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An approach to analyze the compatibility of real-time multi-task applications with various
combinations of scheduling modes and protocols of access to shared resources when run on
multi-core platforms is described. It is based on the recently introduced notion of application
density derived from estimation of application feasibility for various values of the processor
performance. The software architecture of a relatively simple simulation tool for estimation of
the task response time (and therefore, application feasibility) is described, which provides more
exact data compared to the known analytical methods when they are applicable. Results of
running this tool on a number of benchmarks, including balanced Liu-Layland configurations,
are presented along with their analysis and interpretation. The suggested approach allows to
indentify an optimal combination of the scheduling mode and access protocol for the given

application structure.
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1. Introduction

Software applications for real-time systems (RTS) are usually built as collections of prioritized
tasks treated as sequential programs closed w.r.t. to control flow. During application runs the tasks
may share common system resources: executive ones (processors and processor cores of multi-core
processors) and informational ones — global data arrays, interface registers of peripheral devices,
elements of human-machine interface, etc. Access to executive resources is governed by scheduling
mode in use, while access to shared informational resources is controlled by access protocols.

Each task ti of an RTS application is characterized by its period Tj, its deadline Di, and its weight
Wi. The period and the deadline are specified in absolute time units (e.g., milliseconds) and are
usually considered as "external constraints” for the application, while the weight is an “internal
constraint”. It determines the "amount of computational work™ (and thus, the quantity of the
executive resource) which is needed for the task to accomplish its function and is specified in the
number of standard machine operations for the given task realization. Given a particular processor

performance P, the task weight Wi may be converted into time units: Ci = Wi/P.
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Application behavior is composed by consecutive task instances i’ (called jobs) running in
parallel and iteratively activated according to their periods Ti. Due to competition among running
jobs for platform resources, execution of any job i) may be suspended and then resumed after
some period of time. The task response time R; is the maximal time interval between respective jobs
7i¥) starts and terminations which is called "job existence interval".

A Kkey requirement to an RTS software application is called "application feasibility" and is
formulated as: Vi Di > R; in all acceptable scenarios of application communication with its
environment at the run time. Application feasibility may be checked either through an analytical
estimation of the response time for each application task, or through simulation of the application
run with an appropriate software tool.

For an RTS designed to run on a single-core processor exact analytical estimations of its
feasibility exist since early 70-ies [1-3]; however, for multi-core processors exact analytical
estimates are still unknown, while suggested rough methods provide pessimistic results if compared
with real RTS behavior[4,5]. Therefore, a software simulation tool is needed to obtain a more exact
estimation of application feasibility for RTS on multi-core platforms under various combinations of
scheduling modes and access protocols than the known analytical methods. The paper describes the
architecture of such software tool [6] and new results of a series of experiments with it.

2. Application Density

A derivative parameter characterizing the task ti behavior for the given performance P of
processor cores is its utility Ui = Ci/Ti, which is the portion of the task period used for computing;
thus the overall utility U of the application is: U = (£1<i <n Ui)/k, k being the number of processor
cores in the given platform, each of the same performance P. The value 1-U specifies the portion of
the processor time not used by the application (the processor is either idle or is loaded with
calculations unrelated to the RTS processing). An increase of the processor performance leads to an
increase of the processor idle time for the given RTS software application.

Let's consider an auxiliary task characteristic called hardness: Hi = Ti/Di. If Hj >1 then existence
intervals of any two consecutive instances of the same task ti — jobs ti¥) and 7i0*Y do not intersect.
The reverse condition H;j <1 means that existence intervals of such jobs may intersect. If all
application tasks are of the same hardness H, then H is called the application hardness. Sometimes
the reverse value H-1 turned out to be more convenient for consideration.

In [7] the notion of application density as the maximal value of the overall utility of an
application was introduced: Dens = maxp(U) for all values P of processor performance which the

application is feasible with. Obviously, any correct application is feasible with P = o and is not
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feasible with P = 0. It is also obvious, that if an application is feasible with the performance values
P1 and P2, where P1 < P2, then it is feasible for any Pe[P1,P2]. Therefore, the value Dens exists
which corresponds to the minimal processor performance Po with which the application is still
feasible: for all P < Po the application is not feasible and for any P > Py it is feasible.

The above consideration prompts an efficient algorithm of "catching the lion in desert" for
calculating the value Dens. Starting with the interval [a,b] of performance values, where a = 0 and
b=Pmax, Pmax being large enough for the application to be feasible, application behavior is simulated
with the processor performance P = (b—a)/2. The next interval will be either [a,P] if this simulation
run confirms application feasibility, or [P,b] otherwise. The loop terminates at the interval
[P—¢,P+¢], P being the resulting performance value with an accuracy of €. Application density is
determined by external factors and structural features of the application, as well as by selection of
the scheduling modes and protocols of access to shared informational resources and may be used as
a criterion of efficiency of the selected combination.

Current studies were focused on finding dependencies between application hardness and density
for various combinations of scheduling modes and access protocols. For that purpose two dissimilar
prototypes of the feasibility checker were developed: one in C++/C#, the other in Forth [8, 9], along
with a number of application benchmarks. Simulation results obtained with these dissimilar tools

differ for less than 0.1 per cent, which is a strong evidence in their trustworthiness.
3. Feasibility Checker

The overall workflow of the simulator for checking application feasibility is presented in Fig. 1.
Simulator initialization consists in selecting the desired combination of the scheduling mode and
inheritance mode of the access protocol, setting the respective simulator constraints, reading the
task description file, and forming the respective resource and task objects. Then the initial list of
system events EventList is formed which consists in activation of the all tasks at the moments of
system time defined by their phase shifts. Counts for their maximal response times are set to zero
and all resources are set to be unlocked.

In the major simulator loop the first group of time-sake events in the ordered EventList is
considered, the simulator system time is set to this time moment and all events from this first group
are processed one-by-one according to the event type.

1. In case of activating a task, a new job is created from this task and is added to JobList with its
priority and planned starting time equal to the current system time; also a new event is added to
EventList — to activate the next instance of this task at the moment of time not less than the current

time plus the task period Ti.
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Fig. 1. The overall workflow of the feasibility checker

2. When terminating a job, the response time for the respective task is updated by the maximum
of its current value and the existence time of this job. If the job existence time exceeds the task
deadline Dj, then a violation of the task feasibility is registered. The considered job is deleted from
the JoblList.

3. In case of locking/unlocking a resource, if an already locked resource is being locked, the job
is moved from JobList to the ordered list of jobs waiting for unlocking of this resource; otherwise
the resource becomes locked by this job. When unlocking a resource, if the list of jobs waiting for it
is not empty, then the first job form this list is moved back to JobList according to its priority and
the resource becomes locked by this job; otherwise, the resource becomes unlocked.

Upon completion of the event processing, the considered event is deleted from EventList. After
processing all time-sake events, JoblList is considered (it may change as a result of event
processing). If it is non-empty, its first element is selected and the time it consumed by this job is
updated accordingly, probably generating a new event to terminated this job. If JobList is empty,
this means the processor is registered to stay idle for the gap till the next time-sake event group.
After that processing the major loop is reiterated. The loop terminates upon exhausting the time
limit of the simulation session or when a specified number of created jobs is reached.

The results of simulation — maximum task response time, number of deadline violations, the

application density, and other statistics data are displayed. A simulation log may also be displayed.
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When any system event is processed, the respective time and other accompanying data are printed-
out. All these data may be easily copied into MS Excel for a graphical representation of the
obtained results and execution log.

4. Running Experiments with the Simulator

To run experiments, particular configurations of software applications to be analyzed are
submitted to the simulator. As a rule, valuable configurations of real-time applications actually used
in the practice of industrial programming are confidential proprietary; therefore, experiments were
run on configurations of mainly methodological interest, the ones with uniform distribution of
utility load and with logarithmical distribution of task periods being among them. Let's consider the
known Liu-Layland configuration of 10 tasks which is both utility-uniform and with logarithmical

periods of its tasks:

Task | 71 | 72 | 73 | 7a | 75 | 76 7 T8 79 | TW0
Ti | 100|107 | 114 | 123 | 132 | 141 | 151 | 165 | 174 | 187
Ci |72 |77]183|89]95]102]109|116|12413.2

The left diagram in Fig. 2 demonstrates how the application density Dens depends on the

hardness H=Ti/Di (actually H™) of its tasks for two classical scheduling modes: Rate Monotonic
(RM) and Earliest Deadline First (EDF) on a single core processor. The task hardness H is
supposed to be the same for all 10 tasks, and such configuration is called "balanced".
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Fig. 2. Liu-Layland balanced configuration of 10 tasks on a single core platform
As one can see, the EDF and RM scheduling modes behave the same when deadline is much less
than the period, but then EDF ensures the maximal density of 1 while RM cannot raise over 0.72.
The right-side diagram demonstrates the logarithmic dependency of task periods which turns into a
pure linear profile.
Results of another experiment with 5 independent tasks with balanced Liu-Layland configuration

are presented in Fig. 3.
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Fig. 3. Liu-Layland balanced configuration of 5 independent tasks

Here two analogous charts for 5 independent tasks with a balanced Liu-Layland configuration

are compared when run on a single core and on a two-core platform:

Task 71 2 73 T4 75
Ti 1000 1150 1330 1520 1750
Ci 1000 1150 1330 1520 1750

One can notice that the utility load for each task is Ui=1 and the ratio Ui/U=0.2. With the optimal

processor performance P using the EDF scheduling mode with application hardness approaching 1

ensures 100% processor load (Dens=1) on a single core processor, while on a two-core processor

not only RM cannot ensure this efficiency, but EDF fails to reach it as well.

In Fig. 4 the same configuration as in Fig. 3 is studied, but this time the tasks share 5 common

resources using mutexes to guard the respective critical intervals and the application runs on a

single core platform.
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Fig. 4. Liu-Layland balanced configuration of 5 dependent tasks, single core

The charts represent the density/hardness dependency under RM and EDF scheduling modes

with and without priority inheritance when tasks perform access to shared resources.

unexpected facts are worth mentioning in this case:

Two
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« when the scheduling mode ignores priority inheritance, the density values for RM and EDF
are exactly the same;
« when priority inheritance in any form is added, then density is the same as for independent
tasks for both RM and EDF scheduling modes.
When the same application with a priority inheritance mechanism runs on a two-core processor,
the advantages of the EDF scheduling mode over the RM one diminish in comparison with a single

core platform, especially when the application hardness is close to 1, as one can see in Fig. 5.
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Fig. 5. Liu-Layland balanced configuration of 5 dependent tasks, 2 cores
In the next Fig. 6 one can see how for the same Liu-Layland balanced configuration of 10
independent tasks the difference between RM and EDF diminishes when the number of cores in the

processor increases.
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Fig. 6. Liu-Layland balanced configuration of 10 independent tasks, many cores
In Fig. 7 two 4-task configurations with non-uniform utility load are studied. Tasks in the left-
hand part are all independent. In the right-hand part tasks 1 and 3 share resource 1, while tasks 3

and 4 share resource 2 and are therefore dependent.
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Fig. 7. RM vs. EDF for dependent and independent 4 tasks
For independent task with hardness close to 1, the EDF scheduling mode is much more efficient
than RM on a single core platform as well as on a two core one. When deadline diminishes, this
difference between EDF and RM disappears. Dependent tasks with shared resources RM
scheduling, both with and without priority inheritance, demonstrate the same application density on
a two core platform. However, on a single core platform priority inheritance provides substantial
gain. The RM and EDF scheduling modes are optimal in their classes of applications when the latter

run on a single core platform.
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Fig. 8. RM vs. EDF for 5 independent tasks with shifted utility load

In case of multi-core processors, they are not optimal which is pretty well demonstrated by
applications with shifted load; i.e., with substantially non-uniform distribution of the total load
within the tasks. In the 5 task example in Fig. 8 60% of the total utility load is on task 1: it may be
characterized as a "heavy" one, while tasks 2-5 may be called "light". In such cases it's reasonable
to use a modified RM scheduling mode: the heavy task is assigned the highest priority, while
scheduling among light tasks is governed in the regular RM way. Both charts in Fig. 8 demonstrate
the advantages of this ModifRM (Modified Rate Monotonic) scheduling mode on a 2 and 3 core

platform, while using RM and EDF scheduling modes is equally inefficient in this case.
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5. Conclusions

Using the described methods of software simulation for estimating feasibility of real-time multi-
task applications on multicore platforms allows to obtain objective data for selecting an optimal
combination of scheduling mode and access protocols. It's noteworthy that analytical methods for
such estimates exist for single core platforms only; if used for a multi-core platform they provide
too pessimistic results. Therefore, simulation becomes an important tool for searching optimal
application structures and platforms for real-time multi-task applications. The developed simulator
may be used for feasibility checking of such applications.

Future research will be focused on extending the nomenclature of scheduling modes and access
protocols and the profile of applications under study.

This work was partially financially supported by the Government of the Russian Federation,
Grant 074-U01.
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Verification of UCM Models with Scenario Control

Structures Using Coloured Petri Nets
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This article presents a method for the analysis and verification of Use Case Maps (UCM)
models with scenario control structures — protected components and failure handling constructs.
UCM models are analyzed and verified with the help of coloured Petri nets (CPN) and the SPIN
model checker. An algorithm for translating UCM scenario control structures into CPN is
described. The presented algorithm and the verification process are illustrated by the case study

of a network protocol.

Keywords: verification, translation, Use Case Maps notation, coloured Petri net, SPIN
model checker, protected component, failure handling.

1. Introduction

At early stages of software projects development during requirements capturing and analysis
error prevention is of importance due to high cost on this stage. Use Case Maps (UCM) scenario-
oriented graphical notation [10] allows users to formalize and analyze functional requirements. At
the same time, it allows customers to monitor the system requirements. UCM models are general
purpose. They are used for test case generation [3, 4], building test coverage criteria [2], and as a
property specification language [8] for use with model checkers.

UCM model of a system depicts a set of scenarios as cause-and-effect relations between
responsibilities. Responsibilities may be superimposed on the underlying components structure,
reflecting the architecture of the system. UCM describes interaction of architectural entities
focusing on causal relations and abstracting from some details of messaging and data processing.

However, tools for analysis and verification of UCM models are insufficiently developed. The
UCM standard [10] defines an analysis procedure, which is implemented in the JUCMNav editor
[11]. This analysis technique is rather primitive and it is hard to use. Since the standard describes

the language semantics informally using traversal requirements for UCM, a number of papers are
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focused on providing a formal UCM semantics [6]. A few papers present a solution for verification
of UCM models [7]. Verification methods for specific subject domains are also being developed.
The paper [1] describes testing, analysis, and verification methods for telecommunication
applications based on UCM maodels.

In previous papers [15, 16], we described an approach for general-purpose UCM models analysis
and verification using coloured Petri nets (CPN). UCM models are translated into CPN models. The
latter are then verified using the well-known SPIN model checker [9]. CPN models may also be
analyzed directly using CPN Tools [5].

This article extends the scope of previously supported UCM constructs with protected
components and failure handling constructs. It describes a method of analysis and verification for

these UCM constructs.
2. Use Case Maps Notation Overview

The Use Case Maps notation is one of the languages defined in the User Requirements Notation
standard [10]. The UCM visual notation is a high-level scenario-oriented modeling tool. It focuses
on the causal flow of behavior, which is optionally superimposed on a structure of components.
UCM models depict the causal interaction of architectural entities in a system while abstracting
from message passing and data details. The notation simplifies modeling and analysis of functional
requirements for distributed and concurrent systems while also allowing to reason about system

architecture.

Sender TransmitNetwork Receiver
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EndTransmit
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<
SendAck
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N
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INT
[false]  ResendTimer [|EndAck

Fig. 1. Top-level map of the network protocol UCM model

Below we provide a short overview of basic elements of the UCM notation. Detailed language
description including its graphical syntax is provided in [10] and [15]. A map (see Figure 1)
contains any number of paths and components. Paths (depicted as connecting lines) express causal
sequences and causal relationships between path nodes. Paths are directed. They may contain

several types of path nodes. Paths start at Start Points (for example, StartTransmit on Figure
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1) and end at End Points (EndTransmit). These nodes define triggering and resulting conditions
respectively or pre-conditions and post-conditions (shown in square brackets). Start Points also may
denote the beginning of scenarios for failure and exception handling. Such Start Points are called
Failure Start Points and Abort Start Points respectively. Start Point type is defined by a
failureKind attribute, while a failureList attribute specifies a list of failures it may
respond to. Abort Start Point is a Failure Start Point that in addition cancels all scenario behaviors
in its abort scope — map of the Abort Start Point as well as all lower level maps as defined by Stub
hierarchy (see below). Responsibilities (Sp1it) define steps or actions required to fulfill a
scenario. Or-Forks, possibly including conditions for outgoing path selection (shown in square
brackets), and Or-Joins are used to model alternatives and loops. And-Forks and And-Joins express
concurrency. Waiting Places and Timers (ResendTimer) denote points on the path where a
scenario stops until a condition is satisfied or a triggering signal arrives. Scenario may also continue
past the Timer using the timeout path. Connect nodes and Empty Points are used to connect two
paths synchronously or asynchronously. Failure Points represent points on a path where the
continuation of a scenario depends on the occurrence of a failure or exception. Each failure point
has an associated triggering condition, as well as a failure name, which indicates the failure or
exception that happened. Failure name effectively defines Failure or Abort Start Points used to
continue scenario execution in case triggering condition is true. UCM models can be hierarchically
decomposed using Stubs (TransmitConnection) that contain reusable units of behavior and
structure called plug-in maps.

Components (Sender) are used to specify structural aspects of a system. Path nodes that reside
inside a component are said to be bound to it. UCM models without components are said to be
unbounded. Components may contain sub-components and have various types. However, most of
them do not influence model semantics and serve only to convey architectural aspects of a system.
Exceptions include components of kind Object that force interleaved traversal of path nodes of
parallel branches that are bound to the component and protected components
(TransmitNetwork) that restrict the amount of concurrent scenarios inside them. In the URN
standard, maximum amount of concurrent scenarios inside a protected component is always 1.
Therefore, protected components work as a mutual exclusion mechanism for concurrent scenario

execution.
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3. UCM Models to Coloured Petri Nets Translation Method

To analyze and verify UCM models we translate them into coloured Petri nets [12]. Input and
output models are represented as hierarchical directed graphs with additional information associated

with vertices and arcs.
3.1. Input UCM Model Restrictions

The following important restrictions are imposed on the input UCM models. All
model elements have unique names and direction of all paths is defined. Special traversal semantics
for the components of type Object is not supported. UCM models with Abort Start Points are
rejected. These path nodes are rarely used and cause state space explosion upon translation due to
scenarios termination semantics. Therefore, we do not translate them to CPN.

For the translation of protected components, we also impose an additional restriction on Or-Fork,
Timer, and Or-Join nodes. Each path node of these types should be either bound or not to a given
protected component together with all of its adjacent path nodes. This limitation is not fundamental
since it could be achieved by simple UCM model modification. In case the system detects that this
limitation is not held, the user is offered to modify the UCM model by either introducing additional
Empty Point nodes adjacent to the problematic path nodes or in any other way that ensures that the
limitation is held.

The listed restrictions do not limit significantly the set of supported UCM models since the most
used elements and their use cases are supported.

3.2.  UCM to CPN Translation Algorithm Overview

On the top level, UCM to CPN translation algorithm consists of five steps. On the first step pre-
processing of an input UCM model is performed. The first step includes simple conversions of an
input model as well as checks of input model constraints. The second step creates various CPN ML
language definitions common to the entire CPN model. On the third step, additional vertices are
added to the UCM model graph to simplify its conversion to a bipartite graph. On the fourth step,
path node vertices with their immediate vicinity are translated independently of each other
according to their types. The fifth step combines CPN fragments produced on the previous steps
into a single CPN model. The translation algorithm is described in detail in [15, 16].

On the first step, UCM model is pre-processed. As part of this process the model is converted to
an unbounded one, i.e. all components are removed. Information about protected components is

stored in the attributes of each path node bound to the given protected component. All initial values
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for variables in the UCM model are determined. Algorithm constraints for input models are
checked. The system notifies the user about any implicit conversions during this step.

The second step defines colours, constants, and some variables. A number of auxiliary colours
are introduced, including UNIT — standard “base” colour with only one possible value (). Tokens
with the colour UNTT are normally used to model signal transmission or scenarios execution.

On the third step, graph arcs that are not incident to vertices representing Connect path nodes are
partitioned. Each arc is partitioned into two arcs using new helper vertices i.e. vertices of the new
type FakePathNode. The resulting arcs preserve directions as well as annotations on the arcs
outgoing from non-helper vertices.

On the fourth step, each path node vertex with its immediate neighborhood defined by adjacent
Connect and helper vertices is handled separately. Each path node and its neighborhood are
translated into a CPN model fragment — an annotated graph with additional definitions in CPN ML
language. For each failure name, a CPN model fragment is also generated. During translation,
helper vertices become places of type UNIT.

The fifth step combines CPN model fragments produced on the fourth step into a single resulting
CPN model. Model elements with same names are either merged or represented as fusion places if

necessary.
4. Translation of Path Nodes Bound to Protected Components

To verify UCM models efficiently using CPN, number of scenarios being executed at a given
point of the model should be limited. Otherwise, translated CPN model will have places with
unbounded place capacity since places are used to model signal transport.

The UCM standard provides a method for modeling mutual scenarios exclusion for a subset of
the UCM model paths. Protected components depicted with a double outline fulfill this purpose. All
UCM model path nodes bound to the protected component are affected by it. Execution of any
scenario may continue inside a protected component only if no other scenario is already being
executed inside of it.

However, the semantics of the protected components offered by the standard is too restrictive to
represent a wide variety of scenarios interactions while keeping the capacity of CPN places in the
translated model limited. Thus, we propose to extend the standard by allowing to specify a
maximum amount of concurrent scenarios within a protected component. This could be
implemented either by adding a new integer attribute scenarios into the Component class of
UCM abstract grammar or by using comment elements attached to a given protected component.

The latter approach may be used to avoid modifying existing UCM editors.
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Below we will describe translation of UCM components with attribute protected = true
and positive values of the scenarios attribute, as well as other UCM path nodes which are bound
to such components. Note that if scenarios = 1 then the protected component has the same
semantics as in the UCM standard.

As any other UCM element, protected components have unique names. We will also impose an
additional restriction for Or-Fork and Or-Join nodes. Each path node of these types should be either
bound or not to a given protected component together with all of its adjacent path nodes. This
limitation is not fundamental since it could be achieved by a simple UCM model modification.
However, it avoids semantics ambiguity for such UCM models, as well as significant complication
of the translation algorithm.

The example of protected components translation from Figure 1 is provided in Section 7 and a
more detailed description of it is given in [14].

On the first step of the translation algorithm, we additionally check that scenarios > 0 for
all protected components. Otherwise, UCM model is deemed incorrect. The additional limitation on
Or-Fork and Or-Join nodes is checked as well. If it does not hold user is advised to modify the
UCM model by adding new Empty Points on the arcs incident to the problematic path nodes and
adjusting protected components. Information about each protected component is stored in the
attributes of path nodes bound to it. Each path node may be bound to multiple protected
components.

The second and third steps of the translation algorithm have nothing specific for protected
components. They are considered in Section 3.2.

Protected components are modeled in CPN using anti-places. Anti-place is a common CPN
modeling pattern used to limit the amount of tokens in a given fragment of CPN. Initial marking of
an anti-place usually holds the amount of UNIT tokens equal to the limit. When other tokens are
created in a given CPN fragment an equal amount of tokens from the anti-place should be
consumed. When other tokens are removed from a given CPN fragment, an equal amount of tokens
should be put back to the anti-place.

On the fourth step, each path node vertex and its adjacent vertices is translated into a CPN
fragment. An anti-place is created for each protected component a vertex has information about in
its attributes. The anti-place has a colour UNIT and an initial marking with the same amount of
tokens as the value of the scenarios attribute was for the protected component. Only the nodes

that are capable of starting (forking) or terminating (joining) scenarios that flow through them and a
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protected component will actually create additional anti-places and arcs. Anti-places are named
after the corresponding protected components, so they are uniquely identifiable as well.

The fifth step of the translation algorithm stays the same — all additional anti-places will be
joined according to their names in the same way other places of CPN fragments are joined, using
fusion places if necessary.

Translation of separate UCM path nodes is described below. For each path node and each
protected component, we may define whether this path node and any of the path nodes adjacent to it
are bound to the component. For Or-Fork and Or-Join nodes the path node itself as well as other
path nodes adjacent to it are either all bound or not to a given protected component. They do not
create or terminate scenarios. Therefore, CPN transitions corresponding to Or-Fork and Or-Join
nodes never need to be connected to anti-places.

Let us consider the translation of path nodes that may create or terminate scenarios. These
include And-Forks, And-Joins, Start Points, and End Points. If a path node is bound to a protected
component, a difference between the number of outgoing and incoming arcs is calculated. In case it
IS positive, an arc is added to the resulting CPN fragment from the anti-place to the transition
corresponding to the path node. In case it is negative, an arc is added in the reverse direction. In
both cases, arc inscription equals to the () times the absolute difference value. Note that
difference value cannot be zero — otherwise, there is no scenario creation or termination.

Let us consider the translation of path nodes bound to a protected component that have adjacent
path nodes not bound to the component. We calculate a balance value for a path node. Starting
balance value is 0. Each outgoing arc that leads to a path node not bound to the component
decreases balance by 1. Each incoming arc from a path node not bound to the component increases
balance by 1. After considering all incident arcs for the given path node we have a balance value of
this path node in relation to the protected component. In case the balance value is positive, an arc is
added to the resulting CPN fragment from the anti-place to the transition corresponding to the path
node. In case it is negative, an arc is added in the reverse direction. In both cases, arc inscription
equals to the () times the absolute balance value. In case the balance is zero no new arcs are
added.

