berlin, Germany, 2000.

System Informatics (Cucremuas nndopmaruka), No. 21 (2022) 63

19.

20.

21.

Zagorulko Y. A. Using a System of Heterogeneous Ontology Design Patterns to Develop Ontologies
of Scientific Subject Domains / Y. A. Zagorulko, O. I. Borovikova // Programming and Computer
Software, 2020. — P. 273-280.

Zagorulko Y. A., Sidorova E. A., Akhmadeeva I. R. and Sery A. S . Approach to automatic population
of ontologies of scientific subject domain using lexico-syntactic patterns // International Conference
«Marchuk Scientific Readings 2021» (MSR-2021) 4-8 October 2021, Novosibirsk, Russian
Federation. Journal of Physics: Conference Series, 2021, vol.2099, p. 012028. doi:10.1088/1742-
6596/2099/1/012028)

Zagorulko Y., Zagorulko G. Application of Ontology Design Patterns for Building an Ontology of
Decision Support in Weakly Formalized Domains // Proceedings of Selected Contributions to the
Russian Advances in Artificial Intelligence Track at RCAI 2021, collocated with the 19th Russian
Conference on Atrtificial Intelligence (RCAI 2021). — Vol. 3044. — P. 108-116. — CEUR Workshop
Proceedings, CEUR-WS.org, 2021.

64

Oguunnukoga K. A., Cuooposa E.A. Tenepanys 1eKCUKO-CHHTAKCUIECKHX NATTEPHOB OHTOJIOTHYECKOTO ...