The additional arcs described above may be added independently of one another. In this case,
their inscriptions are combined in a natural way. If a stub is bound to a protected component then
the described procedure is applied to all path nodes on child diagrams of the stub as well,
accounting for Start Points and End Points that have bindings to the stub, which do not create or

terminate scenarios.
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5. Translation of Failure Handling Path Nodes

Failure handling in UCM is modeled using Failure Point and Failure Start Point path nodes.
Failure Point represents a point in scenario behavior where the continuation of the scenario depends
on the occurrence of failure or exception. Failure Start Point denotes the beginning of a scenario
behavior in response to failure or, in other words, a start of a failure handler.

Failure Start Point nodes have a list of failure names they are supposed to be triggered for, while
Failure Point nodes have a failure attribute that denotes the name of failure that is triggered.
After a failure is triggered, the triggering scenario at the Failure Point terminates, and a number of
scenarios start at Failure Start Point nodes with a matching failure name in their failure list.

On the fourth step of the translation algorithm, each failure name is translated into a CPN model
fragment — a transition and a place named after the failure name. The place has UNIT type with
empty initial marking. An arc leading from the place to the transition is added with a () inscription.
Arcs are also added from the transition to each place matching Failure Start Points with a
corresponding failure name in their failure list. Each of these arcs has a () inscription as well. This
translation procedure closely resembles And-Fork path nodes translation [15].

Translation of Failure Start Points is similar to ordinary Start Points on child maps when they are
bound to stub inputs [16]. Transition corresponding to a Failure Start Point is linked with a place of
type UNIT, with empty initial marking. Arc from the place to the transition hasa () inscription.

Translation of a Failure Point is similar to an Or-Fork [15], which has two output paths — one
that continues the normal execution of the scenario and one that leads to a placed named after the
failure name. The conditions on the output paths are based on the failure condition — one of them is
the failure condition and the other one is its negation. Therefore, there is no need for additional
* OrForkWarnings place which normally tracks that conditions on the output paths of an Or-
Fork path node are mutually exclusive.

Note that a Failure Point and Failure Start Points it triggers may be on different maps. This case
is automatically resolved on the fifth step of the algorithm by converting some of the places
adjacent to the transition that corresponds to the triggered failure name into fusion places when

joining CPN model fragments.
6. Verification of CPN Models

A CPN model translated from UCM model may be analyzed using CPN Tools [5, 12] facilities.
In fact, it is especially useful for simulation. It also provides some limited state space analysis tools.

However, we find that certain model properties may also be formally verified in an automated and
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more efficient way. We use our own verification system for CPN that uses well-known SPIN model
checker [9]. In order to employ SPIN, CPN models are translated into its input language Promela
[13].

Properties for verification are expressed either as simple predicates that are expected to be true at
the end state (any state without enabled transitions) or as linear temporal logic formulas. In the
former case, the property check is represented as an assertion at the end states of the Promela
model. In a number of cases, properties for verification may be derived from the UCM model itself.
A common choice is to verify that End Points post-conditions hold and the UCM model is correct
with respect to branching conditions. Since UCM models are translated into CPN in a way that
provides auxiliary warning places to track the branching errors, it is possible to define such kind of
property for verification. On the CPN model level, the property holds if all warning places are
empty and all post-condition places contain only true tokens in the end state. This is translated to
Promela model level as a conjunction of several simple state conditions, which is asserted for the
end states.

Several restrictions on the input CPN models are imposed to translate them into Promela
language. CPN models produced from UCM models by our translation algorithm conform to all of
these restrictions but the finiteness restriction required to verify a model efficiently. CPN models
are expected to be finite — places and data types’ capacities should be limited. The finiteness
restriction may be viewed as a reflection of real computer memory finiteness. It is possible to set all
finiteness limits manually before the verification.

The finiteness restriction may be conformed to in various ways — by either constructing a UCM
model in a certain way or applying additional restrictions on the Promela model level for state space
exploration. In case a given finiteness limit is reached during a verification the system advises the
user to either increase the limit value or modify the UCM model by adding protected components to
it. Protected components are used as a means to limit places capacity. At the same time, protected
components usually identify an important limitation on the UCM model level, such as a limited
network bandwidth or a limited amount of memory available to the system.

Verification may be successful or not. If the given property does not hold, a counterexample is
generated. A counterexample is a sequence of states (places with their markings) and binding
elements (transitions and their variable bindings) that lead to the found invalid state or does not
satisfy linear temporal logic formula if the property was specified as one. For user convenience,
counterexamples may then be mapped back to the UCM model or analyzed with CPN Tools. After
correcting issues in either the UCM model or the property to verify, the verification process is

repeated.
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7. Case Study

We demonstrate algorithms and tools presented in this paper in a case study. A UCM model
describes a simple communication protocol designed to transfer reliably a decimal number over a
network capable of transmitting only one digit per packet. Data to transfer is integer due to URN
Data Language limitations. The UCM model is translated to CPN and then to Promela model,
which is then executed to verify a post-condition from the UCM model. The case study
demonstrates usage of protected components to ensure the translated model is finite.

Figure 1 shows a top-level map of the UCM model of the protocol. All UCM elements except
fork and join elements are labeled. URN Data Language expressions (branch conditions and post-
conditions) are depicted as labels with code in square brackets. URN Data Language actions
(associated with Responsibilities depicted as crosses) and some expressions are not shown. The
model includes four components: Sender, Receiver, TransmitNetwork, and AckNetwork. The latter
two components are protected and were added by the user after the initial verification attempt
failed. These protected components limit the amount of concurrent scenarios to 2 and reflect a
limited network bandwidth. Sender splits SendData value into digits and sends them over the
network, retransmitting as necessary. Each of the two network components contains a Static Stub
that represents an unreliable network environment for transmitting packets from Sender to Receiver
and vice versa. Both stubs contain the same Connection plug-in map. Receiver processes packets as
soon as they arrive and assembles transmitted data from them. Receiver acknowledges each arriving
packet with a sequence number of the next expected packet. Sender receives acknowledgement
packets and updates the sequence number of the next packet to send. Sender assumes that sequence
numbers can only increase.

After sending a packet, Sender waits on a Timer element. If the current packet sequence number
equals to the sequence number of the next packet to send, then the same packet is resent. Otherwise,
Sender fetches the next digit to send and sends a new packet with the next sequence number. A
packet with the payload -1 signals the end of data. If Sender receives an acknowledgement that
such packet was received, data is considered transmitted and the EndTransmit End Point post-
condition [Received && ReceiveData = SendData pre] is checked, where
SendData_pre is the initial value of the SendData variable. The post-condition is satisfied if
Receiver considers the data received (an appropriate flag is t rue) and the data received equals to
the data sent.

The UCM model post-condition for the EndTransmit End Point is verified, together with the

absence of warnings during model execution. According to this property, the protocol always
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finishes in the expected correct state and the source UCM model is consistent with respect to
branching conditions. The property is simply asserted in the resulting Promela model at end states.
The UCM model, CPN and Promela intermediate models with verification results and a detailed
description can be found in [14]. During verification, no additional restrictions were imposed on the

Promela model. Verification was successful.
8. Conclusion

The Use Case Maps graphical notation provides an expressive means of describing functional
requirements for software systems and protocols. In this article, we have presented a method for
translation of UCM models to CPN and its application for verification of UCM models. This
method enables users to analyze and verify more expressive UCM models as compared with the
method in [15, 16] by supporting failure handling and protected components.

Protected components with the extended semantics are especially useful for verification.
Protected components limit the number of concurrent scenarios thus limiting places capacity in the
translated CPN model. This ensures that the model is finite and can be efficiently verified using
SPIN.

A current version of our tool supports translation of JUCMNav editor [11] files to CPN Tools [5]
files. UCM models translated to CPN can be analyzed using either built-in CPN Tools facilities or
the CPN models verifier based on SPIN [13]. A verification result shows if a model is correct with
respect to a given property. If not, an error must be located. While it is possible to map the
counterexample generated by SPIN to the UCM model, we find that it is often more convenient and
productive to perform the required analysis using CPN Tools.

The algorithm for UCM models translation into CPN is efficient. The translation method
described in [15, 16] has polynomial complexity for the size of the resulting CPN models [16]. This
estimate holds for the translation algorithm described in this paper as well.

It is important to justify that UCM to CPN translation is correct. However, this requires a formal
semantics for the UCM, which is not provided by the standard [10].

We plan to evaluate our tools using other UCM models of communication protocols as well as

other systems. We also plan to explore timing extensions [7] for the UCM notation.
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Abstract. Extended Finite State Machines (EFSMs) are widely used when deriving tests for
checking whether a software implementation meets functional requirements. These tests usually
are derived keeping in mind appropriate test purposes such as covering paths, variables, etc. of
the specification EFSM. However, it is well known that such tests do not detect many functional
faults in an EFSM implementation. In this paper, we propose an approach for increasing the
fault coverage of test suites initially derived against the specification EFSM. For this reason, the
behavior of the specification EFSM is implemented in Java using a template that is very close to
the EFSM description. At the next step, the fault coverage of an initial test suite derived against
the specification EFSM is calculated with respect to faults generated by pJava tool. Since the
EFSM software implementation is template based, each undetected fault can be easily mapped
into a mutant EFSM of the specification machine. Thus, a distinguishing sequence can be
derived not for two programs that is very complex but for two machines and there are efficient
methods for deriving such a distinguishing sequence for Finite State Machine (FSM)
abstractions of EFSMs. As an FSM abstraction, an I-equivalent of an EFSM can be considered
that in fact, is a subtree of the successor tree of height | that describes the EFSM behavior under
input sequences of length up to I. Such I-equivalents are classical FSMs and if | is not large then
a distinguishing sequence can be derived simply enough. The initial test suite augmented with
such distinguishing sequences detects much more functional faults in software implementations

of a system described by the specification EFSM.

Key words: Extended Finite State Machine (EFSM), test derivation, fault coverage, mutation

testing, wJava.
1. Introduction

Model based test derivation is now widely used for deriving functional (conformance) tests for
software implementations [1, 2] which nowadays are used everywhere including various critical
systems. When deriving tests with the guaranteed fault coverage finite state models such as Finite

State Machines (FSMs) and their extensions are widely used [2], since these models have the
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natural reactivity and there are no races between inputs and outputs. However, traditional FSMs are
too big for real-life software and extracting such a model from informal description of functional
software requirements is rather difficult. Despite the big number of publications about automatic
derivation of an FSM from informal behavioral restrictions, most authors consider small examples
and very often such model is manually derived by a test engineer. The Extended Finite State
Machine (EFSM) [3] extends the classical FSM with input and output parameters, context variables,
update functions and predicates defined over context variables and input parameters. For test
derivation for telecommunication protocol implementations the EFSM model is often extracted
from the protocol RFC specification [2]. As a result, it is nearly to impossible to find the correlation
between model and software faults with respect which we are going to guarantee the fault coverage.
Often enough faults are injected into constructed software and then corresponding mutants are
distinguished [4, 5]. In this paper, we propose to derive distinguishing sequences not for code but
for two EFSMs injecting faults into the template Java implementation of the specification EFSM.
We note that the same approach can be applied when using other programming languages for which
an automatic mutation tool exists.

There exist a number of EFSM based test derivation methods. Tests usually are derived keeping
in mind appropriate test purposes such as covering paths, variables, etc. of the specification EFSM.
The derived tests have a good quality but it is well known [6, 7] that such tests do not detect many
functional faults in a software implementation of a system described by the EFSM.
Correspondingly we propose to increase the fault coverage of EFSM based test suites constructing a
Java template implementation of the specification EFSM. Using the tool pJava [8] a number of
mutants is generated for the template EFSM implementation which are tested using the initial test
suite derived by covering appropriate paths in the specification EFSM. If a mutant is not detected
by the initial test suite then a corresponding fault is easily mapped into an EFSM fault and a
distinguishing sequence is derived not for two software programs that is known to be a very
complex task [5] but for two finite state models that is known to be much simpler [9, 10]. First
results have been published in [11]; in this paper, we extend a proposed approach to arbitrary
EFSMs.

The rest of the paper is structured as follows. Section 2 contains preliminaries. A proposed
approach is described in Section 3. In Section 4, we apply a proposed approach to a Simple
Connection Protocol SCP that being a ‘toy example’ has many features that are presented in real

protocol descriptions. Section 5 concludes the paper.
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1. Preliminaries

A Finite State Machine (FSM) [12] is a 5-tuple S = (S, I, O, hs, so), where S is a nonempty finite
set of states with the designated initial state so, | and O are nonempty finite input and output
alphabets, hsc | x S x S x O is a behavior or a transition relation. Extended FSM (EFSM) extends
the classical FSM by context (internal) variables, input and output parameters and conditions when
a transition can be fired. Formally [3], an EFSM M is a 5-tuple M = (S, so, X, Y, T, V), where S is a
nonempty finite set of states of the EFSM, X and Y are nonempty finite input and output alphabets,
V is a finite possibly empty set of context variables, T is a set of transitions between states of S.
Every transition of the EFSM is a 7-tuple (s, X, P, om, ¥, um, S'), where s and s’ are the initial and
final states of the transition; x € X is an input, along with Dinpx denoting the set of input vectors,
i.e., vectors with all possible values of input parameters which correspond to x (input parameters); y
€ Y is an output, along with Douty denoting the set of output vectors, i.e., vectors with all possible
values of output parameters which correspond to y (output parameters); P, om and um are functions
over input parameters and context variables from V. The predicate P: Dinpx x Dv— {0, 1} where Dy
is the set of context vectors, describes the conditions when a corresponding transition can be fired;
the function om : Dinpx x Dv — Douty updates the values of output parameters after firing the
transition, while the function uwm : Dinpx X Dv— Dv updates the context variables.

The configuration is a pair «state, context vector»; a parameterized input (parameterized output)
is a pair «input, vector of input parameter values» («output, vector of output parameter values». The
initial configuration is usually denoted (so, vo). A transition of an EFSM can be fired if the
corresponding predicate is ‘True’ for the current parameterized input and configuration. Thus,
differently from classical FSMs not each transition at a current state can be fired and this is the well
known problem of transition execution [3]. It is possible that in order to fire a given transition we
have to execute a number of other transitions first, for example, in order to reach a predefined value
of a counter.

Well known test for an EFSM is a transition tour which is widely used for detecting functional
faults in various systems’ implementations [7]. A transition tour is a parameterized input sequence
that traverses each transition of the EFSM. As mentioned above, it is not simple to construct such a
sequence for an EFSM; however, there exist methods [13] for the transition tour construction. Other
methods construct the set of input sequences that cover critical paths, conditions, variables but as it
is shown in PhD thesis of S. Nika [6], the fault coverage of such tests with respect to functional

software faults is very low, around 70 %; when considering functional faults such as transition
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and/or predicate faults, variable and/or parameters updating, etc. On the other hand, in [7], it is
shown that the transition tour also is not very efficient with respect to such functional faults, since a
transition tour covers only appropriate paths. Accordingly in [7] it is shown that the fault coverage
of random tests of appropriate length is almost the same as that of a transition tour.

As an example, we consider an EFSM describing the behavior of Simple Connection Protocol
(SCP) [14, 15], that has three states; every state describes an appropriate operating mode. State S;
describes a mode when a protocol implementation is waiting for connection, Sx corresponds to
establishing the connection while state Sz is related to data transmission. Inputs correspond to
standard protocol commands: Req (request), Conn (connection), Data (data transmission) and Reset.
We also use an input parameter Support that equals 1 when the connection of the predefined quality
QoS can be established and 0, otherwise. Input parameter SysAvail equals 1 if the system is
available and 0, otherwise. Output parameters are also very natural: No support, Error, Abort,
Support, Refuse, Accept, Ack 1. Context variable TryCount corresponds to the number of attempts
when the connection has failed. Despite the fact that this protocol is somehow a “toy protocol”, it
illustrates many aspects of protocol implementations.

As mentioned above, differently from deriving a distinguishing sequence against software
mutants the derivation of such sequences for finite state machines is much simpler. Distinguishing
sequences for two FSMs are constructed based on the product of these machines [11]; for EFSMs it
is a bit more complex, since appropriate FSM abstractions are derived first [16, 17, 18]. Such
abstractions can be derived in various ways, for example, we can simply delete all predicates,
context variables, input and output parameters and updating functions. As shown in [19], in this
case, a distinguishing sequence will be constructed for two nondeterministic FSMs. It is also the
case when predicate abstractions are considered when deriving a distinguishing sequence [20]. One
of simple ways is to use I-equivalents of an EFSM which describe the EFSM behavior under critical
(parameterized) input sequences of length up to I. In the paper [10], it is experimentally shown that
when two EFSMs differ in a small number of transitions (the specification EFSM and a mutant
EFSM with one or two mutation transitions) usually it is enough to consider | = 2, 3 when deriving

a distinguishing sequence.
2. Test derivation when using pJava

An initial test suite is derived against the specification EFSM using one of known approaches. It
can be a transition tour or a set of randomly derived test cases of appropriate length. This initial test

suite will be then augmented with distinguishing sequences for mutants derived by pJava for a
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template Java implementation of the specification EFSM. The last version of this tool (uJava, v.4)
appeared in June, 2013 [8]. The pJava has good functional abilities and according to the documents
can generate 34 types of code mutations. There are traditional faults such as the operator or variable
replacement and object-oriented faults for inheritance, polymorphism, etc.; there is the high
correlation between these mutants and functional software faults. For this reason, we have selected
this approach in order to increase the fault coverage of EFSM based test suites. It is known that
single faults are most hard detecting faults [6], while test suites complete with respect to single
faults detect a big number of other (multi) faults. Correspondingly, pJava injects exactly various
types of single faults into software implementations. For correct use of pJava it is necessary to
perform appropriate pre-settings which can be found in the official developer site [6]. For mutant
generation, the pJava graphic shell should be installed and the code project and mutation types have
to be selected. As a result, in the Results folder all the generated mutants will appear; subfolders
will have titles corresponded to a mutation type. By the use of the JUnit library for module testing
[21] a current test suite can be applied to all mutants simultaneously in order to determine mutants
which are not detected by the test suite, i.e., have the behavior that cannot be distinguished with the
template Java implementation. For those mutants, corresponding faults will be injected into the
specification EFSM and a distinguishing sequence will be derived for two machines, a mutant and
the specification. Therefore, EFSM based test derivation strengthened with pJava includes the
following steps.

Step 1. An initial EFSM based test suite TS is derived using one of well known methods. This
test suite can be a transition tour of the specification EFSM M, or a test suite can cover some critical
transitions, conditions, paths, etc., or a test suite can be a random test of appropriate length.

Step 2. A Java template implementation of the specification EFSM is derived. The template is
very close to the EFSM notion and thus, there is the strong correlation between faults in the
specification EFSM and template implementation. In particular, EFSM states in the template
implementation are the values of a corresponding variable (for describing an appropriate mode, for
example). Context variables and input and output variables correspond to those in the template
implementation; predicates describe the conditions for instruction execution.

Step 3. The fault coverage of the test suite TS is checked with respect to faults injected by pJava
generator into the template implementation and the set Mut of the specification EFSM mutants
corresponded to undetected faults is constructed.

Step 4. For each EFSM Imp of the set Mut, an appropriate FSM abstraction is derived keeping in
mind mutated transitions. At the next step, a distinguishing sequence for the specification and

mutant FSM abstractions is constructed if such a sequence exists. In this case, a derived
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distinguishing sequence is added to TS. If such a sequence is not found then the conclusion is drawn
that the mutant is indistinguishable with the specification EFSM.

Remark. We note that when a distinguishing sequence is not found, we cannot guarantee the
equivalence of the mutant and specification but our experiments with protocol implementation show
that such situations occur very rare. In other words, according to performed experiments, the
specification and indistinguishable mutant EFSMs always were equivalent. Nevertheless, we
underline that for EFSMs there are no necessary and sufficient conditions of the two EFSMs’
equivalence and in our experiments when checking the equivalence, we used only some sufficient
conditions. One easily checked condition is that the fault injection creates instructions which do not

influence the specification EFSM behavior.
3. Analyzing performed experiments for simple connection protocol

We performed experiments with EFSMs which are used for describing protocols Simple
Connection Protocol, Time, SMTP, POP3, TFTP, Audio CD player [11]. Almost in all cases, save
for the simplest protocols, a transition tour needed to be augmented with distinguishing sequences
obtained after using the pJava tool. The augmentation process in more details is illustrated for the
Simple Connection Protocol. A template Java implementation has been obtained for this protocol
and a transition tour was used as an initial test suite. After applying pJava, 245 traditional

(arithmetic) mutants have been generated, along with seven object oriented mutants (Table 1).

Table 1. Generated mutants

Name Mutant description Number of mutants
AOIS |Variable increment/decrement 96
AOIU |Inserting a unary operator (arithmetic “-*) before a variable 5

LOIl |Operand bit based inversion 24

ROR |Logic operator replacement >,<,=,<=>= == 91

COR |Logic operand replacement ||, &&,&,| 4

COIl |Injecting logic inversion into conditions 17
ASRS | Arithmetic operator modification: +=, /=, -=, %= 8

JSI Adding the “Static” modifier to instance variables 7

Overall 252 mutants
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When applying the initial test TS to all generated mutants, it occurred that 62 mutants (24,6%)
produced expected outputs to all test cases. Using FSM abstractions we determined that 9 (3,6%)
are distinguishable with the specification EFSM. Other 53 (21%) mutants were indistinguishable
with the EFSM specification. Based on the EFSM specification the paths were determined where
nonequivalent mutations occurred and a test suite has been augmented with three additional
parameterized distinguishing sequences of the total length 11; correspondingly, the test suite length
was increased from 18 up to 29 parameterized inputs. We also checked 53 indistinguishable
mutants using simple sufficient conditions and all of them were found to have injected faults which
do not influence the specification behavior. Therefore, the fault coverage of the initial test suite has

been increased from 75,4% up to 100 % (with respect to mutants generated by pJava tool).

4.Conclusion

In this paper, we proposed how to increase the fault coverage of EFSM based test suites when
testing software implementations, since tests based on covering appropriate paths, variables, etc. are
known to be incomplete with respect to functional software faults. We develop a template Java
implementation of the EFSM specification such that implementation faults can be easily mapped
into the EFSM faults. The pJava tool is used to inject faults into the template implementation and
the set of corresponded EFSM faults undetected with the initial test suite is constructed. Thus, a
distinguishing sequence is derived not for two Java programs that is very complex but for two
machines and there are efficient methods for deriving such a distinguishing sequence for FSM
abstractions of EFSMs. As the performed experiments show this approach allows to eliminate
mutants which are equivalent to the EFSM specification and to augment the initial test suite with
appropriate distinguishing sequences for non-equivalent mutants. We plan more experiments with
real protocol software implementations in order to reveal which functional faults still are not
detected with constructed test suites. Another direction of our future work includes the study how to

use the obtained results for fault localization in software implementations.
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On the minimization and equivalence checking of

sequential reactive systems

Temerbekova G.G. (Lomonosov Moscow State University)
Zakharov V. A.
(National Research University Higher School of Economics (HSE))

Finite state transducers over semigroups can be regarded as a formal model of sequential
reactive programs. In some cases verification of such programs can be reduced to minimiza-
tion and equivalence checking problems for this model of computation. To solve efficiently
these problems certain requirements are imposed on a semigroup these transducers operate
on. Minimization of a transducer over a semigroup is performed in three stages: at first
the greatest common left-divisors are computed for all states of a transducer, next a trans-
ducer is brought to a reduced form by pulling all such divisors "upstream”, and finally a
minimization algorithm for finite state automata is applied to the reduced transducer. As
a byproduct of this minimization technique we obtain an equivalence checking procedure
for transducers operating on certain classes of semigroups.

Keywords: reactive system, transducer, semigroup, minimization, equivalence checking
1. Introduction

Finite state transducers extend finite state automata to model functions on strings or lists.
That is why they are used in fields as diverse as computational linguistics [9] and model-based
testing [1, 18]. In software engineering transducers provide a suitable formal model for various
device drivers for manipulating with strings, transforming images, filtering dataflows. Trans-
ducers also found a usage in regular model checking of parameterized distributed systems. In
some formal models of these systems configurations are modeled as words over finite alphabet
and a transition relation is specified by a finite state transducers [21]. The more succinct is the
presentation of these transducers, the more efficient are regular model checking algorithms. The
authors of [17] proposed models of communication protocols as regular transducers operating
on bit strings and set up the verification problem as equivalence checking between the protocol
transducer and the specification transducer. These considerations show that algorithms for
building compositions of transducers, checking equivalence, reducing their state space consider-

ably enhance the effectiveness of designing, verification and maintenance of software routines.
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Transducers can take on the role of simple models of sequential reactive programs. These
programs operate in the interaction with the environment permanently receiving data (requests)
from it. At receiving a piece of data such program performs a sequence of actions. When
certain control points are achieved a program outputs the current results of computation as
a response. Since different sequences of actions may yield the same result we need a more
sensitive interpretation of the outputs than just words in some alphabet. Basic actions of a
program are interpreted as generating elements of an appropriate semigroup, and the result of

computation is a composition of actions performed by the program.

Imagine, for example, that a radio-controlled robot moves on the earth surface. It can make
one step moves in any of 4 directions N, F, S, W. When such robot receives a control signal
syg in a state ¢ it must choose and carry out a sequence of steps (say, N, N,W,S), and enter
to the next state ¢’. At some distinguished state gy;, robot reports its current location. The
most simple model of computation which is suitable for designing such a robot and analyzing
its behaviour is non-deterministic finite state transducer operating on free Abelian group of
rank 2. These considerations give rise to the concept of a transducer which has some finitely

generated semigroup S for the set of outputs.

In this paper we study minimization and equivalence checking problems for finite state trans-
ducers operating on certain semigroups. The study of these problems for classical transducers
over words began in the early 60s. First, it was shown that the equivalence checking problem
is undecidable for non-deterministic transducers [8]. But the undecidability displays itself only
in the case of unbounded transduction when an input word may have arbitrary many images.
At the next stage bound-valued transducers were studied. The equivalence checking problem
was shown to be decidable for deterministic [3], functional transducers |2, 15|, and k-valued
transducers [5, 20]. In a series of papers [12, 13, 16| a construction to decompose k-valued trans-
ducers into a sum of functional and unambiguous ones was developed and used for checking
k-valuedness and equivalence of finite state transducers over words. An alternative approach
which is applicable to a more wide class of transducers was introduced in [23]. It was shown
that the equivalence checking problem is decidable for k-valued transducers operating on any

semigroup S which is embeddable in a decidable group.

The minimization problem for finite state transducers over words was considered in [11], but
only in [10] an admissible solution to this problem was obtained. Later a minimization algorithm

proposed by Mohri was corrected and improved in [4, 14]. In [7] an attempt was made to adapt
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this result to weighted transducers. An alternative approach to this problem was suggested in
[24]: it was shown that minimization of finite state transducers operating on decidable groups
can be achieved through the using of equivalence checking algorithms developed in [23].

In this paper a minimization technique proposed by M. Mohri [10] is extended to cover the
case of finite state transducers operating on ordered semigroups. Minimization of a transducer
m over a semigroup S is performed in three stages. At the first stage for every state ¢ we
compute the greatest common left-divisor GCD(7, q) of all those elements of S that are the
results of the runs of 7 beginning in ¢. At the next stage we pull all GCD(m,q) "upstream”
to obtain such a transducer 7’ that GC'D(n’,q) for every state ¢ is the neutral element of
S. A transducer enjoying this property can be minimized by considering its underlying finite
automaton only and by applying any minimization algorithm for finite automata (see, e.g.
[19]). As a byproduct of this minimization technique we obtain also an equivalence checking

procedure for transducers operating on S.

This work is supported by the Basic Research Program at the National Research University
Higher School of Economics in 2016 and by RFBR grants N 16-01-00546.

2. Transducers as models of sequential reactive systems

Let C and A be two finite sets. The elements of C are called signals; they may be viewed as
abstractions of messages (control instructions, instrument readings, etc.) received by a reactive
system from its environment. Finite sequences of signals (words over alphabet C) are called
signal flows. As usual, the set of signal flows is denoted by C*. We write uv for concatenation
of signal flows v and v.

The elements of A are called basic actions; they may be viewed as abstractions of operations
(data processings, movements, etc.) performed by a reactive system in response to received
messages. Finite sequences of basic actions (words over A) are called compound actions.

Actions are interpreted over semigroups. Consider a semigroup (.5, e, o) generated by the
set A, where e is the neutral element, and o is a composition operation. The elements of S
may be regarded as data states. Every basic action a,a € A, always terminates and when been
applied to a data state s,s € .S, yields the result s o a. Every compound action g = aqas...a
is interpreted as the composition a; o as o --- 0 a,. In order to distinguish a compound action
g from its interpretation we denote the latter by [g]s and skip the index S when a semigroup

is clearly assumed from the context.
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A deterministic finite state transducer over a set of signals C and a set of basic actions A is
a labeled transition system m = (C, A, Q, qo, F, T, go), where @ is a finite set of control states,
do, o € Q, is an initial state, F, F C (@ is a subset of output states, T,T : Q x C — Q x A*, is a
transition function, and go, go € A*, is an initializing action. Every quadruple (¢, ¢, q’, g) such
that T(q,c) = (¢, g) is called a transition which is depicted as ¢ —2% ¢'. By the size || of a
transducer m we mean the number |@Q| of its control states.

A run of m on a signal flow w = cicy. .. ¢, is a sequence of transitions
C1,9 C€2,9: C3,9; Cn,g /
028 gy 2B g, BB ooty 1)

We denote this run by ¢ ﬂ)* ¢, where h = ¢1gs ... g,. If ¢ is the initial state then the run is
called initial, and if ¢ € F then the run is called output. If a run is both initial and output
then it is called complete. When ¢ L};* q is a complete run of 7 and the actions are interpreted
over a semigroup S the element [goh] is called the result of the run.

Finite state transducers can be used as formal models of sequential reactive systems. At
the beginning of the computation a reactive system executes an initializing action gy. At each
step of its computation it receives a signal ¢ from the environment and performs a transition
q =% ¢ by passing its control to a state ¢ and executing an action g. When a system turns out
to be in an output state it displays an achieved result of its computation to an outside observer
and continues its interaction with the environment. A behaviour of such a reactive system is

completely specified by a partial function 7 : C* — S such that

oh], if there exists a complete run ﬂ* "of 7
() [g0h], p q q ,
m(w) =

undefined, otherwise,
for every signal flow w.

Transducers m and 7y are S-equivalent (m; ~g o in symbols) iff m(w) = m(w) holds for
every signal flow w. A transducer 7’ is called S-minimal if |7’'| < |7| holds for any S-equivalent
transducer w. The minimization problem for transducer over a semigroup S is to build, given
an arbitrary transducer 7, a S-minimal transducer 7’ such that 7’ ~g 7.

With every transducer m = (C, A, Q, qo, F, T, go) operating on a semigroup S one can asso-
ciate a deterministic finite state automaton A, = (C x S, @, qo, F, ) over a (possibly infinite)
alphabet of pairs C x S; its transition function ¢ : @ x (C x S) — @ is specified as follows:
(g, (c,s)) =q¢ <= T(q,c) =(¢,9) Ns=[g]. Such an automaton takes at its input a finite
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sequence of pairs o = (¢y, $1), (¢2, S2), - . -, (¢n, S,) and accepts it at reaching an output state ¢'.
Clearly, A, accepts « iff the transducer 7 has a complete run (1) such that [g;] = ¢; for every
i,1 <i<mn. Let L(A) be the set of all sequences «, @ € (C x S)*, accepted by A,. Transducers
7" and 7" are strongly equivalent on a semigroup S (in symbols 7’ ~g 7") iff L(AL) = L(AL).
It is easy to see that if transducers 7" and 7" have the same initializing action (i.e. [g)] = [g7])
and 7 ~g 7" then m ~g m. In general case the converse is not true. The key idea of our
minimization technique is that of finding, given a certain semigroup S, a subclass of reduced
transducers such that
1. for every transducer 7 one can effectively construct a reduced S-equivalent transducer 7’
such that |7| = |7],
2. for any pair of reduced transducers «’ and «” it is true that n’ ~g 7" iff 7’ ~g 7" and
[90] = L96]-
Then to minimize a transducer m one needs only to build an equivalent reduced transducer 7’
and then apply any of the well-known techniques [19] for minimization of a deterministic finite
state automaton A... This approach can be used also for equivalence checking of finite state
transducers operating on certain semigroups: to check whether m; ~g 75 it is sufficient to build
S-equivalent reduced transducers 7] and ) and then check the equivalence of deterministic

finite state automata A, and A .
3. Ordered semigroups

In this section we will impose certain requirements on a semigroup S to solve efficiently the
minimization problem for transducers operating on such a semigroup.

Let a binary relation <g on S be defined as follows: s; <g s9 <= ds:s;0s = 53. A
semigroup S is called ordered iff (S, <g) is a partially ordered set. Sometimes we will skip the

underscore symbol S if it is clear from the context. Our first requirement is

Reql: (5, <) is a well-founded lattice such that the greatest lower bound is effectively com-

putable for every pair of elements [h] and [g], where g, h € A*.

Denote by s1 V s and s; A sy the greatest lower bound and the least upper bound of elements
s1 and sy respectively. Actually, s; V so is the greatest common left-divisor of s; and sy, and
s1 A 8o is the lowest common multiple of s; and s;. From the definition of < it follows that
508 Vsosy =so0(s3Vsz). The neutral element e of S is the least element in (S, <) but

this lattice may have no maximal elements. We add to S a new virtual element 7 such that
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soT =71os = 71 holds for any element s in S. Clearly, s < 7 holds for every s,s € S. Let
S; = SU {7} Thus, if S meets the requirement Reql then (S;, <) is a complete lattice. For

any subset S” of S; we write \/ .S” for the greatest lower bound of 5’

Req2: There exists an algorithm for solving equations of the form [g] o X = [h] for every pair

of actions g, h € A*.

It is easy to see that if a semigroup S satisfies the requirements Reql and Req2 then the word
problem "|[g] < [h]” is decidable in S.
A semigroup S is called left cancellative iff sos’ = sos” = s =" holds for every triple

of elements s, s, s”. Our final requirement is
Req3: S is a left cancellative semigroup.

Many semigroups widely used in computer science, including free monoids, partially commuta-
tive monoids (traces) [6], a semigroup of conservative substitutions [22], etc. meet the require-

ments Reql—Req3 listed above.
4. Greatest common divisors

Our minimization algorithm comprises three stages. At the first stage it figures out for every
control state ¢ the greatest common divisor of all results of all output runs that start in q.

A control state g of transducer 7 is useful if it is traversed by at least one complete run. It
easy to see that useless states do not affect the function 7(-) and by deleting all useless states
with the incoming and outcoming transition we obtain an equivalent transducer 7’. We will
assume without loss of generality that all control states of transducers are useful.

Let m be a finite state transducer such that @ = {q1,¢s,...,¢,}. Consider an arbitrary

control state ¢; of a transducer 7 and a set
w,h
S(myqi) ={[h]: ¢ —« qj.q; € F} .

of results computed by the output runs started in the state ¢;. We say that the element
ged(m,q;) =\ S(m,q;) is the greatest common divisor of the state ¢; and use a notation GC' D(7)
for the tuple (ged(m, q1), ged(m, qa), . .., ged(m, q,))-

To compute the greatest common divisors of all control states of © we introduce an op-

erator ¥, : S? — S” as follows. For every tuple (si,ss,...,5,) in SI we assume that



System Informatics (Cucremuas nudopmaruka), No. 7 (2016) 39

U, (81,82,...,8,) = (8],85,...,8), where

e, if ¢; is an output state,

VAlgl o s; : T(qi,c) = (gj,9),c € C}, otherwise,

for every 7,1 < i <n.

The partial order < can be extended on the set of tuples S in the usual way:

(81,89, .., 8n) S (s],85,...,8) <= Vi:s; X s, .

’r n

Proposition 1. If a semigroup S meets the requirement Reql then ¥, is monotone operator.

This proposition follows immediately from the definition of W. Since S, is a complete
lattice, the operator W, by Knaster-Tarsky theorem has the greatest fixed point gfp(¥.,).
By Kleene theorem the greatest fixed point of W, is the limit of the descending sequence
T >5 U(T) =g Vo (Ve(T)) =5 ..., where T = (r,7,...,7). Since by Reql the partially
ordered set (S, <) is well-founded, Uk (T) = Ur(T) = gfp(¥,) holds eventually for some k.
Proposition 2. If a semigroup S meets the requirement Reql then gfp(¥,) = GCD(x).

Proof. 1). If ¢; € F then e € S(m,q;) and, hence, ged(m, ¢;) = e. If ¢; is not an output control
state then S(m,¢;) = U{lgl o [h] : T(qi.c) = (gj,9),h € S(m,q;)}. Therefore,

ged(r,q;) = \/{lg] o GCD(, ;) : T(as, ) = (¢5,9), ¢ € C}

by left-distributivity of o over V. Hence, GC'D(7) is a fixed point of the operator V.

2). Suppose that gfp(V,) = (s}, sh,...,s,) and g Lh* ¢; is an arbitrary output run of 7. It

’ n

could be shown by induction on the length of this run that s, < [h]. If s; = s; then by definition
of U we have s; = e < [h] for any action h. Consider a case of a run g; L};* ¢ = 295 a4 ﬂ;
¢;. Then by induction hypothesis and by definition of ¥, we have s} < [g] o s}, < [g] o [R'] = [h].
Therefore, s; < [h] holds for every [h] in S(m,¢;). This implies that s, < gcd(w,¢;) for every

i,1 <i<mn. Thus, gfp(V,) < GCD(m). O
5. Reduced transducers

At the next stage our minimization algorithm brings a finite state transducer to a reduced
form. We say that a transducer 7 operating on a semigroup S which satisfies Reql is reduced

iff GCD(m) = (e,e,...,e).
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Theorem 1. If a semigroup S meets requirements Reql—-Req2 then every transducer 7 can
be effectively transformed into a reduced transducer 7’ such that © ~g 7" and |7| = |7'|.
Proof. Suppose that ¢; is the initial control state of w. For an arbitrary transition ¢; —2 g; in
7 consider an equation ged(m, ¢;) o X = [g] 0 ged(q;). Since S(m,q;) 2 {[g]os:s € S(m, q;)}, by
definition of GCD(7) we have ged(m, ¢;) = [g] o ged(m,q;). Hence, the equation above always
has a solution. By Req2 this solution X = ¢’ can be computed effectively. A transducer n’
is obtained from 7 by the replacement of every transition ¢; —2 g; with a transition g¢; o9, q;
and by the replacement of the initializing action gy of 7 with an initializing action g; such that
[96] = [g0] © ged (T, q1).

The relationship ged(7, ¢;) 0 ¢’ = g o ged(m, ;) between transitions ¢ 29, ¢; and g o9, ¢; in
transducers m and 7’ can be extended to the runs of these transducers. Consider an arbitrary

pair of corresponding runs of 7 and 7’ on some signal flow w = cicy. .. C_16m:

C1,9 C2,0 Cm—1,9m—1 Cm,»9g
q1—§q24~~qm,1 — Gm = Qme,s
/ / / /

C1,9 C€2,9 Cm—19pm—1 Cm, 3.
Q1—§Q24"'Qm—1 —  Gm — Q-

Then by definition of 7’ we have the following chain of equalities:

(91 - - - gm—19m] © ged(7, gm) = [9192 - - - gm—1] © [gm] © [ged (T, Gin11)] =
= [9192 - - - gm-1] © [gcd(7, qm)] © [9},] = [9192 - - - Gm—2] © ged(T, Gm-1) © (g 191] = -+
o= gi] o [ged(m, g2)l 0 [95 - - g 19m] = ged(m, q1) © (91 - G190 -
To make sure that m ~g 7’ it should be noticed first that both functions 7 (-) and 7'(-) have
the same domain. Consider then an arbitrary signal flow w such that 7(w) is defined. Let
q1 Lh* Gm and ¢ w—h;* gm be complete runs of 7 and 7’ on w. Since gcd(m, q,,) = e due to

gm € F, the following chain of equalities holds:

m(w) = [g0] @ [A] = [go] o [h] o [ged(m, gm)] = [g0] © [ged(m, q1)] o [A'] = [go] o [P] = 7' (w) .

Hence, m(w) = 7' (w) for every signal flow w.

To make certain that 7’ is a reduced transducer consider an arbitrary control state ¢; in 7’
(which is also a control state in 7) and ged(7’,q) = V{[IV] : 4 Lilg ¢,q € F}. Relying on
the relationship between the corresponding runs of transducers m and 7’ and on the fact that

ged(m, q) = e holds for any final state ¢ it is easy to notice that

/ Vi w,h’
ged(m, q;) o ged(n', ;) = \[{ged(m,q;) o [P'] - ¢ —+ q,q € F} =
w,h
= V{[h] o gcd(m,q) : ¢ —+ q,q € F} = ged(m,q) .

Since S is an ordered semigroup, ged(m, q;) o ged(n', q;) = ged(w, q) implies ged(n', q;) = e. O
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6. Minimization of reduced transducers

At the final stage to minimize reduced transducers we apply any of minimization techniques
for deterministic finite state automata. This consideration is based on the close relationships

between reduced transducers and finite state automata revealed in the propositions below.

Proposition 3. Suppose that a semigroup S meets the requirements Reql, Req3. Let n’
and 7" be a pair of reduced S-equivalent transducers such that ¢{ and g, are their initializing

actions. Then [g)] = [g(]-

. . . ! B
Proof. Consider an arbitrary pair g =2, ¢ and q 24, ¢" of complete runs of 7« and 7"

on some signal flow w. Since 7’ ~g 7", it is true that [g\h'] = [g(h"]. The latter means that
[g5] A [90] # 7. Hence, by definition of the least upper bound in the lattice (S, <) there exists
a triple of elements s, s, s” such that [g{] A [g5] = [g6] © 8 = [g§] o s and [g)h'] = [goh"] =
([g6] A [98]) © s. Thus, [gyre[h)] = [gb] o 8 o s and [gjh”] = [g{] 0 8" o s. Since S satisfies the
requirement Req3, these equalities imply [A'] = s’ o s and [h"] = s” o s. It should be noticed
that the elements s’ and s” depend on g, and g only. Therefore, the conclusion can be made
that s’ < ged(7', ¢() and s” < ged(n”, qff). But once 7’ and 7" are reduced transducers, we have
ged(', qf) = ged(n”, i) = e. Hence, s’ = s” = e. This means that g, = g} O
Proposition 4. Suppose that a semigroup S meets the requirements Reql, Req3 and let «’
and 7" be a pair of reduced S-equivalent transducers. Suppose also that g, w—h;* ¢ C’—g/> ¢), and

)

q w—h>* ¢! 2% ¢ are initial runs of 7’ and 7” on some signal flow we, where ¢ € C. Then
l9'l = 1g"]-
The proof of Proposition 4 follows the same line of reasoning as that of Proposition 3. These

propositions bring us to

Theorem 2. If a semigroup S satisfies the requirements Reql, Req3 then for any pair of

reduced transducers 7’ and 7 it is true that
w~g ! = 7w mg " Al = [96),

where g and g are initializing actions of 7" and 7”.

Theorems 1 and 2 provide a solution to both minimization problem and equivalence checking
problem for deterministic finite state transducers operating on a semigroup S which satisfies the
requirements Reql—Req3. To verify the S-equivalence of transducers 7; and m it is sufficient

to minimize both transducers and then check that these S-minimal transducers are isomorphic.
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7. Conclusions

Complexity issues of the minimization problem for finite state transducers over semigroups
that fall into the scope of requirements Reql—Req3 is a topic for further research since the
complexity depends greatly on the individual algebraic properties of a lattice (5, <X).

One may also wonder how much important for minimization problem are the requirements
Reql-Req3. Some ordered semigroups of actions arising in program modeling are not left-
cancellative, and their lattices (S5, <) are not well-founded. It would be interesting to study to

build effectively S-minimal transducers for such semigroups.

References

1. Alur R., Cerny P. Streaming transducers for algorithmic verification of single-pass list-
processing programs // Proc. of 38-th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages. 2011. p. 599-610.

2. Blattner M, Head T. Single-valued transducers // Journal of Computer and System Sciences.
1977. Vol. 15. p. 310-327.

3. Blattner M, Head T. The decidability of equivalence for deterministic finite transducers //
Journal of Computer and System Sciences. 1979. Vol. 19. p. 45-49.

4. Beal M.-P., Carton O. Computing the prefix of an automaton // Theoretical Informatics
and Applications. 2000. Vol. 34. p. 503-514.

5. Culik K., Karhumaki J. The equivalence of finite-valued transducers (on HDTOL languages)
is decidable // Theoretical Computer Science. 1986. Vol. 47. p. 71-84.

6. Diekert V., Metivier Y. Partial commutation and traces // Handbook of formal languages.
1997. Vol. 3. p. 457-533.

7. Eisner J. Simpler and more general minimization for weighted finite-state automata // Proc.
of the 2003 Conference of the North American Chapter of the Association for Computational
Linguistics on Human Language Technology. 2003. Vol. 1. p. 64-71.

8. Griffiths T. The unsolvability of the equivalence problem for e-free nondeterministic gener-
alized machines // Journal of the ACM. 1968. Vol. 15. p. 409-413.

9. Mohri M. Finite-state transducers in language and speech processing // Computational
Linguistics. 1997. Vol. 23. p. 269-311.

10. Mohri M. Minimization algorithms for sequential transducers // Theoretical Computer Sci-

ence. 2000. Vol. 234. p. 177-201.



System Informatics (Cucremuas nudopmaruka), No. 7 (2016) 43

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Reutenauer C., Schuzenberger M.P. Minimization of rational word functions // SIAM Jour-
nal of Computing. 1991. Vol. 30. p. 669-685.

Sakarovitch J., de Souza R. On the decomposition of k-valued rational relations // Proc. of
25th International Symposium on Theoretical Aspects of Computer Science. 2008. p.621-
632.

Sakarovitch J., de Souza R. On the decidability of bounded valuedness for transducers //
Proc. of the 33rd International Symposium on MFCS. 2008. p. 588-600.

Shofrutt C. Minimizing subsequential transducers: a survey // Theoretical Computer Sci-
ence. 2003. Vol. 292. p. 131-143.

Schutzenberger M. P. Sur les relations rationnelles // Proc. of Conference on Automata
Theory and Formal Languages. 1975. p. 209-213.

de Souza R. On the decidability of the equivalence for k-valued transducers // Proc. of 12th
International Conference on Developments in Language Theory.(2008. p. 252-263.
Thakkar J., Kanade A., Alur R. A transducer-based algorithmic verification of retrans-
mission protocols over noisy channels // Proc. of IFIP Joint International Conference on
Formal Techniques for Distributed Systems. Lecture Notes in Computer Science. 2013. Vol.
7892. p. 209-224

Veanes M., Hooimeijer P., Livshits B., et al. Symbolic finite state transducers: algorithms
and applications // Proc. of the 39th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages. ACM SIGPLAN Notices. 2012. Vol. 147. p. 137-150.

Watson B.W. A taxonomy of finite automata minimization algorithm // Computing Science
Report. Eindhoven University of Technology. 2005. Vol. 93/44. 32 p.

Weber A. Decomposing finite-valued transducers and deciding their equivalence // STAM
Journal on Computing. 1993. Vol. 22. p. 175-202.

Wolper P., Boigelot B. Verifying systems with infinite but regular state spaces// Proc. 10th
Int. Conf. on Computer Aided Verification (CAV-1998). Lecture Notes in Computer Science.
1998. Vol. 1427. p. 88-97.

Zakharov V.A. On the decidability of the equivalence problem for orthogonal sequential
programs // Grammars. 1999. Vol. 2. p. 271-281.

Zakharov V.A.: Equivalence checking problem for finite state transducers over semigroups
// Proc. of the 6-th International Conference on Algebraic Informatics (CAI-2015). Lecture
Notes in Computer Science. 2015. Vol. 9270. p. 208-221.



44 Temerbekova G.G., Zakharov V.A. On the minimization and equivalence checking of sequential reactive systems

24. Zakharov V.A., Podymov V.V. On the application of equivalence checking algorithms for
program minimization // Proc. of the Institute for System Programming. 2015. Vol. 27. p.
145-174.



System Informatics (Cucremuas unpopmaruka), No. 7 (2016) 45

VJIK 004.912

IIpeonoJieHue nerpaganum pe3yJbTaTOB KJIACCH(PUKAIUN
TEKCTOB 0 TOHAJbHOCTH B KOJUICKIUAX, PA3HECEHHBIX BO

BpeMeHHU

Pybyosa IO.B. (Mncmumym cucmem ungpopmamuxu CO PAH)

B nmanHOW paboTe TMpenCTaBICHBI MOAXOABI JUIS  PEIICHUS 3aJaydl  yIydlICHHS
KJIACCU(UKAIIMK TEKCTOB TI0 TOHAJIHHOCTH B JIMHAMUYCCKH OOHOBIISIEMBIX TEKCTOBBIX
KoJuteknusx. [Ipemnaraercss Tpu MeToAa pelIeHHH 0003HAYCHHOW 3alayd, MPHHIUIHAIBHO
pa3IMUaoONIMXcs MexXay cobod. B maHHOM ciydae Juis  KJIacCU(UKAIUM TEKCTOB 10
TOHAJILHOCTU UCTIOJIB3YIOTCS METO/IbI MAIIIMHHOTO O0YYCHHS C YYUTEIIEM M METOIbI MAIITMHHOTO
oOyuenus 6e3 yunrens. [IpuBeneHsl cpaBHEHHS METOJIOB M IMOKA3aHO B KaKWX CIydasX Kakou
Meton Hambosee mpuMeHUM. OIHCHIBAIOTCS OSKCIIEPHUMEHTANBHBIE CpPaBHEHHS METOIOB Ha

AOCTAaTOYHO MPEACTABUTECIBHBIX TEKCTOBBIX KOJIJICKIIUAX.

Knroueswie cnosa: KopnycHas 1uHeeuCmuKa, maccu(j)ukauuﬂ meKcmoes, anHaius

MOHANIbHOCMU MEeKCMo8, MauluHHOoe 06yquue, aAHaAiu3 ()aHHle COUUAJIbHBIX cemeﬁ
1. BBeaenue

Bonbmias wacte mHbOpMaIuu, coaepiKaileics B CEeTH, MpPEJCTaBlieHa B TEKCTOBOM BHUJE Ha
€CTECTBEHHOM S3bIKE. OJTO YCIOXKHAET €€ 00paboTky u TpeOyeT TMpHUBICUEHUS METOJ/IOB
KOMIBIOTEPHON JMHIBUCTUKHU. [lodTOMYy B Hacrodiiee BpeMs BO3PacTaeT AaKTyalbHOCTH
JTUHTBUCTUYECKUX HCCIENOBaHUM, pa3pabOTOK HOBBIX S(PQPEKTUBHBIX MPOTPAMMHBIX CHCTEM
u3BieYeHUs] (AKTOB M3 HECTPYKTYPUPOBAHHBIX MACCHBOB TEKCTOBOW UWHPOpMAlUu |
KJIacCU(PUKALMK U KJIacTepu3allui UHPOpMaIlUU, HAIICJICHHBIX KaK Ha aHAJIU3 CaMUX COOOIICHUN B
CeTH, TaK W Ha BBIABICHUE HCTOYHUKOB pacrpocTpansemoi uHbopmaruu. Ha mnpoTsokeHun
MOCJIETHUX JECATH JIET, 3aJadeil aBTOMAaTUYECKOTO M3BJICUCHUS M aHaJIW3a OT3RIBOB M MHCHUH W3
COLMAJIBHBIX MEAMa 3aHUMAETCS MHOI'O YYEHBIX M MCCIeAoBaTreneld no BceMy mupy. Ilpu stom B
KauecTBE OJIHOM W3 TJABHBIX 3a/lad paccMaTpuUBaeTcs 3aJada KIacCU(PUKAIUUA TEKCTOB TIO
TOHAJIBbHOCTH.

Tema aBTOMaTHUECKOW KiaccH(HKalUA TEKCTOB MO TOHAIBLHOCTH akTyainbHa B Poccum u 3a
pyOexxoM. OHa U3 MEepBBIX 3a/1a4 KJIacCU(PHUKAIIMHI TEKCTOB IO TOHATLHOCTH, KOTOPOH 3aHUMAIIHCh

ucclieioBaTeny, Oblia 3a7ada Kiaccupukaiuu Bcero qokymeHta nenukoMm [25, 30]. ITomoOHBIi
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YpOBEHb KJacCHU(PHUKALMU MPEIroaaraeT, 4To BeCh JOKYMEHT BBIPAXXae€T BCEr0 OJIHY TOHAIbHYIO
OLIEHKY MJIM MHEHHUE IO MOBOJY HEKOTOPOTO O00BEKTa WM CYyITHOCTH. ECIM MTOKYMEHT CONEp>KUT
ONMCaHHE HECKOJNbKUX OOBEKTOB WJIM CpPaBHEHHE HECKOJBKHUX OOBEKTOB, TO KiaccuuKarus
TEKCTOB HAa YPOBHE JIOKYMEHTOB HE JaCT KOPPEKTHOTO MPEACTaBICHUS O TOHATLHOCTU JTOKYMEHTA.
UyTh no3xe, KJIacCU(PHUKAUIO HA YPOBHE KOPOTKUX (pa3 U BbIpaKEHUH, a HE HA YpOBHE ab3aleB
WK LENBIX JOKyMeHTOB, npoBoamwiu Wilson, Wiebe u Hoffmann [31]. B cBoeli pabore aBTOpSHI
MOKa3aJid, YTO BAXKHO OINPEACIUTh OKpPAcKy (TOJOXKHTENbHAs WM OTPULATENIbHAS) OTAEIHHO
B3SITOrO MpPEIJIOKEHHs, a HE BCEro TEKCTa LIENUKOM. B MIMHHOM NOKyMEHTe MHEHHE aBTOpa 00
00BEKTE MOXKET MEHATHCA C MOJOKUTEIBHOIO Ha OTPULIATEIbHOE U HA00OPOT; TaK)Ke aBTOP MOXKET
OTPHILIATEIIFHO BBICKA3BIBATHCA O MEJKMX HEIOYeTax, HO B IIEJIOM OCTaBaThCS IOJOKHUTEIHHO
HACTPOEHHBIM 10 OTHOIIEHHUIO K ONHCHIBAEMOMY B TeKCTe 00BEeKTy. [Ipyrumu cioBamu, He Bcerma
JUIMHHBIA JOKYMEHT WJIH OT3bIB OJHO3HAYHO MOXHO KJIaCCH(UIMPOBATHh KaK MOJOKUTEIBHO WIIH
OTPHUIATENILHO OKPAIICHHBIH.

Coo061ienust MUKpOOJIOTOB HE npeBocxoaat 140 cUMBOJIOB, UTO Ja€T HAaM BO3MOKHOCTb OTHECTH
KJIaCCU()MKALMIO TTOCTOB MHUKPOOJIOTOB K KiIacCH(UKAIMKM HAa YpoBHE (hpa3 WM MpeIOKECHHM.
Hecmotpss Ha TO, 4TO MHUKpPOOJOTHM JOCTATOYHO MOJIOAOE SIBICHHE, HCCIEeNIOBATENId aKTUBHO
3aHHUMAIOTCS aHAJIM30M TOHAIBHOCTH COOOIICHHU#T 0;10r0B B 1ie70M U TBUTTEpa B yactHoctH [7, 10,
16, 24].

Coo01eHns MUKPOOJIOTOB JJOCTATOYHO KOPOTKHUE, YTOOBI OMUCKHIBATH BCE PA3JIMYHBIC aCHEKThI
NPOAYKTa WIM YCIYTM U B TO K€ BPEMs HACBHIIEHbl MHEHUSMH U 3MOLMOHAJIBHBIMH OLIEHKAMH,
MO3TOMY 3371a4y TOHOBOM KiaccH(UKAIMK KOPOTKMX COOOLIEHMH pelaloT He TOJIbKO Ha YpPOBHE
bpa3 1 npeIoKEHH, HO B TOM YHCIIE ¥ OTHOCHTEIBHO 3aaHHOr0 o0bekTa [17, 19].

bonpmioit HayYHBIN ¥ NPAaKTUYECKUI HHTEPEC K 3a7a4€ aBTOMATHYECKOT0 U3BJICUEHUS U aHAIIN3a
TEKCTOB CBSI3aH C TEM, YTO IMOJB30BATEIHM €XEIHEBHO NYyOJMKYIOT COTHH TBICSY MHEHHH B
COLIMAJIBHBIX CeTsX, OJjorax, opyMmax, CrelUalu3upOBAaHHBIX IUIOLIA/IKaX, KOTOPble HEOOXO0IUMO
obOpabarbiBaTh B 1OJAHOM oOBbeme. IloaToMy cHcTeMbl, aBTOMAaTHYECKH paclo3HaroIIue
TOHAJBHOCTh COOOIIEHWH ¥ YMEIOIIME BBIWICHSATh MHEHHE B TEKCTaX, BOCTPeOOBaHBI
CTICMANNCTAaMH, pa3padaThIBAIONIMMU PEKOMEHJATEIbHBIE CHCTEMBI, SKCIEPTHBIE CHCTEMBI;
MapKeTOJIOTaMH M aHAJIMTHUKAMH, MPOBOIAIIMMUA MApPKETHHTOBBIE MCCIIEIOBAHUS; MOIUTOIOTAMH,
KOTOpBIE OIIEHUBAIOT TOHAJILHOCTh HOBOCTEH M HACTPOECHUE HACEIEHUS U Jp.

OnmHOW M3 CIOXHBIX TPOOJIEM B pPa3pabOTKE W HCIOIB30BAHUU CHUCTEM, ONPEACISIONINX
TOHAJILHOCTH COOOIICHUH, SBISETCS TO, YTO C TEYCHHEM BPEMEHHU KayecTBO UX pabOTHI TIOCTOSIHHO
yXyamaercs. JTO MPOUCXOJIUT, TJIAaBHBIM 00pa3oM, H3-3a TOrO, YTO CO BpPEMEHEM MEHseTcs

CJ]OBapHBII‘;I COCTaB COO6IJ.I€HI/II7L B cratbe npeajararoTcsa noaAxXoAbl K peIICHHUIO JIaHHOM HpOGJ’IeMBI.
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Crarbsi opraHu30BaHa CISAYIOIIMM 00pa3oM, BO BTOPOH ri1aBe 0003HAYaeTCsl 1 00OCHOBBIBACTCS
npobiemMa yXyIIIeHUs KadecTBa KIacCU(MKAMK TEKCTOB 10 TOHAIBHOCTH Ha KOJUICKIHIX
OAVHAKOBLIX TII0 COCTAaBy H XapaKTCPpUCTUKAM, HO Pa3sHCCCHHLIX BO BpPCMCHHU, IJIA ITOI'O
OIMCHIBAIOTCS KOJUIEKLIMHM HA KOTOPBIX IMPOBOIIMINCH SKCIEPUMEHTHI, OMHCHIBAIOTCA METPUKHU
OLICHKM KadecTBa pe3yJbTaTOB Kiaccudukaropa MU MPUBOAATCA pPE3YyIbTaThl IKCIEPUMEHTOB
paboThl KIaccupUKaTOpa HAa TEKCTOBBIX KOJUICKIMSAX COOpaHHBIX C pa3HHIIEH B MOJTOJa-IOJITOpPa
roga. B Tperseli rmaBe mpemararoTcs NOAXOABI K peuieHuIo 3ToW 3ajmauu. [locnemnuil pasnpen

COCTOHMUT M3 BBIBOJOB M 3aKJIIOYCHU.

2. CHIIKeHHe KadecTBa Knaccn(bmcaunn TEKCTOB 110 TOHAJIBHOCTH H3-

3a N3MEeHEeHHUsI TOHAJIbHOH JIEKCUKH

[Tosp30BaTEM CONUATBHBIX CETEH OJHH U3 MEPBHIX HAYMHAIOT MCIOIb30BaTh HOBBIC TEPMHHBI B
noBceHeBHOM o0meHuu. Cpeau 40 HOBBIX CJIOB, BKJIFOUEHHBIX B cioBaph Okcdopna B 2013 romy
ObLIH TEPMHHBI, IPHUINEANINE W3 CONUAIBHBIX ceTei, Hampumep: Srsly (cokpaimieHune OT aHIL
seriously — cepbesno), selfie (dbororpadupoBanue camoro cebs, pycCKuil aHamor — ceosika,
cendu). Takum 00pa3oM, aKTHUBHBIH JIEKCHKOH MOCTOSHHO JOMOJHSACTCS, CIIEAOBATEIbHO,
ABTOMAaTHYECCKHE KJIaCCH(PHUKATOPHI JOJKHBI YYMTHIBATH 3TO B CBOUX MOJEISAX. ECIIM MBI TOBOPUM O
MAaITHHHOM 00yYEeHHUH, TO 00yJaroIIre KOJUIEKIIMH TEKCTOB JOJKHBI IONOIHATECS. Ecin peds naer
00 WCMOJB30BAHUM TPABHJ M CIOBaped, TO Ui YIAy4IICHHsS KadecTBa KIacCH(PUKATOPOB
HEOOXOJMMO YYHMTBHIBATH CJIEHT, KOTOPBIM HACBIIIEHBI COIMalbHbIe CeTH. Tak Kak aKTHBHBIH
CIIOBAapHBIN 3aIlac PEryJIAPHO IOIMOJHSIETCS HOBBHIMH TEPMHUHAMH, B TOM YHCIIE M TEPMHHAMH,
BBIP@KAIONIMMH OMOIMH, CJI€IOBATEIbHO, M CJIOBAapH TOHAIBHON JIEKCHKH TaKKe JOJDKHBI

PEryIIpHO OOHOBISATHCS.
2.1. KosuteKIiun KOPOTKUX COOOIEHUI

PaboThl M SKCIEPUMEHTHI 1O aBTOMATUYECKOW KJIACCHU(UKAIMUA TEKCTOB IMOKA3bIBAIOT, YTO
pe3yNnbTaThl KJIAacCH(UKAINU, KaK TPaBHIO, 3aBHCAT OT OOydarolieil TEKCTOBOW BBIOOPKH H
NpeJMETHOH 00JIacTH, K KOTOPOH OTHOCHUTCS OOydaromas Koyulekuus. Ha ceromHsmHuii eHb,
MHOTHE pabOoThl CBOJAATCS K TOCTPOCHHIO BEKTOpa mpHu3HakoB (aHri. feature engineering) u
MOJIKJTFOYCHUIO  JTOTIOJTHUTENBHBIX JIaHHBIX, TAaKUX KaKk BHEHIHHE TEKCTOBBbIC KOJUICKIMH (HE
nepeceKkaromuecs ¢ o0yJaronieli KOJUIEKIIUel) U TOHAIBHBIE CJIOBapH. J{OTOITHUTENEHBIC TaHHBIC
MO3BOJISIIOT CHHU3HTh 3aBUCHMOCTh OT OOydYaromield KOJJIGKIMHM W YIYYIIUTh pPe3yIbTaThl

KJ1accu(puKammm.



48 Pybyosa FO.B. Tpeononenne nerpajaniy pe3yabTaToB KIacCU(UKaLyK TEKCTOB 110 TOHAIBHOCTH B KOJUICKLMSX, ...

JlJig KayecTBEHHOI'O PELIeHUs 3afaud KiacCH(PUKAIMK TEKCTOB MO TOHAIBHOCTH HEOOXOAUMO
MMETh pa3MEUeHHbIE KOJUICKIIMM TEKCTOB. boiee Toro, mis pelieHust 3a4aud  yaydlleHUs
KJIACCU(UKALUU TI0 TOHATHHOCTH B TUHAMHYECKH OOHOBIISIEMBIX KOJUICKIIHMSIX, HEOOXOJIUMO UMETh
HECKOJIbKO TEKCTOBBIX KOJIJICKIIUH, KOTOPbIE ObUIH cOOpaHbl B pa3Hble BpEMEHHbBIE TPOMEKYTKH.

CO6op mepBoro kopiyca TeKCToB mpoxoaui B aekadpe 2013 roma — despane 2014 roma, mis
KpaTKocTH OymeM Ha3piBaTh ee koiuiekiuedr 2013 roma. B cooTBeTCTBUM € NMHUCHMEHHBIM
0003HAYCHHEM YMOIIHA OBLIT MPOU3BE/ICH MOUCK MO3UTHBHO U HETATUBHO OKPAIICHHBIX COOOIICHUM.
Takum oOpazom, u3 kowrekiuu 2013 roma chopmMupoBaHO [ABE KOJUICKIIMH: KOJIICKIIHS
MOJIOKUTEIBHBIX TBUTOB W KOJUICKIMS HETaTHUBHBIX TBUTOB. HelTpanmpHas KoJuiekiusi Oblia
copMHupoBaHa M3 COOOIICHUH HOBOCTHBIX W OQHIMAIbHBIX akkayHToB twitter. C momoribio
merona [13] w mpemnoxenHoir aropoM QuibTpanuu [8] u3 TekcroB 2013 roma Obuia
chopMupoBaHa oOydaroiias KOJIEKIIHSL.

Jlanee, HeoOX0AUMO cOOpaTh M MOATOTOBUTH TECTOBBIE KOJUIEKIHUU TekcToB. COOp BTOpOro
KOpIyca, KOTOPbIA COCTOUT M3 OKOJ0 10 MHUUIMOHOB KOPOTKHX COOOIICHHM, MTPOXOAUI B HUIOJIE-
asrycte 2014 rona. Tperuil xopmyc, cocrosimuid u3 okosio 20 MiIH. cooOlieHui, 01 coOpaH B
uroiie u Hostope 2015 rona.

N3 TexcroB 2014 u 2015 rr., copmupoBansl 1Be TecToBbIe KoJIeKIuH. TekcTel 2014 u 2015
rOZI0B TMOJBEPIIIMCh WACHTUYHOW (uibTpammu, uro u oOydaromas kojurekuus 2013 ropma.
dopMUpOBaHUE TECTOBBIX KOJUICKIIMH 10 KjaccaM TOHAJIBHOCTH MPOUCXOJUIIO aHAJIOTUYHO
o0yJaroreil KOJUIeKIMH, ¢ moMoIipio Metoaa [13]. Pacnpenenenue KoquuecTBa COOONICHUN 1O
KJIacCcaM TOHAIBHOCTU B KOJUIEKIUAX TpeacTaBieHo B Tabmuna 1. Bece Tpu komnekuuu sBISIOTCS
MPEAMETHO HE3aBUCHUMBIMU, TO €CTh HE OTHOCSITCS HU K KaKOW 3apaHee OnpeIesIeHHON MpeAMETHOM
o0nacTu.

Tabnumna 1. Pactipenenenue cooOIeHN# B KOJUIEKIIUAX MO KJlaccaM TOHAJTbHOCTH

ITonoxxurenpHbIE OtpunarenbHbIe HelitpanbHeie

cooOmieHus cooOu1eHus cooOuieHus
2013 rox 114 911 111 922 107 990
2014 ron 5000 5000 4293
2015 ron 10 000 10 000 9595

C06paHHLIC KOJUICKOHUU TCKCTOB IMOCIYKHUIIN OCHOBOM I CO3JaHUS 06yqa101ue171 U TECTOBOM
KOJIICKIIUH TBHTTCp-COO6H.[CHPIfI JJI OOCHKKW TBUTA IIO TOHAJIBHOCTH OTHOCHUTCIIBHO 3aJaHHOI'O

0o0beKTa Ha copeBHOBaHUH KiaccudukaTopos SentiRuEval [3, 19, 20] B 2015 u 2016 romax. B 2015
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roJly ONHMCAHHBIC KOJUICKIIMM MCIIOJIL30BAIMCh B OakamaBpckoi padote cryiaeHta MI'Y Ha temy
«AHanu3 TOHAJIBHOCTU IPEAJIOKEHUN Ha MaTtepuaine coobmeHuil u3 Teurrepa». B 2016 rony,
KOJJICKIIMM OBUTM HWCIOJIB30BaHBI B KadeCTBE JOMOJHUTENBHBIX KOJUIGKIMN [UIS W3BJICYCHUS
JIGKCUKOHA JIJIsl aJITOPUTMa aBTOMATUYECKO# Kiaccu(puKanuu TeKCTOB 1o ToHansHOCcTH [9)]. Bonee
TOr0, TaK KaK TEKCTOBbIE KOJUIEKLIUU BBUIOKEHBI B OTKPBITBINA JIOCTYII, HA OCHOBE 3TUX KOJIIEKIIMH
Obut paspabortanbl BeO mnpminoxenusi «Hacrpoenume Poccum online» [6] u «MonHuTOpHHT
TOHAJILHOCTH TBUTOB 0 BY3'ax B pexxume peanbHOro BpeMeHn» [5].

Panee B pabote [7] aBTOpOM OBLIO TIOKA3aHO, YTO COOPAHHBIC KOJUICKIIMH SIBJISIFOTCSI TOJTHBIMU U

AOCTAaTOYHO INPEACTaBUTCIIbHBIMU.
2.2. MeTpHUKH OLIEHKH KayecTBa Kjaccupukaropa

OmeHKa KayecTBa CHUCTEMbI KJIACCH(HMKAIMA TEKCTOB [0 TOHAIBLHOCTH MPOUCXOIMT IyTEM
CpPaBHEHHUS PE3yJILTATOB, MOJYYEHHBIX OT aBTOMATHYECKOW CHCTEMBI KITACCU(HUKAIIMH U STAJTOHHBIX
pa3MeYEeHHBIX PE3YJIHTATOB.

OCHOBBIBasCh Ha pasHHIIE 3HAYCHWH DTAJOHHON KOJUICKIMH W KOJUICKIMH, ABTOMATHYECKH
pPa3MEUCHHON OLEHMBAEMBIM AJITOPUTMOM, BBIYHCISIOT CIIEAYIONIME OOIIETPHHATHIE METPHKH:
accuracy, ¢popmyna 1; TouHOCTbH (aHrII. pPrecision), dopmyna 2; monxora (auri. recall), popmyna 3;

u F—mepa, popmyna 4 [21].

TP+TN
TP+FP+TN+FN'’

Accuracy =

(1)

rie,
e TP — UCTUHHO MOJOXUTENBHOE PEIIEHUE, KOJIUYECTBO TEKCTOB, MPABUIHLHO OTHECEHHBIX K
KJaccy P;
e FP — 10HO MONMOKUTENBHOE PEIIeHHE, KOJTMYECTBO TEKCTOB, HE MPABUJIBHO OTHECEHHBIX K
KJaccy P;
e FN — 10XHO oTpuULIaTeNbHOE pelIeHHEe, KOJMYEeCTBO TEKCTOB, HE IPABUIILHO OTHECEHHBIX K
kiaccy N;
e TN — UCTMHHO OTpHUIIATENLHOE PEIIeHNE, KOJTMYECTBO TEKCTOB, MPABIIIBHO OTHECEHHBIX K
kiaccy N.
JUTS. TIONTyYEHUs] CTAOWJIBHBIX PE3yJbTAaTOB MPH OICHKE KAa4eCcTBa CHCTEM KIIACCH(PUKAIIUN
UCIONB3YIOT 0Oo0Jiee YCTOMYMBBIE METPHKH, TaKue Kak IOJHOTY, TOYHOCTb U TapMOHHYECKOE

cpeqHee MEeXIy MOTHOTON ¥ TOYHOCThIO — F-Mepy.
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Precision (TouHocTh) — 3TO J0JI OOBEKTOB KIACCH(PHIIMPOBAHHBIX Kak X, KOTOPBIE
JEHCTBUTENBHO MPUHAJIEKAT KiIaccy X WU BEPOSITHOCTh TOTO, YTO CIy4allHO BbIOpaHHBIA TBUT
ronai B TOT KJIacc, KOTOPOMY OH Ha caMOM Jielie puHaIexxut @opmyna 2.

Recall (momnora) — 3TO0 monst Bcex OOBEKTOB Kiacca X, KOTOPBIE COIJIACHO aJITOPUTMY
KJIaccu(UUUpPYOTCd Kak HpUHAAJIeKaAIMe Kiaccy X WIM BEpPOATHOCTh TOrO, 4TO CIy4daiHO

BBIOpAaHHBIN TBUT U3 KJacca MU KIACCU(PHUKAIIMK B HETO U MONAAET, BRIYMCIIETCS 10 popmyde 3.

. TP
Precision = ————, (2)
TP+FP
TP
Recall =———, 3
TP+FN

F-Mepa 9TO I'apMOHHUYCCKOC CPEAHEC MCKAY TOYHOCTBIO U ITOJTHOTOM:

PrecisionXRecall

F-mepa = 2 4)

Precision+Recall’
B nannoit pabore F-mepa cunTaercs Kak cpeiHee 3HaueHHE Mexay F-mepoil mo kaxaomy u3
KJIACCOB TOHAIBHOCTH. AHanornyHo, Precision u Recall — cpennee 3nauenue Precision u Recall mo

KaXXI0OMY M3 KJ1IaCCOB TOHAJIBHOCTH B OTACIIbHOCTHU:

positive + Fnegative + I:neutral

F - measure= ,
3
E _, Precision . xRecall e
positive - - )
Precision .. + Recall | e

positive + Pnega1ive + I:)naJtraI

Precison= ,
3

Reca“ - Rpositive + Rnegative + Rneutral

3

2.3. Onucanune npodJieMbl CHUKEHHS KayecTBa KJaccu(puKaumu TeKCTOB M0

TOHAJILHOCTH H3-32 U3MEHEeHHUS TOHAJbLHOM JIEeKCUKH

I[J'IH MOACIIUPOBAHUA peanLHoﬁ CUTyallMH1, KOorga CO BPpEMCHEM MOXKCET BUIOU3SMCEHATHCA A3bIK
nim 06cy>1<)1aer,1e B COLOUAJIBHBIX CCTAX TEMbI, IOATOTOBJICHBI BTOpasA W TPEThbIA KOJIICKIUU
KOPOTKHUX COOGLHCHHﬁ. Pa3HI/II_Ia BO BPEMCHH MCKIY C60pOM HCpBOfI n BTOpOI>'I KOHHGKI_II/Iﬁ OKOJIO
noJjyroaa, HCpBOP’I n TpeTBefI — [OJITOpa roJaa. HCCMOTpSI Ha TO, 4YTO Ha HepBHﬁ B3TJIA1 JICKCHKA HE
MOXKET TaK 6I)ICTp0 HU3MEHUTHCA, TEM HE MCHEC TCMbl TBUTOB, BIIMAIOIINC Ha o6mee HaCTpPOCHHEC B

oeJIOM U pe€InyTaluio B YaCTHOCTH, 3HAUUTCIIBHO 3aBHUCAT OT MPOHUCXOAAIIHNX IMO3WUTHUBHBIX HIIN
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HETaTUBHBIX COOBITHH C ydacTuem LejacBoro 00BbeKTa H, KaK IIpaBHJI0, TAKUEC COOBITHS HEBO3MOYKHO

npenckasarh 3apanee. Hampumep, B stHBape-despane 2014 roma okono 12% Bcex cooOrieHwmid

twitter ObuTH PO OnMMMIMay, B aBrycre 2014 roa ynoMuHaHHs OJUMITHA b He ipeBocxoamio 0,5%

OT YKCJa BCEX COOOIIECHUMN.

Hpexme H606X0,Z[I/IMO IIOKa3aTb CHHMIXKCHHE Kayde€CTBa KJ'IaCCI/I(bI/IKaI_II/II/I Ha KOJIUICKIHAX,

pa3HeceHHBIX BO BpeMeHU. [l 3T0 00ydaeM Mojenb kiaccudukaropa Ha koiutekiuu 2013 roma u

npumensem ee k komwiekiusMm 2014 u 2015 romoB. B kadectBe ciioBapedt AJjis MOCTPOCHHS

MIPU3HAKOBOTO MPOCTPAHCTBa BBIOpaHbl cioBapu Men_3, men 5 u BOW. Ilpedpuxc men N

O3Ha4acT,

4TO TEPMHH BCTPEYACTCd HE MCHBIIEC 4YEM N pa3 B OI[HOﬁ Hn3 KOJUICKIUH,

COOTBETCTBYIOIIEH OJAHOMY M3 KJIACCOB TOHAJIBHOCTH (ITOJIOKUTEIHHOM, OTPULIATETBLHON WIIK

HelTpanbHoii). O01Iee 3HaUeHUE KOJTMYECTBA TEPMUHOB B 00YJAOIIEH KOJUIEKIIMU 0003HAYEHO KaK

BOW (aurn. Bag of words).

PGSyJ'ILTaTbI OKCIICPUMCHTA, IIOKA3bIBAIOIIMUC CHUIKCHHUA KadCCTBa KJIaCCI/I(l)I/IKaI_II/II/I TCKCTOB,

npeacTaBieHsl B Tabmuie 2. M3 Tabnuibl 2 BUIHO, YTO 32 MOJITOpPa roja KauecTBO Kiaccu(uKanuu

TEKCTOB MUKpOOJIOroB coriacHo F-meprl MoxkeT ynacts 10 15-20% B 3aBUCUMOCTH OT BHIOPAHHOTO

Habopa NMPU3HAKOB.

Tabnuma 2 Metpuku KadecTBa Ki1acCH(PHUKAIIUN TEKCTOB MUKPOOJIOTOB 110 TOHATBHOCTH HA
KOJUJIEKIUAX, PA3HECEHHBIX BO BPEMEHU

BOW Men_3_tfidf Men_5_tfidf

Acc P R |F-mepa] Acc P R |F-mepa] Acc P R |F-mepa
Konnexuus 2013 rona

0,7459 10,7595 | 0,7471 | 0,7505 | 0,6457 | 0,6591 | 0,6471 | 0,6506 | 0,6189 | 0,6542 | 0,6184 | 0,6223
Konnexnus 2014 roga

0,6964 | 0,6984 | 0,7062 | 0,6933 ] 0,5086 | 0,5829 | 0,5040 | 0,5026 | 0,5745 | 0,5823 | 0,5795 | 0,5808
Konnexuus 2015 rona

0,6118 [0,6317 |0,6156 |0,5996 ]0,4651 [0,5218 [0,4638 [0,4549 [0,5343 |0,5337 [0,5360 [0,5344
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3. Cnnoco0bl yMeHbIIIeHH S 1erPaJalii pPe3yJbTaTOB
KJIACCH(PUKANNH HA TEKCTOBBIX KOJUIEKIIMSAX, PA3HECEHHBIX BO

BpeMeHH

B kauectBe Kiaccudukaropa Obul mcmoinb3oBaH Metonq SVM (support vector machine) wu
oubmmoreka LIBLINEAR [12]. bubnunoreka LIBLINEAR — 310 peanusanus anroputma SVM ¢
JUHEWHBIM siApoM. Kak MmoKa3bpIBalOT SKCHEPUMEHTHI, 00yUYeHHE MOJIENH ¢ TIOMOIIbI0 OUOINOTEKH
LIBLENIAR cymecTBeHHO TPEBOCXOAWT IO CKOPOCTH aHAJOTH, MO3TOMY B JaHHOW pabote

ncrnoab3oBainack oudimorexka LIBLINEAR.

3.1. UcnoJib30BaHue BECOBOI CXeMbl € JUHEHHOU BHIYMCINTEIbLHOM

CI0KHOCTBIO
B akTuBHBIN CIIOBapHBIN 3aI1ac MOCTOSIHHO BXOJAT HOBBIE CJI0BA U BbIpakeHHUs. [IepBblil BapuaHT
YMEHBILICHNS yCTapEBaHUS CJIOBAPSI — 3TO €r0 IOCTOSIHHOE OOHOBJIEHHE. TakuM 00pa3oM, MOXKHO
OyzeT CleANuTh 3a MOSBICHHEM HOBBIX TEPMHUHOB B SI3BIKE M CBOEBPEMEHHO YYHTHIBATH UX IIPH
kinaccupukanuu. [1ocTOSHHO OOHOBIATH CIOBapb M MEPECUUTHIBATH BECA TEPMHHOB JOCTATOYHO
3aTpaTHOE [JEHCTBUE C TOYKM 3PEHHs BBIUMCINTEIBbHOW MouiHocTu. (nenoBarenbHO, Ui
IIOCTOSIHHOTO OOHOBJIEHHS CJIOBapsi HaJAO0 MOAOOpaTh BBIYUCIUTEIBHO HE 3aTPATHYIO BECOBYIO

cxemy. Tak, HarpuMep, JJIs1 UCIIOJIB30BaHUS METO/a, ocHoBaHHOTO Ha Mepe TF-IDF:

tfidf = tf X log%ti) (5)

HCO6XO)II/IMO 3HATb YaCTOTY BCTPECYACMOCTH TEpPMHWHA B KOJUICKOUAX, CJIICOA0OBATCIBHO, Ha60p
AAaHHBIX HE JOJDKCH MCHATHCA BO BpEMs pacdycTa BECOB. 910 CYIICCTBCHHO YCIIOKHACT BBIYHUCIICHUA
pu OOHOBIIEHHM CJIOBaps, €cliu TpedyeTcs MPOBECTH 00CYET JaHHBIX B peaibHOM BpeMmeHHu. [lpu
,Z[O6aBJ'IeHI/II/I HOBOI'O TCKCTa B KOJIJICKIHMIO Tpe6yeT051 nepecynuTarb BeCa i1 BCEX TCPMHUHOB B
KOJIJICKIIUHA. BrruncnurennHas CiI0XHOCTD nepepacucTa BECOB BCCX TCPMHUHOB B KOJJICKOUU paBHA
O(N?).

Z[J'ISI TOro, YTOOBI peUINTH l'IpO6J'IeMy IIOUCKa U pacqéTa BE€COB TCPMHUHOB B PCKHUME PCAJIIbBHOT'O
BpeMeHH OblTa WCIojb30BaHa Mepa Term Frequency — Inverse Corpus Frequency (TF-ICF) —
dopmyna 6. [14]

IC|
cf (ti)) ©)

I'me C — 3T0 4MCIO0 KAaTEroOpHid, Cf — YMCIIO KaTeropui, B KOTOPHIX BCTPEUYAETCS B3BEIINBAEMBII

tf.icf =tf Xlog(1l+

TEPMUH.
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st pacueta TF-ICF He TpeOyercst nHGOpManus 0 4aCTOTE MCIIOIb30BaHMS TEPMUHA B JPYTHX
JOKYMEHTaX KOJUJICKI[UH, TOJbKO MPUHAICKHOCTh K KATETOPUH, TAKUM 00pa30M, BHIYHCIUTEIIbHAS
cioskHocth Mepsl TF-ICF paBaa O(N).

[TpoBepum npumenumocts Mepbl TF-ICF mist B3BemmBaHMS TMPU3HAKOB IS KJIACCHU(PUKAIIMH
TEKCTOB IO TOHAJIBHOCTHU. J[JI1 3TOro MOCTaBUM AKCHEPUMEHT Ha pPaHEee OMUCAHHBIX TEKCTOBBIX
KOJUIGKIUSIX KOPOTKHUX cooOmIeHnii. HagHem ¢ Toro, 4To moayduM 0a30BbIe 3HAUYCHUS PE3yJIbTaTOB
kinaccuukaropa, kotopsle Oynem ymydmarb. Jns storo m3 komnekiuu 2013 roma cosmaercs
CIIOBapb, Ha OCHOBE KOTOPOTO CTPOATCA BEKTOpa MpHU3HAKOB. [IJis BEKTOPHOW MOJENU NpPU3HAKU
B3BemuBaOTCs cxemoir TF-ICF, Ttaxke wucmonp3yeM OynaeBCKyr0 Mojenb (IIPU3HAK MOXKET
MPUHUMATH TOJBKO 1Ba 3HaueHus (0 — MpPU3HAK OTCYTCTBYET WM | — MPU3HAK TPUCYTCTBYET).
Hcnonp3yem komeknuio 2013 roma B kadecTBe oOydaromield, Ha €€ OCHOBE CO3MaeTCsi MOJEIb
knaccudukaropa, kowtekiuu 2014 u 2015 rogoB BeICTYNAIOT B KAY€CTBE TECTOBBIX KOJUIeKIHi. C
1eNbl0 BbIOOpa MPHU3HAKOB, ObUI MPOBENEH ASKCIEPUMEHT [JIsl CIIOBapei, B KOTOPOM TEPMUHBI
B3BemeHsl Mepod TF-ICF. Ha Puc. 1 mpencraBieHbl pe3ylbTaThl pabOTHl KIIACCU(PUKATOPA
cornacHo F-mepel. BupHo, 4TO Haumydiime pe3yiabTaThl IMOKa3bIBAIOT CJIOBAPU M3 KOTOPBIX
yAATWIA TEPMHUHBI, KOTOpPbIe B OJHOW M3 TOHAJIBHBIX KOJUICKIIMM BCTPEYAIOTCS MEHEE TpeX pas
(men_3) u menee msatu pa3z (men_5). B cnoBapsix ¢ wHasBauusmu 1 0 0, 3 0 0, 5 0 0 ymaneHst

TEPMHHBI, KOTOpbIE BCTpEYAIOTCSI BO Bcel oOydaromied kojulekiuu meHee 1, 3 wim 5 pas

COOTBCTCTBCHHO.
0,5800
0,5686
0,5700
5 0600 05526 41 0 0_icf
5 05500 o _
Z 0,540 ’ w300 icf
n 0,5294 .
2 05300 5 0 0 icf
= 0,5167 .
2 0,5200 mmen_3_icf
£ 05100 .
5]
0,4900 : : : : .
1 00.icf 3 00.icf 500 icf men 3 icf men 5 icf

Puc. 1. Ycpennennsie 3HaueHus F-Mepsl pu nepekpecTHOi npoBepke Ha 00ydaromiel KOJIeKIUN
JUISL KQKI0TO U3 clIoBapel mpu3HakoB B3BemeHHbIX Mepoil TF-ICF.

Ucnone3ys ciaoBapu men_3 icf m men_5 icf, mokaszaBmme cormacHo F-mepe Hawmmydiime

pe3yabTaThl KiaccupukaTopa NpHU TMEpeKpecTHOM mpoBepke Ha komekiuu 2013  ropa,
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MPOTECTUPYEM TIOJYYCHHYIO MOJeNb Kiaccudukaropa Ha kosutekiusax 2014 u 2015 romos. B
Tabmuma 3 npuBeneHs pe3yabTarel F-Mepsl pu nepeHoce moaenu 2013 roga Ha koutekmuu 2014
u 2015 ronoB, A HArJISIHOCTH OCTaBJICHBI 3HAYEHUs F-Mephl Mpu MEPEeKpPecTHOM MpOBEpKE Ha

koyutexkimu 2013 rona.

Tabnuua 3 3nauenue F-mMepbl 1 TOYHOCTH MTPH KIIacCU(UKALIUH 110 TOHATIBHOCTH C

UCTIOJIb30BaHUEM JIBYX JIEKCUKOHOB B3BelIeHHBIX Mepor TF-ICF

Jlekcukon men_3 TF_ICF | Jlekcukon men 5 TF_ICF

F-mepa Accuracy F-mepa Accuracy
2013 | 0,5686 0,5648 0,5526 0,5541
2014 | 0,4645 0,4833 0,4564 0,4971
2015 | 0,4109 0,4278 0,4143 0,4516

HaGnromaercsi cHMKEHHE KadecTBa KIACCH(HKAIMHM NPU TECTUPOBAHHM Kiaccu(ukaTropa Ha
pasHeceHHBIX BO BpeMeHH KoJutekuusx. CormacHo F-mMepe kauecTBO KiTacCU(pUKAIIMK CHIKASTCS 10
15%.

Hecmotps Ha HemoctaTku BecoBoii cxembl | F-ICF B Buie oTHOCHTENHHO HU3KOTO 3HaYeHus F-
MEpBI, Y 3TOM CXEMBI €CTh CYIIECTBEHHOE MPEUMYIIECTBO B BHUAE JIMHEMHOW BBIYMCIUTEIBHOU
CIIO)KHOCTH, 4YTO OCOOEHHO aKTyaJbHO, €CIIM pedb HIET O TMPOCTPAHCTBE, COCTOSIIEM U3
HECKOJIbKUX COTEH ThICSY MPU3HAKOB.

Crenyromuii 3Tam cOCTOMT B TOM, 4TOObI 00BbeuHHUTH cioBapb 2013 roxa co cioapem 2014
roja B OJIMH, NIEPECUNTATh BECa B MOJYYCHHOM CJIOBApe M YBEIMUYCHHBIH CIIOBaph HCIOIH30BATh
JUISL TIOCTpOeHUsi Kiaccudukaropa Ha oObenuHeHHoW koiutekuuu 201342014 rtomoB u
TecTUpoBaHuU Ha Koyekiuu 2015 roma. J{ns o6bequHEHHBIX KOJUIEKIMKA ObUT MPUMEHEH METOJ
MEPEKPECTHON MPOBEPKH C IIarom 5, nanee oOyueHHbIH Ha komekiuu 2013+2014 knaccudukarop
TecTupoBaics Ha kowtekuuu 2015 roga. Oxkupaercs, 4To 3HaueHHE F-Mephl A MEpPEeKpecTHOM
MPOBEPKH KiaccH(pHKaTopa, MOCTPOSHHOTO € MOMOIIBIO ciioBaps npusHakoB men_3_tficf 6yner B
okpectHocTH 3HadeHus 0,5686 (cm Tabnuma 3), a 3HaueHue F-mepwr ana xomnekuuu 2015 roxa
oyner mpeBocxonuTh 0,4109. Taxxke ObUTM TPOBEACHBI SKCIEPUMEHTHI Ha CIOBape MPHU3HAKOB

BOW. Pe3ynbraTsl paboThl KiaccupukaTopa, corsiacHo F-mepe npencrasiensl B Tabnuna 4.
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Tabnuma 4 PesynbTaThl Ki1accudukaropa npu godasnennn komekinuii 2014 roga k oOy4varomieit

KOJUICKITHH
BOW men_3 TF-ICF
Acc P R F Acc P R F
2013+2014
(mepexpectnas | 0,7205 | 0,7339 | 0,7215 | 0,7250 | 0,5539 | 0,5806 | 0,5550 | 0,5565
IPOBEPKA)
2015 0,6848 | 0,6889 | 0,6862 | 0,6872 | 0,5348 | 0,5571 | 0,5361 | 0,5334

JleiicTBUTENbHO, KIacCUPUKATOP MOKA3al yiaydlleHne 3HaueHuil F-mepbl ans komnekuuu 2015
rojia Kak ¢ MOMOIIbI0 UCIOJb30BaHus cioapss men_3 tf icf, Tak u ¢ momormpi0 MeTOa MeIKa
CIIOB, COXPaHHUB TMOPSJIOK PE3YJIbTHUPYIOIIMX 3HAYCHWH TMPU TEPEKPECTHOH  TPOBEPKE
KkiIaccudukaropa Ha oOydaromieil kosiekiuu Ha ypoBHe 0,55-0,57 mis cioaps men_3_tf icf
(Tabnuna 3) u Ha yposae 0,72-0,75 mis memika cinoB (Tabuuia 2).

Ha Tperbem 3Tame Bce TpH KOJUICKINMU ObUTM OOBEIMHEHBI B OJHY. Ha oCHOBe 00BeAMHEHHOMN
KOJUICKIIMHM OBLI W3BJICYCH CJIOBaph M (POPMUPOBAHUS BEKTOpA MPU3HAKOB. TEPMUHBI CIIOBaps
Obutn  B3BemieHbl Mepoil  TF-ICF.  Amnamornuno mpensiaymieMy 3KCHEPUMEHTY, 3ajada
KJaccupuKaTopa COCTOUT B TOM, YTOOBI COXPAHUThH PE3yIbTUPYIOIINE 3HAUYCHUS KiaccupuKaropa
He Hwke 0,55 cornmacHo F-mepe mpu KCMOJIb30BaHUK B KauecTBe Mpu3HaKoB cioBaps men_3 tf icf
u He MeHee 0,72 mpW HUCHOJIB30BAaHWM MeIIKa cloB. Pe3ynmpTaThl paboThl Kiaccudukaropa Ha
o0beuHeHHbIX Kojutekuusax 2013, 2014 u 2015 rogoB npeacTaBieHbl Ha PUCYHKE 2.

Ha Puc. 2 npencrasnensl rpaduky, HarasaHO MOKa3bIBAIOININE, YTO IUHAMUYECKOE OOHOBIICHUE
JIEKCUKOHA TIO3BOJIICT COKPATHUTh YXYIIICHHE KadecTBa KJIACCH(PHUKAIUK IO TOHAILHOCTH Ha
pa3HECEHHBIX BO BpeMEHU KOJUICKIUAX. CIUIONIHAS JWHUS MMOKa3bIBaeT 3HAYCHHs pe3yiibrata F-
Mepbl MpU OOHOBIEHWHU CIOBaps W OOydYarolied KOJUIeKIMHM, MYHKTUpHAs JUHUS TMOKa3bIBaeT

PE3YIbTAaThI KJ'IaCCI/I(i)I/IKaLII/II/I IIPpU UCITOJIb30BAHNU KOJUJICKIIUHN 2013 roaa B Ka4€CTBC 06y11a101116171.



56 Pybyosa FO.B. Tlpeopoienue Aerpajalii pe3yibTaToB KIACCH(PUKALMH TEKCTOB 110 TOHAIBHOCTH B KOJUICKLHMSIX, . ..

0,8
0,7505
0,75 '—ﬁ? 0,725 ﬂ,77F\
2 07 e 10,6933 men3_TF-
2 Seo ICF
T 065 T s s BOW
o 06 — ~< 0,5996
S ’ )
0,5565 0,5544
5 0,55 \‘\ —_— === BOW_2013
& ~~
Z 05 =~
™ S~ 04645 === men3_TF-
0,45 D s
=<__ 04109 ICF_2013
0,4’ T T 1
2013 2014 2015

Puc. 2. Pesynbrarsl F-MepsI ipu TUHAMUYECKOM OOHOBJICHUU JICKCUKOHA U TPEHUPOBOYHOU
KOJUIEKIIMHU (CIUIOIIHAS JTUHUS) U 0€3 (IyHKTUPHAS JTMHMS)

KJ'IaCCI/I(bI/IKaTop BCACT ce0s C,ZLI/IHOOGPEISHO BO BCCX IIPOBCACHHLIX OKCICPHUMCHTAX, YTO

MO3BOJIACT CYAUTH O JOCTOBEPHOCTHU PE3YJILTATOB.

[Ipu guHAMUYECKOM OOHOBIIGHMM CJIOBapsi TOCTOSHHO YBEIUYHMBACTCSI U Pa3MEPHOCTh
MIPU3HAKOBOTO TMpocTpaHcTBa. Tak, mpu oObenuHennn kosutekiuu 2013 roma m 2014 rona,
no0aBwIOCh 00JIee CeMH C TOJOBHHOHM TBICSY HOBBIX TEPMHHOB, YacCTh W3 KOTOPBIX SIBJISICTCS
HAa0OpOM CHMBOJIOB, HE HECYIIMX HHUKAKOIO CMBICIA WJIM BCTPEYAMOIIHUXCS MeHee 3-X pa3 B
O00BETMHEHHON KOJUICKIIMH, HAIPUMEp, «II__ », «X M__ C», «X_HI», «00MI00» W «BOTUCXb).
[ToaTomy, KpoMe Melika clioBa, B paboTe paccMaTpuBaeTcsi OTQUIBTPOBAHHBIN CIOBAPh, KOTOPHIiA
MOKa3aj HaWIydllhe pe3yNbTaThl AJs MOCTAaBIEHHOW 3a/ladM — clioBapb MEN_3. DTo cioBaph B
KOTOPOM OBLITH OT(HUIBTPOBAHBI BCE TEPMUHBI, KOTOPBIE BCTPEUYAIOTCS MEHEE TPEX pa3 B OJHOU H3
TOHaJIbHOM Kosutekuuu. B Tabmuma S5 npencTaBieHbl 3HAU€HUS YBEIMYEHUS Pa3MEPHOCTH

MCXOJIHOTO CJI0Baps MpHU A00aBIEHUU B HEr0 TEpMUHOB U3 Kosiekiuu 2014 u 2015 ronos.

Tabnuua 5 yBenuueHue pasmepa JEKCUKOHA, IIPU pacIIMPEHUH 00ydaroieil KOIeKIUH

BOW men_3
2013 219 280 41 295
2013+2014 226 964 42 867
2013+2014+2015 245 845 46 312

HpI/I HAKOIUICHUU OOJIBIIIOr0 KOJHWYECTBa TCKCTOB, CTAHOBUTCA 3aTPYAHUTCIIBHO TUHAMUHUYCCKU

NEpCCUYUTHIBATL BE€CAa TCPMUHOB B PCIKUMC PCAJIbHOIO BPEMCHU C HUCIIOJIL30BAHHUEM MCEPBI TF-1DF.
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[lpu wucmoNb30BaHMM TIOAXOJA MEIIKa CJIOB, Pa3MEPHOCTh cjoBaps (a, CleIoBaTelnbHO, W
pPa3MepHOCTh BEKTOPA MPU3HAKOB) OYJET MOCTOSTHHO PACTH, TOTPEOIISis BBIYUCIUTEILHEBIE PECYPCHI,
HO HE TOBBINIAsg KAa4eCTBO KIacCH(UKAIMU, KOTOopoe 3adukcupoBanock Ha ypoHe 0,72-0,75
cornacHo F-mepe. Mcnonb3oBanue otdribTpoBanHoro cioBaps u Mepsl T F-ICF caepkuBaeT poct
pa3MEpHOCTH BEKTOPOB TPU3HAKOB M TIO3BOJISIET IEPECUYMTHIBATH BECA TEPMUHOB B PEKHME
pearbHOro BpeMeHH, 0JIHAKO KauyecTBO KiIacCU(pHUKaIMK coryacHo F-mepe octaercs Ha yposae 0,55.

Hcnonb30BaHWe OMHMCAaHHOTO METOAA ONPABIAHO TMPH OTPAHUYCHHBIX BBIYHCIUTEIBHBIX
pecypcax, a TakKe Py OTCYTCTBHH BHEIIHUX TOHAJIBHBIX CIIOBApEH M IOTOJIHUTEILHBIX TEKCTOBBIX

KOJUIEKIIUH.

3.2. Ucnosib30BaHUEe BHEIIHUX CJI0Bapeil OLleHOYHBIX CJI0B M BbIpaKeHUil

Crnenyromniasi TUIIOTE3a COCTOUT B TOM, YTO KCIIOJIb30BAHME BHELIHUX CJIOBAPEH 3MOIMOHAIBHO
OKpAIIEHHOW W/MJM OLIEHOYHOM JIEKCHKH, IOBBIIIAET KAadyeCTBO KJIACCU(UKAMM TEKCTOB 10
TOHAJBHOCTH, a TAKXe COKpAIIAETCsl 3aBUCUMOCTb Kjaccupukaropa OT oOydaroumied KOJIIEKIHH.
TepmuHbI ClIOBapsi MOTYT OBITh UCIIOJIb30BAaHbI B KAYECTBE MIPU3HAKOB B MAIIMHHOM 00yueHuU [26]
WM K€ HMCIOJb30BaThCs B MOJAX0/aX, OCHOBAHHBIX Ha cJoBapsx u mpasmwiax [27]. CymecTByroT
paloThbl, ONMCHIBAIOIIME HW3BJICUEHHE WM HACTPOMKY TOHAIBHBIX CJIOBapeil Ha OIpelesIeHHYIO
3apaHee 3aJlaHHYI0 peaMeTHyto 0oaacTs [1, 2]. IlpuBoasTcss mpruMepsl TEPMUHOB, KOTOPBIE MOTYT
OIMCHIBATh NO3UTUBHBIEC XapaKTEPUCTUKHU B OJTHOM MpeAMETHON 001acTH U HEUTPAJIbHBIE UIIH J1aXe
HeraTuBHBIC — B Ipyroit. OiHaKo, KaK NMOKa3bIBatoT [26, 22], o0beAnHeHNE 00YUaIOIUX JaHHBIX U3
pasHBIX MPEIMETHBIX 00JacTel yaydliaeT KauecTBO KJIaCCU(PUKAIMU O TOHAJIBHOCTH B KOXKJIOU U3
BbIOpaHHBIX oOsacTeid. CrenoBaTeNlbHO, CYIIECTBYET MHOXECTBO OILEHOYHBIX CIIOB C SIPKO-
BBIPAKEHHOW TOHAJILHOW OpUEHTAIMeH, MOAXOIAUINX I Pa3HbIX MPEIMETHBIX 00JacTei.

B kauecTBe BHELIHUX MOAKIIOYAEMbIX CJOBapedl B JaHHOW paboTe ObUIM HCIOJIb30BaHbI JBa
o0I1le TeMAaTUYEeCKUX CIIOBapsi TOHAIBHOM JIEKCUKH, pa3MedeHHble skcneptamu: PyCentullexc u
Linis-crowd.

PyCentnJlekc [4] — nekcukoH ObUT COOpaH M3 HECKOJIBKUX MCTOYHHMKOB: OIICHOYHBIC CJIOBA M3
Te3aypyca pycckoro sizbika PyTes, cnenroBeie cioBa u3 TBUTTEpa M €I0Ba C MO3UTHUBHBIMU MU
HEraTUBHBIMHU acCOIMalMiIMU (KOHHOTAMAMHU) U3 Kopmyca HoBocTed. ClioBapb conepXuT Oosee
JIECATH THICSY CJIOB U CIIOBOCOYETAHUH PYCCKOTo si3blKa. JIEKCMKOH BKIIIOYAeT B ceOs OILICHOYHBIE
CJIOBA, aBTOMaTU4ECKH U3BJICUEHHBIE U3 TEKCTA U MIPOBEPEHHBIE dKCIIEPTAMH.

Jlpyroii ciioBapb, KOTOPBIH MCHOIB30BANICS B 3TOM padoTe 3to Linis-crowd [11]. Hecmotps Ha
TO, YTO aBTOPbI JIEKCUKOHA M (OPMHUPOBAHUS CJIOBApS HCIIOJIB30BAJIM TEKCThl COLUAIBHO

MMOJIUTHISCKOM TCMATHUKH, OTMCHYACTCA, YTO B CJIOBAPC MPUCYTCTBYCT JICKCHUKA HE CHGI_II/I(I)I/I‘{HS.SI JJIA
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COLMAJIBHO-TIOJIMTUYECKOM TEMaTHKH, HO Tepelarollas HMOLHUOHAIBHYIO OLIEHKY, I03TOMY
aBTOpaMH cJIOBapsi ObUIO PEIIeHO BKIIOYUTH ee B porotun Linis-crowd. CioBaps conepxut 9539
TepMHUHOB. KaXkblil TEPMUH UMEET BEC OT -2 (CUIIbHO-HEraTUBHBIN) 10 +2 (CUIBbHO ITO3UTUBHBIN).
IToaka0ueHne TOHANBHBIX cjoBapei. /g ToHanbHOro Kiaccuukaropa, OCHOBAHHOIO Ha
METOAAaX MAIIMHHOIO OOy4YeHMs, IOMUMO IMPU3HAKOB, IOPOXKJAEMbIX Ha OCHOBE OOydaroOLIMX

TaHHBIX, ObUTM J00aBICHBI CIOBAapHBIE NpU3HAKU. /s Kakaoro TepMuHa W M3  CIOBaps,

00J1a/1aroIIIEeTo MOJIIPHOCTHIO P OIpe/esieHo 3HaueHue (W, p):
> 0, w— positive
(w, p) =1<<0,w—negative
=0,w— neutral

(7)

B kauecTBe npu3HaKoB 100aBIAIOTCA:

e 00IIce KOJMYECTBO TEPMHUHOB (W, P) B TEKCTE TBUTA,

tweet (W’ p) ,

e CyMMa BCEX 3HAUEHHH MOJSAPHOCTEHN CIIOB JIEKCUKOHA E .

e  MakcuMalbHOE 3HaueHue noispHocTi: MAX .y eer (Wi P) .

Kaxnpiii U3 cioBapeil MoOAKIIOYACS OTIEIbHO, CpaBHEHHE pPE3yJIbTaTOB pabOTHI cioBapeit
MOXHO YBUAeTh B Tabmuua 6. Kak BuaHO w3 Tabmuipl, o0a cioBaps MOKAa3bIBAIOT CXOXKHE
pe3yNIbTaThl Ha 00YYaIOIIEH U TECTOBBIX KOJIICKITUSX.

Tabmuia 6 pe3yapTaTel padoThI KiTaccuukaTopa npu noakIrodeHnn cinoBapeit PyCenrullexc u

Linis-Crowd
PyCentnJlexc Linis-Crowd
Acc P R F Acc P R F
2013 0,7273 | 0,74 0,7284 |0,7318 |0,7272 |0,7398 |0,7283 |0,7316
2014 0,7245 |0,7387 |0,7259 [0,7295 |0,7244 |0,7386 |0,7258 |0,7294
2015 0,6724 |0,6802 |0,6733 |0,6759 |0,6725 |0,6803 |0,6733 |0,6760

Takum 06pa30M, C MOMOIIBIO IMOAKIHOYCHUA BHCIIHUX JICKCUKOHOB YAAaCTCA MPUOCTAHOBUTDH
CHMJKCHHEC KadeCTBa KJ'IaCCI/I(l)I/IKaHI/II/I Ha KOJUICKOUAX, PA3HCCCHHBIX BO BpPEMCHHU. Tak kak
OCHOBHBIC TIPpHU3HAKHU MOPOKIAAKOTCA 06yqafomel71 KOHHCKHHCﬁ, TCHACHLOUA K JCrpajaliun
KHaCCI/I(I)I/IKaTOpa BCC K€ COXPpaHACTCA, OAHAKO, OHAa COKpallacTCd C 15% npu HCIIOJIB30BaHUU

MeIika cioB (Tabmuna 2) 10 5,6% mpu MOIKIIOYSHUH CIIOBAPE IMOIIMOHATILHOM JICKCUKH.
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Taxkum 06p330M, BUJHO, YTO IIpW HAJIWYHUKU BHCIONHUX IMNOJAKITHOYACMBIX TOHAJIbHBIX CHOBapeﬁ
HMECT CMBICII HCIOJB30BATH 3TOT MCTO[, TaK KaK OH IO3BOJISACT CACPKAThb MAJCHUC KadCCTBa

KHaCCI/ICI)I/IKaLII/II/I TCKCTOB 10 TOHAJIBHOCTHU HA KOJUICKIUAX, Pa3HCCCHHBIX BO BPCMCHU.

3.3. Ucnosib30BaHMe pacnpeaejieHHbIX MpeACcTaBJIeHUi CJIOB B Ka4ecTBe

IMPU3HAKOB
B aByx mnpeaplaymmx MeTojax, MpPOCTPAHCTBO MPHU3HAKOB JUIsl OOydeHHs Kiaccu(uKaTopa
CTPOMTCSI Ha OCHOBE OOydarolleld KOJJICKLWH, CIEJA0BaTENbHO, CUIBHO 3aBHCHUT OT KadyecTBa U
IIOJIHOTBI ATOM KoJIeKuu. HecMoTps Ha Xopouire pe3ysibTaThl OIMCAHHBIX BbIIIE MOJEIEH, MEXKIY
TEPMUHAMH HET CEeMaHTHUYECKUX CBs3€il, a MOCTOSHHOE /J00aBJICHHE HOBBIX TEPMHUHOB BEIET K
YBEJIIMYEHHUIO PA3MEPHOCTH BEKTOpa MpHU3HAKOB. Elle oJHUM criocoOOM MpeoI0NieHusl yCTapeBaHUs
JIEKCUKOHA SIBJIIETCS MCIOJb30BaHUE NPOCTPAHCTBA PACHPEACIICHHBIX NPEICTAaBICHUN CIIOB B

KauecTBE NMPU3HAKOB JIJIs1 TPEHUPOBKH Kiaccuukaropa.

3.3.1. [IpocTpaHcTBO pacnpeneéHHbIX MPeACTABIEHU CJIOB

Pacnpenenénnoe npeacrasinenue ciosa (anri. distributed word representation, word embedding)
— 3T0 K-MepHBIi BEKTOp Mpu3HaKoB W=(Wj ...,W), riae WieR 310 koMnoHeHTsl BekTopa [28]. Eciu
CPaBHHMBATH C OMHAPHON MOJIEIBIO HJIM MOJIEIBIO B3BEIIEHHOT'O BEKTOPA, TO KOJMYECTBO KOOPANHAT
k Takoro BeKTOpa CyIIeCTBEHHO MeHbIe. OOBIYHO 3TO YUCIO HE MPEBOCXOIUT HECKOJIBKHX COTCH,
B Ciydac OMHApHOM MOJENM OHO HM3MEPSAETCS JIECATKAMH ThICAY, B 3aBUCHMOCTH OT pa3Mepa
HCXOJIHOTO CIIOBApSL.

OcHOBHasi wWes BEKTOPHOTO PACMPEICICHHOTO TPEACTABICHUS CJIOB  3aKJIFOYACTCSl B
HAXOKJIEHUH CBSA3€H MEKIY KOHTEKCTaMH CIIOB COTJIACHO IMPEIIIOIOKEHHIO, YTO HAXOISIIHECST B
MOX0XHX KOHTEKCTaX CJI0Ba, CKOPEE BCEr0 03HAYAIOT UM OMUCHIBAIOT TOXOXKHE MPEAMETHI WIIH
SIBJICHUS, T.C. SBJSIFOTCSA CEMAaHTHYECKH CXOKHUMH. J[JI1 3TOTO KaKAblii TEPMHUH MPEICTABISIETCS B
BHJI€ BEKTOpa M3 K KOOPIMHAT B KOTOPBIX 3aKOAMPOBAHBI MOJIE3HBIE TIPHU3HAKH, XapaKTEPU3YIOIIHE
STOT TEPMHUH U MO3BOJISAIOIINE ONPEAEIATh CXOJACTBO 3TOIO TEPMHHA C IMOXOKMMH TEPMHUHAMH B
Ko/utekiui. PopMarbHO 3TO MpPEACTaBICHHE TEPMHUHOB SBJISAETCS 3adadcii MaKCHMH3AIMU
KOCHHYCHOH OJIN30CTH MEXKIY BEKTOPAaMH CJIOB, KOTOpbIE MOSBIISIOTCS PSIIOM JPYT C JAPYrOM B
OJM3KUX KOHTEKCTAX, © MUHMMU3AIHs KOCHHYCHOM OJIM30CTH MEXIY BEKTOPAMH CJIOB, KOTOPbIE HE
MOSBJISIFOTCS B ONM3KUX KOHTEKCTaX. KocwHycHas mepa OJIM30CTH MEXay BeKkTopammu, COS(6),

MOXeET OBITh TPEJICTaBICHA CICAYIOMNM 00pa3oM (hopmyra §):
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zn:Ai x B,
=)

> (A) < [>(B)

rae Aju Bjkoopaunatsl Bektopa A u B cooTBeTCTBEHHO.

cos(f) = ®)

[ToMuMO COKpaIllieHHsI Pa3MEPHOCTH BEKTOPa MPU3HAKOB, PACIPEAEICHHOE IPEACTABICHUE CIIOB
YUUTBIBAET CMBICI CJIOBa B KOHTEKCTe. TO €CTh IMO3BOJISET OOOOLIMTH, HAMpPUMEP, «OBICTPHIH
aBTOMOOMJIb» Ha OTCYTCTBYIOIIEE B OOydaromed BBIOOPKE «IIyCTpas MAaIlHHa», TEM CaMbIM
CHHYKAETCSI 3aBUCHMOCTh OT 00yJaroiiell BBIOOPKH.

JIns TOJydeHus: pacupelelCHHOIO IMPEACTaBICHUS CIOB HCIOIB3YIOT MOJCIH MAIIdHHOIO
oOyuenust 6e3 yuntens, Hanp. CBOW, Skip-Gram, AdaGram [29], Glove. Pe3ynbraThl HegaBHUX
UccIe0BaHuid Moka3bpiBatoT [18], uro HelpoHHas s3bIKOBas MoJEHb SKip-gram mpeBOCXOIUT
APYyrHe MOJEIH 110 Ka4eCTBY IOJIy4aeMbIX BEKTOPHBIX IpejcTaBicHuii. [I0aToMy B HaHHON paboTe

ucrosb3yercs Mojeab SKip-Gram.

3.3.2. Moaean Skip-Gram

Mogaenp Skip-Gram 6biia npemioxeHa Tomacom MukosoBsiM ¢ coaBTopamu B 2013 roay [23].
Ha BX01 Mojenu mojmaercs Hepa3MeueHHbBINH KOPITYC TEKCTOB, JIJIsl KaXIOTO CJIOBA PaCCUUTHIBACTCS
KOJIMYECTBO BCTPEYAEMOCTH STOTO CJOBa B KOpIiyce. MaccuB CIIOB COPTHPYETCS MO YacTOTe,
penkue ciioBa yaanstorcs. Kak npaBuiio, MOXKHO YCTaHABIMBATh MOPOT BCTPEYAEMOCTH CJIOBA MPU
KOTOPOM CIJIOBO MOXKHO CUMTATh PEAKHM U JI0 KOTOPOTO BCE PEIKO BCTPEYAIOIINECS CI0Ba OymyT
ynanessl. [y Toro, 4To0bl CHU3UTH BBIYMCIMTEIBHYIO CIOXKHOCTH alTOPUTMa, CTPOUTCS JEPEBO
Xaddmana (anrn. Huffman Binary Tree). Jlasiee anroput™ mpoxoIuT 3apaHee 3aaHHbIM Pa3MepoM
OKHa IO BBIOpaHHOMY OTpe3Ky TekcTa. Pa3mep okHa 3ajmaeTcst kak napamerp ainroputma. Ilox
OKHOM TOJIpa3yMeBaeTCsl MAaKCUMallbHAs TUCTAHINS MEXKy TEKYIIUM U TPEICKa3bIBAEMBIM CIIOBOM
B NpeUIOKeHHH. TO €CTh eciM OKHO PaBHO TPEM, TO JUIS MpPEMIoXKeHUs «S cMoTpen xopomwit
buieM» npuMeHeHue anroputma SKip-gram OyaeT MpoXOoAHUT BHYTpH OJ0Ka, COCTOSINETO U3 Tpax
cioB: «f cMOTpen Xopomui», «CcMOTpen Xxopouui ¢uiabmy». Jlanee mpuMeHseTcs HEHpPOCeTh
npsimoro pacnpoctpanenus (anrn. Feedforward Neural Network) ¢ mHOro mnepemeHHO#
JIOTUCTUYECKON (PYHKITUEH.

Cxemarudecku mozenb SKip-gramm npescrabisieTcs B Buje HeriponHoit cetu (Puc. 3) [23]:
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INPUT PROJECTION OUTPUT

4 w(t-2)

g W)
w(t) , >

A wit+)

4 wit+2)

Puc. 3. Apxutekrypa mozenu SKip-gram

N300paxenHas Ha Puc. 3 HelipoHHasi CETh COCTOMT M3 TPEX CJIOEB: BXOIHOM (INPUt), BRIXOIHOMN
(output) u ckpeiTeiii (projection). CioBo, mogaBaeMoe Ha BXoja, o0o3HaueHO W(I), B BBIXOJHOM
cmoBe W(t-2), w(t-1), w(t+1) u w(t+2) — cioBa KOHTEKCTa KOTOpBIE IBITAETCS IPEACKA3aTh

HelpoHHas ceTh. To ecTh MoJielb SKip-gram — npejicka3biBaeT KOHTEKCT MPH JaHHOM CJIOBE.

3.3.3. Ucnoub3oBanue mogeau Skip-Gramm JJisi CHUKeHHSI 3aBUCHMOCTH OT 00y4aromei
KOJIJIeKIHH.

B pa6ore [15] moka3aHo, 4TO HEHPOHHBIE CETH, C MOMOIIBI0 BEKTOPHBIX MPEICTABICHUN CIIOB,
HOJNYYCHHBIX NpU ToMoIM airoputma Word2vec [29], moryr 3¢¢ekTuBHO pemats 3aaavu
00pabOTKH TEKCTOB Ha €CTECTBEHHOM S3bIKE, B OOIIEM cilydae M 3aJaudy KiaccuuKaiu TEKCTOB
M0 TOHAJIBHOCTH B 4acTHOCTH. OMUCAHHBIA alTOPUTM TI0Ka3aJl JIydIIne Pe3yIbTaThl 10 CPABHEHUIO
C IPYTUMH alITOPUTMaMH Ha BHIOPAHHBIX TEKCTOBBIX KOJIICKIIHSX.

Jlst o0yuenust moaenu SKip-Gramm npou3BosbHBIM 00pa3oM ObLIO BBIOPaHO 5 MUIUTHOHOB
TEKCTOB M3 MEPBOHAYAILHOM, HE pa3/Ie]eHHOM MO KjaccaM TOHAJIbHOCTH, Kosutekuuu 2013 ropa.
Komnexuun 2014 u 2015 romoB B 00yuyeHWH HE y49acTBOBAIM, TaK KakK JIETAETCS MPEATNOI0KECHHE,
4yTO0 00yueHHasi MOJIeNb JOJIKHA ObITh epeHoCcHMa Ha 0oJiee MO3/1HNE KOJUIEKIIUH.

B kauecTBe nmporpaMMHO# peanu3anuu Moaenu SKip-gram 6sut ucnonb3oBan Word2Vec [29]

CO CJIEIYIOLIMMHU NTapaMeTPaMHu:
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e size 300 — kaxxJ0€ CIOBO NPEJCTABISCTCS B BUIC BEKTOPA 3aIaHHOI pa3MEpPHOCTH;

e window 5 — kak MHOTO CJIOB U3 KOHTEKCTa O0YYAOIIHI aIrOPUTM JOJKEH
NPUHUMATh BO BHUMAHHE;

e negative 10 — yKciI0 HEraTUBHBIX IPUMEPOB ISl HEFATUBHOTO COMIUTUPOBAHHS;

e sample le-4 — cyG-commupoBanue, IPUMEHEHHUE CY0-COMILTUPOBAHUS YITydIlIacT
MIPOU3BOIUTEIILHOCTh. PEKOMEHTyeMEbIil mapameTp cy0-coMIuinpoBanus ot 1e-3 1o
le-5;

e threads 10 — xonMuYecTBO UCIIOJIB3YEMBIX [TOTOKOB;

e min-count 3 — orpaHUYMBAcT pa3Mep CIOBaps JJIs 3HAYUMBIX CJI0B. CJI0Ba, KOTOpBIE
BCTPEYAIOTCS B TEKCTE MEHEE YKAa3aHHOTO KOJIMYECTBA Pa3, HMTHOPUPYIOTCS.
CranapTHOe 3HaYeHUE — 5);

e iter 15 — komM4ecTBO 0OYUYAIOIIUX UTEPAIIHIA.

Onnoit u3 ocobennocreir Word2Vec siBisieTcss TO, YTO aNrOPUTM HE pas3lielisieT CIOBO U
CIICAYIOIIMK 32 HUM 3HAaK MpENWHAHMSA, TOITOMY, YTOOBI B (paiine-moaenu He ObUTO TEPMUHOB CO
3HAaKaMH TPENMHAHUA TaKUX KaK: «HAIpUMep,», Mepel] HaualoM TPEHUPOBKU 3HAKH TPETTHHAHUS
OBLTH OT/EJIEHBI TPOOEIOM OT MIYLIETO Mepel HUMH CIIOBAa. AHAJIOTUYHO, YTOOBI «HE + CIIOBO» HE
OBLIO pa3/esieHO Ha J1Ba Pa3IM4YHBIX TEPMHHA, MPOOET MEXIy YacTHIAMU HE M HU ObUI 3aMEHEH
HUKHHUM TOJAYEPKUBAaHUEM (HAIIP. «HU_pa3y», «HE XOTEI»).

W3 TexkcToB, KaK U paHee, ObUIH OT(HUIBTPOBAHBI YMOTHKOHBI, TaK KaK OHU SIBIITIOTCS METKaMHU
MPUHAIICKHOCTH TEKCTA K ONPE/IeIEeHHOMY KJIACCY TOHAJILHOCTH.

Ka)K,Z[BIfI TEKCT OBbLI MNpEACTaBJIICH B BUAC YCPCAHCHHOI'O BCKTOpAa BXOIAIIUX B HEro CJIOB

(popmymna 9):

©)

g2
n

rae Wi — BEKTOPHOE TPECTaBICHUE I-T0 CI0Ba, BXOMAILIETO B UCCIEeAyeMbIi TekeT, i=(1,..,n), N —
YHCJIO CJIOB U3 JIEKCUKOHA, BXOJISAIIMX B UCCIIETYEMbIN TEKCT.

Knaccupukarop Obur obydueH Ha komutekuuu 2013 roma, panmee oOydeHHas MOJENb
KJaccupukaropa mpuMeHsiach s TectupoBanust kosuiekiui 2014 u 2015 romos. PesynbTaTh
Kiaccudukaropa npeacTaBieHsl B Tabnuma 7, pe3yabTaThl METPUK KadecTBa Jist Koyutekuu 2013

roaa OCTaBJICHBI AJIs1 HArJIIAHOCTH.
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Tabnuna 7 Pe3synbrarhl kinaccudukaniy TEKCTOB MO TOHAJBHOCTH C UCIOJIb30BAaHUEM BEKTOPOB

CJIOB, MOJIYYCHHBIX TP Kcmoyib3oBaHuu WOord2Vec B kauecTBe NMPU3HAKOB

Acc. Precision Recall F-mepa
2013 0,7206 0,7250 0,7221 0,7226
2014 0,7756 0,7763 0,7836 0,7787
2015 0,7289 0,7250 0,7317 0,7252

Puc. 4 HarjiiaJHO ITOKa3bIBA€T, YTO Ka4dCCTBO KJ'IaCCI/I(bI/IKaI_[I/II/I Ha TpHU KjacCa HE€ TOJIbKO HC

CHMIKACTCsA Ha KOJUJICKOUAX, C06paHHBIX C paBHPIIlCﬁ HOJ'IFO,Z[&/FOI[, HO U JACPKHUTCA HA YPOBHEC

JIy4HInXx 3H3‘-I€HPII>1, MOJIYYCHHBIX IIPpHU HMCIOJB30BAHUHU MOJACIW MCUIKA CJIOB IIpU HepereCTHOﬁ

MpoBEpKe Ha KoJuleKuuu onHoro roxaa (Tabmuua 2, Tabmuua 4). [Ipu TOoM, 9TO YMCIO KOOPAWHAT B

BekTope cioBa poBHo 300 (3agaBaeMblii mapameTp), a He npeBocxoauT 200 ThicsS Y, Kak B OYyJIEeBCKOM

U1 BeKTOpHOﬁ MOACIAX.

I[aHHl)If/’I MCTOJ] XOpOoWo MOoAXOAUT IJIA NPUMCHCHHA B TOM CJIydac, €CJIKM Yy HAaC €CThb BHCHIHAA

AOCTAaTOYHO IMPEACTAaBUTCIIbHAA KOJUJICKIHUA TCKCTOB, KOTOpPAsA CXOKa IO JICKCHUKE C 06y11a101uel71 n

TECTOBOM KOJUICKIUAMHU, TO €CTb 314CChb, KaK IJIA APYIrux HeﬁpOHHBIX cerel Tpe6yeTc;1 OoubIIIas

o6yqa10maﬂ BBI60pKa TEKCTOB. MeToa MO3BOJISIET MMOJIYYUTb YCTOﬁqHBBIe U CTaOMIIbHBIE

pE3yIbTATHI.

3HayeHMe KjIaccupuKaTopa,
corsiacHo F-mepe

=) o =)
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L
[
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2013 2014 2015
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Puc. 4. CpaBHeHue ucnonb3oBanue BeKTopoB ciioB Word2Vec B kauecTBe MPU3HAKOB U JICKCHKOHA,
OCHOBAHHOT'O Ha Memike ciioB Kosuiekuu 2013 roxa.
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4. 3akaouyeHue

B nanHOW cTarhe NPEUIOKEHO TPU NPUHIUIHAIBHO PA3IUYHBIX MOJIEIH, TO3BOJISIONINE
MPEOJONETh YXYAIICHUE PE3YJIbTaTOB KiIACCHU(DUKAIMM 1O TOHAIBLHOCTH HAa KOJUICKIIHSIX
pa3HeceHHBIX BO BpeMeHu. B Tabmuiie 2 Ob110 MoKa3zaHo, YTO KauecTBO KJIACCU(UKALIUUA TEKCTOB IO
TOHAJILHOCTH COIJIacCHO F-Mepe 3a monropa roaa MoxeT cHuzutbes 10 15%. Takum obpazom, nenb
MpejiaraéMbiX B CTaThe MOJXOJOB — CBECTH JI0 MUHUMYMa CHIDKEHUE KauecTBa KIAaCCHU(PUKAIIUN
TEKCTOB KOJUISKIIUN, pa3HECEHHBIX BO BPEMEHHU.

1. B kadecTBe MepBOro Mojaxoja, MpeiJiaraeTcs HCIOJIb30BaTh BECOBYIO CXEMY C JIMHEMHOMN
BBIUHCIUTENBHON CIO0KHOCThIO. TakuM 0Opa3oM MOKHO JUHAMUYECKH OOHOBISTH JIEKCUKOH U
nepeo0ydarh KiIacCU(PUKATOP. 3aBUCUMOCTh OT O0YYaromed KOJUICKIIMH CHIDKAETCS OTOMY, YTO
oOyyJaromasi KOJUISKIIHS TOCTOSHHO OOHOBIsieTcs. B 3ToM ciydae, pasHuma Mexnay paboToit
kiaccudukaropa Ha koyutekiuu 2013 romxa n 2015 roma cocrapisier Beero 2,4% cormacHo F-mepe
IIPU HCIOJb30BaHUM Memika cioB u 1,42% npu ucnons3oBanuu mepol TF-ICF. Hecmotps Ha
OYEBH/IHBIE JOCTOMHCTBA 3TOTO MOIX0/1a, Y HETO €CTh JBa HEAOCTaTKa!

1. ¢ oOHOBIEHUEM JICKCUKOHA, YBEITUYHBACTCS Pa3MEPHOCTh MPOCTPAHCTBA MPHU3HAKOB.
CoOOTBETCTBEHHO, C KaXIbIM OOHOBJICHHEM JIEKCUKOHA, chucTeMa TpeOyeT OOoJbIIuX
PECYPCOB, BEKTOP TEKCTa CTAHOBUTCS 00Jiee pa3peKEHHbBIM.

2. KavecTBO KIacCH(UKAIMU C Ucnoiib3oBaHueM Mmepbl TF-ICF cymecTBeHHO ycTymaer
KauecTBY KJIaCCU(PUKAIIUU TTPU UCTIOJIb30BAHUHU MEIIKA CJIOB.

2. Bropoil moaxoJl OCHOBAaH Ha MOJKIIOUYEHHHM CIIOBAPEH TOHAIBHOM JIEKCUKH. JIEKCUKOH
PyCentuJlekc u Linis-Crowd. Hcronb30Banne BHEITHUX CIOBApeii MO3BOJISIET COKPATHTh Pa3phiB B
KauecTBe Kiaccudukaropa Mexnay komutekuusmu 2013 roma 2015 go 5,6% cormacuo F-mepe.
Paznuna cornacuo F-mepe mexny pesynbraramu kinaccudukanuu kojuiekiuu 2013 u 2014 romos
Menee 1% u cocrasnser Bcero 0,2%. [Ipu aTom KauecTBO KiaccudukaTropa IEepKUTCS HA YPOBHE
0,68-0,73, uTo comocTaBUMO C TY4YIIUMHU pe3yibTaTamu. Takum oOpa3om, TOPOKICHHE TPU3HAKOB
Ha OCHOBE BHEIIHMX CJIOBapeil He BIeYeT 3a COOOW MacITaOHOrO YBEIHUYEHHUS MPOCTPAHCTBA
MIPU3HAKOB U MO3BOJISIET MTOKA3bIBATh XOPOIIIHE pe3yIbTaThl Kiaccupukauu. HecMoTpst Ha 3TO, Tak
KaK MPOCTPAHCTBO MPHU3HAKOB MO MPEKHEMY 3aBUCHT OT OOyYaroIIel KOJUICKIINH, HaOIt0maeTcs
HE3HAYUTENIbHOE CHIDKEHHE KaueCcTBa KiIacCH(PUKaIMU Ha 00Jiee TO3IHUX KOJUICKITUSIX.

3. B ocHOBe TpeThero moaxoaa JEKHUT U MPOCTPAHCTBA pacpeleleHHBIX MpeACcTaBIeHUN
CIIOB M HEHpoOHHas s3bIKoBas Mmojenb SKip-gram. Kak uw Bo BTOpOM Tmoaxoje, 37ech ObuIH

HCIIOJIB30BAHbBI BHCITHHUE PECYPCHI. HpOCTpaHCTBO pacnpeaci€HHbIX BEKTOPOB CJIOB CTPOUJIIOCH HaA
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HE pa3MEUeHHOW KOJIJIEKIMU TBHUTOB, KOTOpas B pa3bl OOJbIlIe aBTOMATUYECKH pa3MEUCHHOU
oOyyaroIei KoJuIeKIuy. B kauecTBe MpU3HAKOB OBLIM MCIIOIB30BaHbl YCPETHEHHBIE BEKTOPA CIIOB,
BXOJAILIMX B OJUH TBUT. Takum 00pazoM, pa3MEpHOCTb BEKTOPHOI'O IIPOCTPAHCTBA COCTABUJIA BCETO
300 — sTO0 mepBOE MPEHMYIIECTBO MOAXOJa. BTOpBHIM NpenMyIiecTBOM MOAXOAA SBISIOTCS
pe3ynbTaThl Kiaccudukanuu: paznuna mexay F-mepoit 2013 u 2015 rogamu cocrasisier 0,26%,
Opu dYeM pe3ynbTaThl Kiaccupukamuun Ha Koutekmmu 2015 roma Beime. AHAJOTHYHO C
pesyabTatamu Kinaccupukanuu Ha kojurekuusax 2013 u 2014 ronos, pe3ynbTaThl Kiaccu(UKAIIH
Ha xoyiekuu 2014 roma npeBocxoadr Ha 5,6% pe3ynpTaThl Kiaccudukanuu Ha Kosekuuu 2013
roga corijacHo F-mepe. DTO MOXXHO OOBSCHUTH TEM, YTO ISl MOJy4EHHUS pE3yNbTaTOB Ha
kowtekuuu 2013 roga MCHONB30BajCs METOJ IEPEKPECTHOM IPOBEPKH, TO €CTh KOJUIEKLHA
Jenuiaach Ha o0y4yaroulyro M TECTOBYIO B OTHOUIEHHM 4:5, a mpu o0ydueHuH kiaccuukaropa s
TectupoBaHus Ha Koutekuusax 2014 u 2015 rogoB ucnosnb3oBanack nojHas kouiekuus 2013 roga.
Takum oOpa3oMm, Bce Tpu MPEIJIOKEHHBIX TMOAXO0JAa TO3BOJSIOT CHUBHUTH YXYALICHUE

PE3YIbTATOB KJ'IaCCI/I(i)I/IKaIII/II/I 10 TOHAJIbHOCTHU Ha Pa3HCCCHHBIX BO BPCMCHHU KOJUICKIIHAX.
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Formalisms for conceptual design

of closed information systems*

Anureev LS. (Institute of Informatics Systems)

A closed information system is an information system such that its environment does
not change it, and there is an information transfer from it to its environment and from its
environment to it. In this paper two formalisms (information query systems and conceptual
configuration systems) for abstract unified modelling of the artifacts (concept sketches and
models) of the conceptual design of closed information systems, early phase of informa-
tion systems design process, are proposed. Information query systems defines the abstract
unified information model for the artifacts, based on such general concepts as state, infor-
mation query and answer. Conceptual configuration systems are a formalism for concep-
tual modelling of information query systems. They defines the abstract unified conceptual
model for the artifacts. The basic definitions of the theory of conceptual configuration
systems are given. These systems were demonstrated to allow to model both typical and
new kinds of ontological elements. The classification of ontological elements based on such
systems is described. A language of conceptual configuration systems is defined.

Keywords: closed information system, information query system, conceptual structure,
ontology, ontological element, conceptual, conceptual state, conceptual configuration, con-

ceptual configuration system, conceptual information query model, CCSL

1. Introduction

The conceptual models play an important role in the overall system development life cycle
[1]. Numerous conceptual modelling techniques have been created, but all of them have a
limited number of kinds of ontological elements and therefore can only represent ontological
elements of fixed conceptual granularity. For example, entity-relationship modelling technique
[2] uses two kinds of ontological elements: entities and relationships.

The purpose of the paper is propose formalisms for abstract unified modelling of the artifacts
(concept sketches and models) of the conceptual design of closed information systems (IS for
short) by ontological elements of arbitrary conceptual granularity. In our two stage approach

the informational and conceptual aspects of the system that the conceptual model represents are

Partially supported by RFBR under grants 15-01-05974 and 15-07-04144 and SB RAS interdisciplinary integration project
No.15/10.
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described by two separate formalisms. The first formalism describes the informational model
of the system, and the second formalism describes the conceptual model of the informational

model.

The first formalism called an information query system (IQS for short) is a system charac-
terized by sets of states, state objects, information queries, information query objects, answers,
answer objects and an interpretation function. States of an IQS models the information storage
in an IS modelled by the 1QS, queries of the IQS model the information transferring from an
environment to the IS to get the storage content, and answers of the IQS model the information
transferring from the IS to the environment initiated by these queries. State objects, query
objects and answer objects are objects that can be observed in states, queries and answers,
respectively. They describe the observed internal structure of states, queries and answers. The
interpretation function models the information transfer from the IS to its environment and from

its environment to the IS. It associates queries with functions from states to answers.

A wide variety of information systems is modelled by IQSs in the information aspect, includ-
ing search services with search results as answers, factual factographic databases with factual
information as answers, document databases with documents as answers, content consump-
tion devices with content information as answers, logical systems with truth values as answers,
formalisms specifying denotational semantics of programming languages with denotations as

answers and so on.

We consider that the second formalism used for for conceptual modelling of 1QSs must meet

the following general requirements (in relation to modelling of a IQS):

1. It must model the conceptual structure of states and state objects of the 1QS.

2. It must model the content of the conceptual structure.

3. It must model information queries, information query objects, answers and answer objects
of the IQS.

4. It must model the interpretation function of the 1QS.

5. It must be quite universal to model typical ontological elements (concepts, attributes,
concept instances, relations, relation instances, types, domains, and so on.).

6. It must provide a quite complete classification of ontological elements, including the
determination of their new kinds and subkinds with arbitrary conceptual granularity.

7. The model of the interpretation function must be extensible.

8. It must have language support. The language associated with the formalism must define
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syntactic representations of models of states, state objects, queries, query objects, answers
and answer objects and includes the set of predefined basic query models.

To our knowledge, there is no formalism that meets all the above requirements. Therefore,
we propose a new formalism, conceptual configuration systems (CCS for short), that meets
these requirements.

The paper has the following structure. The preliminary concepts and notation are given
in section 2. The formal definition of 1QSs and the basic definitions of the theory of CCSs
are given in section 3. The structure of conceptuals (atomic conceptual structures of CCSs)
is described in section 4. The structure of conceptual states is considered in section 5. The
classification of elements of conceptual states such that concepts, attributes and individuals is
presented in section 6. The structure of concepts is described in section 7. The classification and
interpretation of concepts is given in 8. The structure of attributes is described in section 9. The
classification and interpretation of attributes is given in 10. The classification of conceptuals
and ontological elements modelled by these conceptuals is presented in section 11. Relations,
types, domains and inheritance are modelled by conceptual structures of CCSs in section 12.
Generic conceptuals describing sets of conceptuals satisfying a pattern are defined in section
13. The language CCSL of CCSs is described in section 14. The semantics of interpretable
elements in CCSL is defined in section 15. We establish that CCSs meet the above requirements
in section 16. CCSs are compared with the related formalism, abstract state machines |3, 4],

in section 17.

2. Preliminaries

2.1. Sets, sequences, multisets

Let O, be the set of objects considered in this paper. Let S; be a set of sets. Let I,;, Ny,
N,y and B; be sets of integers, natural numbers, natural numbers with zero and boolean values
true and false, respectively.

Let the names of sets be represented by capital letters possibly with subscripts and the
elements of sets be represented by the corresponding small letters possibly with extended sub-
scripts. For example, i,; and 4,,, are elements of I,;.

Let S, be a set of sequences. Let s, (,), S;{«}, and s;, denote sets of sequences of the forms
(015 -+ Obnse)s {01, -+ Obinyg b5 AN 0p1, - . ., Op.nyy from elements of s,. For example, I, () is a

set of sequences of the form (ins1, .- ., intn, ), and iy is a sequence of the form i1, ..., Ity -



72 Anureev I.S. Formalisms for conceptual design of closed information systems

Let 0p.1,...,0pn,, denote op1,...,00n,0- Let ;) St{sno}s aNd S, denote sets of the
corresponding sequences of the length ng.

Let op1 <[s,] Ob2 denote the fact that there exist op..1, 0px2 and op.3 such that s, =
Ob.x.15 Ob.1; Obx.2, 0b2, Obx3, OI Sqg = (Ob.*.h Op.1, Ob.x.2, 0b.2, Ob.*.S)-

Let [0y 0p1 <= 0p2] denote the result of replacement of all occurrences of o, in 0, by 0p2.
Let [sq4 0p <=4 0p.1] denote the result of replacement of each element 0,5 in s, by [051 0y <= 0p2].
For example, [(a,b) x <=, (f z)] denotes ((f a), (f b)).

Let [len s,] denote the length of s,. Let und denote the undefined value. Let [s, . n:] denote
the n;-th element of s,. If [len s;| < ny, then [s, . ny] = und. Let [s, + s41], [op . + s,] and
[s; + . 0] denote oy, 0p.s.1, Op, Op.« and oy, 0y, Where s, = o, and s, 1 = Op.1.

Let [and s,] denote (cpqg1 and ... and cpan,), where s, = a1, -y Cndn,, and [and] denote
true. In the case of n; = 1, the brackets can be omitted.

Let op1,0p2 € S; US,. Then o, =4 o0p2 denote that the sets of elements of 0,1 and oy

coincide, and o0p1 =, 052 denote that the multisets of elements of 0,1 and o5 coincide.
2.2. Contexts

The terms used in the paper are context-dependent.

Let Ly be a set of objects called labels. Contexts have the form [op.], where the elements
of oy, called embedded contexts have the form: [;:04, lp: or op.

The context in which some embedded contexts are omitted is called a partial context. All
omitted embedded contexts are considered bound by the existential quantifier, unless otherwise
specified.

Let op[op.] denote the object o, in the context [op.].

The object "in oy, 0p.+]” can be reduced to ’in [op] in [op.]’ if this does not lead to ambiguity.
2.3. Functions

Let F), be a set of functions. Let A,, and V; be sets of objects called arguments and values.
Let [f arg.] denote the application of f,, to ayg..

Let [support f,] denote the support in [f.], 1. e. [support f,] = {ary : [fn arg] # und}.
Let [image f, si| denote the image in [f,, s¢], 1. e. [image f, si| = {[fn arg| : ary € s¢}. Let
[image f,] denote the image in [f,, [support f,]]. Let [narrow f, s;] denote the function f, ;

such that [support f, 1] = [support f,1]Ns:, and [fn1 arg] = [fn arg for each a,, € [support f,1].
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The function f, is called a narrowing of f,, to s;. Let [support f,1] N [support fns] = 0. Let
fn1 U fna denote the union f, of f,; and f,o such that [f, a,y = [fn1 ar,) for each a,, €
[support fn1], and [f, arg] = [fn2 arg] for each a,4 € [support f,o]. Let fn,1 C f,2 denote the
fact that [support f,1] C [support fno], and [fu1 arg] = [frn.2 arg] for each a,, € [support f,1].

An object u, of the form a,, : v; is called an update. Let U, be a set of updates. The objects
ary and vy are called an argument and value in Ju,].

Let [fn up] denote the function f,; such that [f,1 arg] = [fn arg if arg # argu,], and
[fn1 arglup]] = viu,]. Let [f, up, tpsn,] be a shorteut for [[f,, up] wpan,]- Let [fr arg.arga. - ..
lyrgn, - U] be a shortcut for [f, arg : [[fa @rgl Grga- - -Grgn, = vi]]. Let [u,.] be a shortcut for
[fn ups], where [support f,] =0

Let C,4 be a set of objects called conditions. Let [if c,q then oy else 0p5] denote the object
oy such that

e if ¢,q = true, then o, = 0y1;

o if ¢,,g = false, then o, = oy5.
2.4. Attributes and multi-attributes

An object 0y, of the form (u,.) is called a multi-attribute object. Let Oy, be a set
of multi-attribute objects. The elements of [0y, W <. a,y[w]] are called multi-attributes
in [opma]. Let Opma be a set of multi-attributes. The elements of [0y w . yw]] are
called values in [opme]. The sequence w, . is called a sequence in [0p.mq] and denoted by
[sequence in 0pma|. An object v is a value in [au.m, Op.ma] I Ob.ma = (Ups1s Qttm * V1, Up o) for
some Up.1 and up 2.

An object 0y, is an attribute object if the elements of [0y w = ayg[w]] are pairwise
distinct. Let Oy, be a set of attribute objects. The multi-attributes in o, ,] are called attributes
in [op4]. Let Ay be a set of objects called attributes.

Let [function oy4], [0p.q au], and [support o, 4] denote [[sequence in oy,]], [[function oyq] ayl,
and [support [function op4)]-

Let [seq—to—att—obj s,] denote (1 : [s, . 1],...,[len sq] : [sq . [len s4]]). Let opq =o (1 :

VL1 ooy Mg & Upp, ). Then [att—obj—to—seq op4] denote (vp1, ..., Uy, )-

3. Basic definitions of the theory of conceptual configuration systems

3.1. Information query systems
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Let Sy be a state of objects called states. An object ss,; of the form (Sy, Oy, @y, Op.q, Ans,
Ob.q, value) is an information query system if Sy, Ops, @, Opg, Ans and Oy, are nonempty
sets, Sy € Ops, Qr C Opy, und € Ay, Aps C Op g, value € Qp x Sy — A, and for all ¢, € Q,
there exists s;; € Sy such that [value g, si| # und. Let Ss,; be a set of information query

systems.

The elements of Sy, O, @y, Opq, Ans and Oy, are called states, state objects, information
queries, information query objects, answers and answer objects in [ss,.], respectively. The
function value is called a query interpretation in [s,,;]. An object 0,5 is a proper state object
if ops ¢ Su. An object oy, is a proper query object if o,, ¢ @,. An object o, is a proper

answer object if oy, & Aps.

As a through illustrative example of the IQS modelled by CCSs we use the geometric system

that includes the following proper state objects:

e kinds of geometric spaces (Euclidean, Riemannian, Lobachevskian and so on);

e kinds of geometric figures (triangles, rectangles, cubes and so on);

e numerical characteristics of geometric figures (length, area, volume and so on);

e units of measurement of numerical characteristics (inches, centimeters, metres and so on);

e values of numerical characteristics represented by real numbers;

e numeral systems for representing values of numerical characteristics (binary, octal, deci-
mal and so on);

e dimensions of geometric spaces represented by natural numbers;

e named geometric figures represented by elements of the set Fy).

A state of the geometric system is a set of relations between proper state objects. For
example, the relation { figure : f,, kind : triangle, space : Euclidean} in [sy]] means that f, is a
triangle in Euclidean space in [sy], the relation { figure : f,, characteristic : perimeter, value :
20} in [s]] means that perimeter of f, equals 20 in [sy], and the relation {kind : cube, space :
Euclidean, characteristic : volume,unit : inch) in [sy] means volume of cubes in Euclidean
space measured in inches in [s4].

PAIEN14

The possible queries in the geometric system can be “area of f,”, “f, is a triangle” and “unit
of measurement of perimeter of f,” returning a number, boolean value and unit of measurement

asS allSWers.

3.2. Atoms
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A set Ay, is a set of atoms if I,; U {true,und} C A,. Structures of CCSs are constructed

from atoms. Therefore, they are implicitly defined in [Aspn,].

@ Let Fg g Atm.
3.3. Elements

Elements are basic structures of CCSs. They model query objects, answer objects and some
proper state objects of IQSs. Let Ej be a set of objects called elements. An object e; of the
forms @, €1.(x), €11 1 €12, Or €11 11 €12 is called an element.

An element ¢ (,) of the form (e;.) is called a sequence element. The object ¢, is called
a sequence in [e; ] and denoted by [sequence in e;()]. The element () is called an empty
element.

An element u, . of the form ay : v; is called an element update. Let U, . be a set of element
updates. The elements ay and v; are called an attribute and value in [u,.].

Let S,; be a set of objects called sorts. An element e; ; of the form ¢; :: s,; is called a sorted
element. Let I, be a set of sorted elements. The elements e; and s,; are called an element
and sort in [e;].

An element e, of the form ¢; :: exc is called an exception. Let E,. be a set of exceptions.
The element ¢ is called a value in [e,.]. Thus, the sort exc specifies exceptions. Exceptions in
CCSs play the role that is analogous to the role of exceptions in programming languages. An
element e; is abnormal if ¢; € E,., or ¢, = und. Let Ej . be a set of abnormal elements. An
element e; is normal if e; is not abnormal. Let E;,, be a set of normal elements.

An element e;,,, is a multi-attribute element if ¢; € Opma. Let Ej .. be a set of multi-
attribute elements. An element ¢;, is an attribute element if ¢; € Oy ,. Let E;, be a set of

attribute elements.

P The element (f,, is, triangle) means that f, is a triangle.

3.4. Conceptuals

Conceptuals are atomic conceptual structures of CCSs. Conceptual structures of CCSs are
constructed from conceptuals. Conceptuals model some proper state objects of IQSs. An
attribute element ¢, is a conceptual if [support c,ep] C L. Let Chep be a set of conceptuals.
An element of the form i,, : ¢ is called a conceptual update. Let U, . be a set of conceptual

updates.
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D Let cpepr = (—3 : 10, -2 : inch, —1 : area,0 : f,, 1 : triangle,2 : Euclidean,3 : 2). Then
the following properties hold:
— Cnepl 18 @ conceptual;
——=3:10, =2 :inch, —1 : area, 0 : f,, 1 : triangle, 2 : Euclidean and 3 : 2 are
conceptual updates;
— Cnepr models the area (the attribute —1) of the triangle (the attribute 1) f, (the
attribute 0) in three-dimensional (the attribute 3) Euclidean (the attribute 2) space,

measured in inches (the attribute —2) in the decimal system (the attribute —3).
3.5. Conceptual states

Conceptual states are conceptual structures of CCSs specifying values of conceptuals. They
model some proper state objects of 1QSs. An attribute element s is a conceptual state if
[support su] C Crep. Thus, sy can reference to either a state of a IQS or a conceptual state of
a QTS depending on the context.

A function value € Chep X Sy — Ej is a conceptual interpretation if [value cpep Si) =

[Stt Cnept]- The element [value cpep Su) is called a value in [Cpepr, Sit]-

@D Let cpepr = (=3 : 10, -2 : inch,—1 : area,0 : f,,1 : triangle,2 : Euclidean,3 : 2) and
Stt = (Cnept © 3). Then the following properties hold:
— [value chep St = 3;
— 3 is the value in [¢pep, Sul;
—area of the triangle f; in two-dimensional Euclidean space equals 3 inches in the

decimal system in [sy].
3.6. Conceptual configurations

Conceptual configurations are conceptual structures of CCSs partitioning states into named
substates. They model states of IQSs. Let N,, be a set of objects called names. An attribute
element ¢,,s is a conceptual configuration if [image c,¢] C Sy. Let C,f be a set of configurations.
An element n,, is a name in [¢,¢] if n, € [support c¢,¢]. An element n,, is a name in [sy, ¢, f]
if [cnf nm] = si. An element sy is a substate in [c, /] if s;; € [image c,f]. An element s is a
substate in [n,, cuf] if [cnf ] = su. A substate sy is unnamed in [c,f] if [cnf ()] = Su. The
element () is called an unnamed substate specifier.

A function value € Cpey X Ep x Cyy — Ej is a conceptual interpretation if [value Cpep M,
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Cnf] = [value Cpepi [Cnf m]]. The element [value cyepr Ny Cop) is called a value in [cpepr, Tom, Cnf].-

An element sy, of the form sy :: state :: n,, is called a named state. Let Sy, be a set of
named states. The elements sy and n,, are called a state and name in [sy,,]. The element s
references to sy :: state :: () in the context of named states.

An element c,¢pp, of the form ¢,y :: state :: n,, is called a named conceptual. Let Ceprn
be a set of named conceptuals. It specifies the conceptual ¢, in the state with the name n,,.
The elements ¢,y and n, are called a conceptual and name in [c,epn]. The element cpep
references to ¢, it state :: () in the context of named conceptuals.

A function value € Cpepn X Cpy — Ej is a conceptual interpretation if [value Cpepin Cnfl =

[value cpepi[Crepinll mlCnepin] Cnept]. The element [value chepin cny] is called a value in [¢reprn,

Cnfﬂ.

3.7. Substitutions, patterns, pattern specifications, instances

A function s, € E; — Ej, is called a substitution. Let S, be a set of substitutions. A
function subst € Sy, X E;. — Ej, is a substitution function if it is defined as follows (the first

proper rule is applied):

o [subst sy (€1..)] = ([er. w <=y [subst s, w]]);

o if ¢; € [support sp], then [subst sy, ¢;] = [sp €];
o [subst sp ayn| = apm;
o [subst sy Iy : €] = [subst s ly] : [subst sy e];
o [subst s, € :: nosubst] = ey;
o [subst s, ) 1 (nosubstexcept e;.)] = [subst [narrow s, {e;.}] ell;
o [subst sy € :: Spy| = [subst sy €] = [subst sy Spl;
[
[

o [subst sp €1..] = [e1. w <=, [subst s, w]].

The sort nosubst specifies the elements to which the substitution s, is not applied. The sort
(nosubstexcept e ) specifies the elements to which the narrowing of the substitution s;, to the
set e, is applied. An element p; is a pattern in [e;, s] if [subst s, p] = €;. Let P, be a set of
patterns. An element i, is an instance in [p, sp] if [subst sy p] = insi. Let I, be a set of
instances.

Let V. and V;. ; be sets of objects called element variables and sequence variables, respectively.
An element p; ¢ of the form (py, (v,.4), (Vr.5.4)) is & pattern specification if {v, s }N{v,.} = 0, and

the elements of {v, .} U {v,s.} are pairwise distinct. Let P, be a set of pattern specifications.
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The objects p;, (v,4), and (v,.,.) are called a pattern, element variable specification, and
sequence variable specification in [p; s]. The elements of v, , and v, ;. are called element pattern
variables and sequence pattern variables in [p; ], respectively.

An element i,4 is an instance in [pyg, sp] if [support sy] = {v..}, [sp v.] € E; for v, €
{Vrs} \{vrss}, [80 0] € Ep for v, € {v,54}, and i, is an instance in [p;, sp]. An element i,
is an instance in [p; 5] if there exists s, such that i, is an instance in [py.s, ]

A function m; € E; x P, 4 — Sy is a match if the following property holds:

o if [my e; py.s] = sp, then e is an instance in [p;, sp].
An element i, is an instance in [p;, my, Sp] if [My inst Prs] = Sp. An element i,y is an

instance in [p; s, m¢] if there exists s, such that i, is an instance in [p;s, My, Sp].
3.8. The element interpretation

Queries and answers of a IQS is modelled by elements, and the query interpretation of the
IQS is modelled by the element interpretation value € E; x C,y — E; based on atomic element
interpretations, element definitions and the element interpretation order.

The special variable conf :: in references to the current configuration in the definitions
below.

An object i, of the form (pg, (vr4), (Vrsx), fn) is an atomic element interpretation if
(pt, (Vr4), (Urss)) is a pattern specification, conf :: in ¢ {v..} U{v.s.}, fu € S — Ej,
[support f.] = {sp : [support sp] = {vri} U {05} U{conf = in},[sp v,] € Ej forwv, €
{v,.}, and [sp v.] € Ep, for v, € {v.54}}. Let L., be a set of atomic element interpreta-
tions.

The objects py, (vr4), (vrsx), and f, are called a pattern, element variable specification,
sequence variable specification, and value in [i,.,]. The elements of v,., and v, . are called
element pattern variables and sequence pattern variables in [[i,..], respectively.

A function 4,405 € E; — e is called an atomic element interpretation specification
if [support inu.qs) is finite. An interpretation i,., is an atomic element interpretation in
lintras] if [intras Tm] = tnera for some n, € E;. An element n,, is a name in [inyuq, intra.s]
if [intras Mm| = intra. An element n,, a name in [iny.q.s] if 7, 18 @ name in [ing.q, ingra.s] for
SOME Tptr.q-

An element d; of the form (p;, (vy.4), (Vr.s.4), ba) is an element definition if (py, (Vy.4), (Vrs.4)) I8

a pattern specification, and conf ::in ¢ {v..} U{v,.s.}. Let D be a set of element definitions.
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The objects p, (vrx), (vr54) and by are called a pattern, element variable specification,
sequence variable specification and body in [ds]. The elements of v, . and v,,, are called
element pattern variables and sequence pattern variables in [df], respectively.

An attribute element dy  is called an element definition specification if [support ds.| C E,
and [image dss] € Dy. A definition dy is an element definition in [dy] if [dfs n,| = df for
some n,, € ;. An element n,, is a name in [dy,dy,] if [dss nm] = dy. An element n, a name
in [dys] if n, is a name in [dy, dy,] for some dy.

Let [support intr.a.s] N [support ds.g] = 0.

An element 0,4 jn¢- of the form (n,,.) is called an element interpretation order in [ip¢r.q.5, df.s]
if {nm.} C [support ini.q.s] U [support dy], and the elements of n,, . are pairwise distinct. It
specifies the order of application of atomic element interpretations and element definitions to
the element to be interpreted.

The information about the element definition specification and element interpretation order
of configurations is stored in the substate interpretation of the configurations. The conceptuals
(0 : definitions) :: state :: interpretation and (0 : order) :: state :: interpretation define the
element definition specification and element interpretation order of the configurations, respec-
tively.

An element ¢, ¢ is consistent with (intr.q.s, df.s, Ord.iner) if the following properties hold:

o if [support inerq.s] N [support [cnp (0 : definitions) :: state :: interpretation]] = (;

e dss Clcns (0: definitions) :: state :: interpretation;

o if N1 <[o,uine] Mm2, A0d N1, Nima € [cap (0 1 order) :: state :: interpretation], then
Mm.1 =[lens (0:order):state::interpretation]] Tm.2-

A function value € E; x Cpy — Ej is an element interpretation in [ine.a.s, df.s, Ordintr, Me] if
[value e; ¢, f] = [value e cyf [cny (0 : order) :: state :: interpretation]]. It specifies interpreta-
tion of elements in the context of configurations. The element [value e; ¢,y is called a value in
[er, enyl.-

The auxiliary function value € E; x Cyy X Ny, sy — Ej is defined by the following rules (the
first proper rule is applied):

o if ¢,s is not consistent with (inty.a.s, df.s; Orginer), then [value e; cop Ny (0] = und;
o if intra = [intras Mm), € is an instance in [pgs[ineral, M4, Sp]), and [fullintra] sp U (conf :
in: cpp)| # und, then [value e; ¢pp (N Nni)] = [fullinera] [So conf : cnfl];

oif df = [[cns (0 : definitions) :: state :: interpretation| n,,|, € is an instance in
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[pe.slds], me, so]], and [value [subst s, U (conf = in : cnf) baldf]] cnf] # und, then
[value e; cpp (N N x )] = [value [subst [s, conf : cnr] ballds]l] cnyl;
o [value e; chp (N Nini)] = [value e ey ()]s

o [value e, ¢,y ()] = und.
3.9. Satisfiable and valid elements

An element ¢; is satisfiable in [(v;..), cnf] if there exists s, such that [support sp] = {v,..},
and [value [subst sy, €] c,f] # und.
An element ¢; is valid in [(v,.4), cof] if [value [subst s, €] cnf] # und for each s, such that

[support sy = {v,+}.
3.10. Conceptual configuration systems

An object s, of the form (Aum, intr.as, Af.s; Ord.intr, M) is called a conceptual configuration
system if 4,4y.4.5, df.s, Ordg.intr and my are an atomic element interpretation specification, element
definition specification element interpretation order and match in [Ay,], and [support ip.q.s] N
[support dgs] = 0. Let Ss.. be a set of conceptual configuration systems.

The elements of Ay, Ei[Aimnl, Crepi[Aiml, SuulAim] and Cyf[Aw,] are called atoms, ele-
ments, conceptuals, states and configurations in [s,;..].

The objects intr.q.s, df.s; Ord.intr and my are called atomic element interpretation specification,
element definition specification, element interpretation order and match in [ss..].

An element ¢; is interpretable in [ss..] if there exist n,, such that e, is an instance in

[pe.sllintr.as mm]], me], or e is an instance in [p;s[[ds.s nm]], me]-
3.11. Conceptual information query models

An object myg 4. of the form (Ss.c.c, Tpr.s; Tpr.g, Tpra) 1S @ conceptual information query model
i [ss.q.i] i Tors; Torgs Tora € Fay [support vy, s] = Oy s[ss.44l, [image rp.s] € Eiflssee], [image
Tpr.s Sit[Ss.q.i]] C Cuflss.c.cl, [support rprql = Opgl[8s.q.4]; [image rprq] € Eilss.c.c]l; [support vp,.q]
= Ob.a[Ss.q.]s [image 1pr0] C Ei[Ss.ccl, and [rp.q [value ¢, su]] = [value [rp.q @] [Tprs St]]. Let
Mg q.i.c be a set of conceptual information query models.

The system s; .. is called a conceptual configuration system in [mg.4..]. The functions r, s,
Tprq and 7, are called a state representation, query representation and answer representation

in [ma.q.i.], respectively.



System Informatics (Cucremuas nudopmaruka), No. 7 (2016) 81

A system s, ,, is conceptually modelled in [[s;..] if there exists mg ;. such that s;.. =
Ss.cc[Marqic], and mg 4. is a conceptual query model in [s,,;]. The set [image 7, ] is called
an ontology in [[s4.i, Marq.ic]- It includes conceptual structures of s c[marq.i.c] representing
the conceptual structure of state objects in [s;.4.]-

Let rp, o, 75, and 7, , denote the inverse functions of 7, 5, 7prq and 7, in the case of their

existence.
3.12. Extensions

A system ;41 is an extension of s 40 if $¢[Ssqi1] C se[Ssq..2] for each s, € {Su, Ops, @,
Ob.qa An57 Ob.av Ualue}‘
A system sg..1 is an extension of Sgcco if 0p[Ss.cc1] = 0b[Ss.cca] for each o, € {Apn, mi},

St[Ss.c.c1] C St[[Ss.cce] for each s; € {intrqs, dr.s}, and the following property hold:

o if Nm —<Hord.intrﬂsS»CAC<l]”] Nm.2, and Nm.1; Mm2 € Ord.intr[[ss.c.cQ]]a then Nm.1 '<[[o,.d,imr[[ss‘c‘c.2ﬂﬂ
Nm.2.
A CCS [, is a language of CCSs if the conceptual structures (atoms, elements, conceptuals

and so on) of [, is syntactically defined.

4. Structure of conceptuals

4.1. Elements of conceptuals

An element e; is an element in [Cpepr, ne] if € = [Cnept ine] and e; # und.

D Let cpepr = (=3 : 10, -2 : inch, —1 : area,0 : f,, 1 : triangle,2 : Euclidean,3 : 2). Then
10, inch, area, f,, triangle, Euclidean, 2 are elements in [c ] in [ — 3], [— 2], [ — 1],
[o], 111, 121, [3].

An element e¢; is an element in [¢pep ] if there exists i, such that e; is an element in [cpepr, int]-

@D Let cpepr = (=3 : 10, =2 : inch, —1 : area,0 : f,, 1 : triangle,2 : Euclidean,3 : 2). Then

10, inch, area, f,, triangle, Euclidean, 2 are elements in [Cpep]-
4.2. Orders of conceptuals in the context of elements

A number i, is an order in [Cpep, €] if €, = [Cnept int) and e; # und. Let O,q be a set of

objects called orders.



82 Anureev I.S. Formalisms for conceptual design of closed information systems

D Let cpepr = (=3 : 10,2 : inch,—1 : area,0 : f,,1 : triangle,2 : Euclidean,3 : 2).
Then —3, =2, —1, 0, 1, 2, 3 are orders in [¢,p] in [10], [inch], [area], [f,], [triangle],
[Euclidean], [3].

A number i, is an order in [¢pep, element ] if there exists e; such that i,; is an order in

[[Cncpla el]]-
D Let cpepr = (—3 : 10, -2 : inch, —1 : area,0 : f,, 1 : triangle,2 : Euclidean,3 : 2). Then

-3, -2, —1,0, 1, 2, 3 are orders in [¢,ep, element :].
4.3. Properties of elements of conceptuals

Proposition 1. The element und is not an element in [c,ep]-

Proof. This follows from the definition of element in [cpep]. O

Proposition 2. The number of elements in [¢,y] is finite.

Proof. This follows from the fact that [support cpeu| is finite and und is not an element in

[enep]- B
4.4. Properties of orders of conceptuals in the context of elements

Proposition 3. The number of orders in [[¢pep, €1cnep]l] is finite.
Proof. This follows from the fact that [support c¢eu| is finite and und is not an element in

[[Cncpl]]- O
Proposition 4. The number of orders in [¢pep, element :] is finite.

Proof. This follows from the fact that [support ¢,y is finite. O
4.5. Kinds of orders of conceptuals in the context of elements

An order o,q[Cpepi; €] is minimal in [¢pep, €] if 4, is not an order in [cpep, €] for each i,
such that 7,; < 0,4.
@D Let cpepr = (=3 : 10, -2 : inch,—1 : area,0 : f,, 1 : triangle,2 : Euclidean,3 : 2). Then
—2 is a minimal order in [¢,epr, tnch].
An order o.q[Cpepi] 1s minimal in ¢, element <] if i, is not an order in [¢pep, €] for each
ine such that 7,; < 0,4.
@D Let cpepr = (=3 : 10, =2 : inch, —1 : area,0 : f,, 1 : triangle,2 : Euclidean,3 : 2). Then

—3 is a minimal order in [¢,¢p, element :].
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An order o,4[Cpepr, €] 1s maximal in [c,epr, €] if 75 is DOt an order in [cpep, €] for each i,
such that 0,4 < ip;.
P Let cpepr = (=3 : 10, =2 :inch, —1 : area,0 : f,,1 : triangle, 2 : Euclidean,3 : 10). Then
2 is a maximal order in [¢pep, FPuclidean].

An order o,4[Cpep] is maximal in [¢,ep, element :] if 4, is not an order in [cyep, €] for each

ine such that 0,4 < 7.

P Let cpept = (=3 :10,—2 :inch,—1 : area,0: f,, 1 : triangle,2 : Euclidean,3 : 2). Then 3

is a maximal order in [¢pep, element :].
4.6. Kinds of elements of conceptuals

An element ¢; is minimal in [c,ep] if there exists o,4[cnep, €] such that o,4 is minimal in

[nepl, element .
D Let cpepr = (=3 : 10, =2 : inch, —1 : area,0 : f,, 1 : triangle,2 : Euclidean,3 : 2). Then
10 is a minimal element in [cep]-

An element e; is maximal in [¢,qpn] if there exists oyq[cnep, €] such that o, is a maximal

order in [[¢,ep, element :].
@D Let cpepr = (—3: 10, =2 : inch, —1 : area,0 : f,, 1 : triangle,2 : Euclidean,3 : 2). Then 2
is a maximal element in [¢,ep]-
An element e; is null in [c,eu] if € is an element in [cep, 0]
@D Let cpepr = (=3 : 10, =2 : inch, —1 : area,0 : f,, 1 : triangle,2 : Euclidean,3 : 2). Then

fg is null in [cpep]-

5. Structure of conceptual states

5.1. Conceptuals

A conceptual ey is a conceptual in [sy] if [value cuep S| # und.

A conceptual ¢, 18 a conceptual in [eur] if Cpepi[Crepin] 1 a conceptual in [[c,f nm
lenepinl]]l- A conceptual cpey is a conceptual in [c, ] if there exists n,, such that cpey :
state :: n,y, is a conceptual in e, ].

@D Let cpepr = (=3 : 10, =2 : inch,—1 : area,0 : f,,1 : triangle,2 : Euclidean,3 : 2) and

[support siu] = {cnepi}- Then ¢, is a conceptual in [sy].
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5.2. Elements, orders, concretizations

An element e; is an element in [su, int, Coepr] if Cnep 1S a conceptual in [s;] and e; is an
element in [Cpepr, ine]. An element e; is an element in [c,f, int, Creprn] if € is an element in
llens [name in cpepin)]s int, [conceptual in cpepn]].

A number ,; is an order in [e;, Si, Chep] if € is an element in [Su, int, Cpep]. A number i,
is an order in [e;, ¢uf, Cnepln]l if € is an element in [¢,f, int, Crepin]-

A conceptual ¢,y is a concretization in [e;, sy, ine] if € is an element in [Sy, int, Cpept]. A

conceptual ¢,y Is & concretization in [e, Cnf, int] if €; is an element in [[cnf, ints Cnepln) -
5.3. Kinds of elements

An element ¢; is an element in [[sy,4,.] if there exists ¢, such that e; is an element in
[stt, int, Cnept]- An element e; is an element in [c,f, ine] if there exists cpep., such that e; is an
element in [¢nf, int, Coepin]-

An element ¢; is an element in sy, ¢, if there exists i, such that e; is an element in
[stt, int, Cnept]- An element e; is an element in [, f, Cpepin] if there exists i, such that e; is an
element in [¢nf, int, Coepin]-

An element ¢; is an element in [sy] if there exists i,, such that e, is an element in [sy, i,,].

An element ¢; is an element in [c,f] if there exists ¢, such that e; is an element in [¢,f, in].

5.4. Kinds of orders

A number i,, is an order in [e;, sy] if ¢; is an element in [sy, i,:]. A number 4,, is an order
in [e;, cuy] if € is an element in [z, ine].
A number i, is an order in [sy, element :] if there exists e; such that i,; is an order in

ler, sue]. A number i, is an order in [c,r, element :] if there exists e; such that 4,, is an order

in [, cns]-
5.5. Kinds of concretizations

A conceptual ¢,y is a concretization in [e;, sy ] if € is an element in [sy, ¢uep]]. A conceptual
Cnepln 18 @ concretization in [e;, ¢, ] if €; is an element in [, f, Cpepin]-

A conceptual ¢, is a concretization in [sy, element :] if there exists e; such that ¢,y is
a concretization in [e;, su]. A conceptual cpepp 1S @ concretization in [¢,r, element :] if there

exists e; such that ¢pep.p 1S @ concretization in [e;, ¢, f].
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5.6. Example

P Let ¢ = (=3 : 10, -2 : inch,—1 : area,0 : e, 41,1 : triangle,2 : Euclidean,3 : 2),
Cnetz = (=3 : 8, =2 : em,—1 : volume,0 : e, 49,1 : cube,2 : Lobachevskian,3 : 3), and
[support sy] = {cner1; Cner2}- Then the following properties hold:

—10, 8, inch, cm, area, volume, €, 41, €42, trianle, cube, Fuclidean, Lobachevskian,

3, 2 are elements in [sy];
— =3, -2, —-1,0, 1, 2, 3 are orders in [sy, element :;

— Cnel1, Cnel2 are concretizations in [sy, element :].

5.7. Properties of elements

Proposition 5. For all e¢; and 4,; there exist s; and ¢,y such that e; is an element in
[[Stta int7 cncpl]] .
Proof. We define sy and ¢, as follows: [Cpepr int] = € and [sy Cpep] 7# und. Then e; is an

element in [St, int, Cpept]. O

6. Classification of elements of states

Elements in [sy] are subclassified into individuals, concepts and attributes.

6.1. Individuals

Individuals in [s4] model elements in [ss.q.]-

An element ¢ is an individual in [sy, chep] if € is an element in [sy, 0, chep]. An element e
is an individual in [c,f, Cheprn] if € is an element in [c,f, 0, Chepin]-

P Let cpep = (=3 : 10,—-2 : inch, —1 : area,0 : f,,1 : triangle,2 : Euclidean,3 : 2) and

St = (Cnept + 3). Then f; is an individual in [sy, chep]-

An element ¢; is an individual in [sy] if there exists cpey such that e, is an individual in
[stts Cnepr].  An element e; is an individual in [c,f] if there exists ¢pepn such that e; is an
individual in [¢,f, Chepin]-

D Let cha1 = (=3 : 10, -2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2),

Cnetz = (—3 1 8,—=2 : em, —1 : wolume,0 : e, 49,1 : cube,2 : Lobachevskian,3 : 3), and

Stt = (Cnet1 3, Cner2 © 4). Then e 41 and €45 are individuals in [sy].

6.2. Concepts
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Concepts in [s4] generalize models of the usual concepts in [s;,;] which are interpreted as
sets of elements in [s; 4]

An element ¢; is a concept in [Sy, nt, Cpept] if € is an element in [sy, Ny, Cpep]. A number
ng is an order in [e;, Sy, Crep] I [concept : ey, S, Caept] if € is a concept in [Su, 14, Cpept]. A
conceptual ¢, is a concretization in [concept : ey, sy, ]| if €; is a concept in [[sy, 1, Crepi]-

An element ¢; is a concept in [c,,f, e, Coeprn]] if € 1s an element in [, f, Nty Cpepin]. A number
ny is an order in [e;, Cu, Crepln] 10 [concept @ ey, cuf, Cneprn]l if € is & concept in [, f, N, Crepin]- A
conceptual ¢, 1S & concretization in [concept : e, ¢, f, n] if € is a concept in [, f, nt, Crepin]-

@D Let cpepr = (=3 : 10, -2 : inch,—1 : area,0 : f,,1 : triangle,2 : Euclidean,3 : 2) and

Stt = (Cnept = 3). Then the following properties hold:
—triangle, Euclidean, 2 are concepts in [sy] in [1], [2], [3] in [cnepl];
—1, 2, 3 are orders in [concept : triangle], [concept : Euclidean], [concept : 2] in [sy]
in [enepl;
— Cnept 1S @ concretization in [concept : triangle], [concept : Euclidean], [concept : 3]
in [s4] in [1], [2], [2]

An element e; is a concept in [sy,n:] if there exists ¢,y such that e; is a concept in
[stt, nt, Coept]. A number n; is an order in [e;, su] in [concept : e, su] if e is a concept in
[ste, 1]

An element e; is a concept in [c,f, n] if there exists cpepn such that e; is a concept in
lens, ne, Crepin]- A number n; is an order in [e;, ¢,¢] in [concept : e, c,¢] if € is a concept in
lenys na]-

@D Let cha1 = (=3 : 10, -2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2),

Cnetz = (=3 : 8,—=2 : em, —1 : volume,0 : e 49,1 : cube,2 : Lobachevskian,3 : 3), and
St = (Cper1 3, Cnero © 4). Then the following properties hold:
—triangle, Euclidean, 2 are concepts in [sy] in [1], [2], [2];
— cube, Lobachevskian, 3 are concepts in [sy] in [1], [2], [3];
—1, 2, 3 are orders in [concept : triangle], [concept : Euclidean], [concept : 2] in [s4];
— 1, 2, 3 are orders in [concept : cube], [concept : Lobachevskian], [concept : 3] in [s4].

An element ¢; is a concept in [[su, Cpep] if there exists n, such that e; is a concept in
[stes nts Cnept] - A conceptual ey s a concretization in [e;, su]] in [concept : e, su] if e is a
concept in s, Coept]-

An element e; is a concept in [cnf, Capin] if there exists n; such that e; is a concept in
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lens, ne, Crepin]- A conceptual Cpepn is a concretization in [e;, c,¢] in [concept : e, cnf] if € is
a concept in ¢, f, Caepln]-
@D Let cha1 = (=3 : 10, -2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2),
Cnetz = (—3 : 8,—=2 : em, —1 : volume,0 : e, 49,1 : cube,2 : Lobachevskian,3 : 3), and
Stt = (Cper1 3, Cnero + 4). Then the following properties hold:
—triangle, Euclidean, 2 are concepts in [Sy, Cha]);
— cube, Lobachevskian, 3 are concepts in [sy, Cre2];
— Cper1 18 @ concretization in [concept : triangle], [concept : Euclidean]), [concept : 2]
in [[Stt]];
— Cpe2 18 & concretization in [Jconcept : cube]), [concept : Lobachevskian], [concept : 3]
in 4]

An element ¢; is a concept in [s;] if there exists n, such that e; is a concept in [s;, ni]]. A
number n; is an order in [sy] in [sy, concept :] if there exists e; such that n; is an order in
[concept : e, su]. A conceptual ¢,y is a concretization in [sy] in sy, concept :] if there exists
e; such that ¢, is a concretization in [concept : e, su].

An element e; is a concept in [c, ] if there exists n; such that e; is a concept in [c,f, ne].
A number n; is an order in [e,¢] in [c,f, concept o] if there exists e; such that n; is an order
in Jconcept : e, cnf]. A conceptual ¢,ep, is & concretization in [, f] in [, f, concept :] if there
exists e; such that ¢, is a concretization in [concept : e, cnf]].

D Let chaq = (=3 : 10, -2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2),

Cnetz = (=3 : 8,—=2 : em, —1 : wolume,0 : e, 49,1 : cube,2 : Lobachevskian,3 : 3), and
Stt = (Cnet1 * 35 Cner2 + 4). Then the following properties hold:

—triangle, Euclidean, 2, cube, Lobachevskian, 3 are concepts in [sy];

—1, 2, 3 are orders in [sy, concept :];

— Cpel1, Cnel2 are concretizations in [sy, concept :].

6.3. Attributes

Attributes in [sy] generalize models of the usual attributes in [s;,;] which are interpreted
as characteristics of elements of s, ;.

An element ¢; is an attribute in [sy, n¢, Chep] if € is an element in [sy, —n, Cpep]. A number
ny is an order in [e, Su, Coept] i [attribute : ey, Sy, Cuep] if € is an attribute in [su, ne, Caep]- A

conceptual ¢,y is a concretization in [attribute : e, sy, ] if € is an attribute in [su, ns, Coepl]-
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An element ¢; is an attribute in [cuf, N, Creprn]] if € is an element in [c,f, =N, Cocprn]. A
number n; is an order in [e;, Cpf, Cuepin] 10 [attribute : e, cpf, Cpepin] if € is an attribute in
lens, e, Cnepin]- A conceptual cpepn i a concretization in [attribute : e, ¢, ni] if € is an
attribute in ¢z, Nty Crepln]-

@D Let cpep = (=3 : 10,—-2 : inch, —1 : area,0 : f,,1 : triangle,2 : Euclidean,3 : 2) and

Stt = (Cpept : 3). Then the following properties hold:
—area, inch, 10 are attributes in [s¢] in [1], [2], [3] in [caep]:
—1, 2, 3 are orders in [attribute : area], [attribute : inch], [attribute : 10] in [sy] in
[cnepl
— Cpepl 18 a concretization in [attribute : area], [attribute :inch], [attribute : 10] in
[su] in [1], [2], [3].

An element ¢; is an attribute in sy, n;] if there exists ¢, such that e; is an attribute in
[stts ity Cpepr]- A number n; is an order in [e;, si] in [attribute : e, su] if € is an attribute in
[ste, 4]

An element ¢; is an attribute in e, f, n¢] if there exists ¢, such that e; is an attribute in
[cnss ey Cnepin]- A number n, is an order in [e;, ¢,f] in [attribute : e, c,f] if e; is an attribute
in [enr, ne].

@D Let cha1 = (=3 : 10,2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2),

Cnetz = (=3 : 8,—=2 : em, —1 : volume,0 : e, 49,1 : cube,2 : Lobachevskian,3 : 3), and
Stt = (Cnet1 * 3y Cner2 = 4). Then the following properties hold:
—area, inch, 10 are attributes in [s] in [1], [2], [3];
—volume, cm, 8 are attributes in [s] in [1], [2], [3];
—1, 2, 3 are orders in [attribute : area], [attribute : inch], [attribute : 10] in [sy];
—1, 2, 3 are orders in [attribute : volumel), [attribute : em], [attribute : 8] in [sy].

An element ¢; is an attribute in [S4, ¢ if there exists n; such that e; is an attribute in
[stts Mty Cnept]- A conceptual ¢,y is a concretization in [e;, sy] in [attribute : e, s if e, is an
attribute in [ss, Crept]-

An element ¢; is an attribute in ¢, f, Cpepin] if there exists n, such that e; is an attribute in
lens, ne, Crepin]- A conceptual cpepn is @ concretization in [e;, c,¢] in [attribute : e, c,y] if e is
an attribute in [¢,f, Chepn]-

@D Let chu1 = (=3 : 10, -2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2),

Cnetz = (=3 : 8, =2 : em,—1 : volume,0 : €, 49,1 : cube,2 : Lobachevskian,3 : 3), and
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Stt = (Cper1 * 3, Cner2 © 4). Then the following properties hold:
— area, inch, 10 are attributes in [sy, che1]);
—volume, cm, 8 are attributes in [sy, chao];
— Cper1 18 & concretization in [attribute : area], [attribute : inch], [attribute : 10] in

[[Stt]]Q

— Cpa2 IS a concretization in [attribute : volume], [attribute : em], [attribute : 8] in
Hstt]]-

An element e; is an attribute in [sy] if there exists n; such that e; is an attribute in
[sit,me]. A number n; is an order in [sy, attribute ;] if there exists e; such that n; is an
order in [attribute : e;, su]]. A conceptual ¢,y is a concretization in [sy, attribute :] if there
exists e; such that ¢,y is a concretization in [attribute : e, su].

An element e; is an attribute in [c, ] if there exists n, such that e; is an attribute in
lens, ne]. A number ny is an order in [c,f, attribute :] if there exists e; such that n; is an order
in [attribute : e, c,¢]. A conceptual ¢pepp is a concretization in [e,f, attribute :] if there exists

e; such that ¢,ep.p 1S a concretization in [attribute : e, cnf].

@D Let chu1 = (=3 : 10, -2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2),
Cnet2 = (=3 :8,—=2 : cm, —1 : volume,0 : €rg2,1 1 cube,2 : Lobachevskian,3 : 3), and
Stt = (Cper1 * 3, Cnero © 4). Then the following properties hold:

— area, inch, 10, volume, cm, 8 are attributes in [sy];
—1, 2, 3 are orders in [sy, attribute :J;

— Cnel1, Cnel2 are concretizations in [sy, attribute :J.

Concepts and attributes are considered in detail below.

7. Structure of concepts

7.1. Direct concepts

The usual concepts in [ss 4] which are interpreted as sets of elements in [s; ;] are modelled

by the special kind of concepts in [sy], direct concepts in [sy].

7.1.1. Direct concepts

An element ¢; is a direct concept in [su, Chep] if € is a concept in [sy, 1, chep]. An element

e, is a direct concept in ¢, ¢, Cpepin] if € s a concept in e, 1, Chepin]-
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An element ¢; is a direct concept in [sy] if there exists ¢, such that e; is a direct concept
in s, Caepr]. An element e; is a direct concept in [e, ] if there exists ¢, such that e is a

direct concept in [cur, Crepn]-

7.1.2. Concretizations

A conceptual ¢, is a concretization in [direct—concept : e, sy if €; is a concept in [sy, 1,
Cnept]. A conceptual ¢, 1S a concretization in [direct—concept : e, cn¢] if € is a concept in
lens, 1, Cnepin]-

A conceptual ¢, is a concretization in [sy, direct—concept :| if there exists e; such that
Cnepl 18 @ concretization in [direct—concept : e, sy ]. A conceptual cpepn is a concretization in
leny, direct—concept -] if there exists e; such that ¢, is a concretization in [direct—concept :
e, Cnfl-

@D Let chg1 = (=3 : 10,-2 : inch,—1 : area,0 : f,,1 : triangle,2 : Euclidean,3 : 2),
Cnet2 = (—3: 10, -2 : inch, —1 : perimeter,0 : f,,1 : rectangle,2 : Euclidean,3 : 2), and
[support syu] = {cne1; Cna2}- Then the following properties hold:

—triangle and rectangle are direct concepts in sy;
— Cper1 18 a concretization in [direct—concept : triangle, syl

— Cpa2 Is a concretization in [direct—concept : rectangle, sy].

7.2. Elements of concepts
7.2.1. Elements, orders, concretizations

An element ¢; is an element in [concept : cuep, S, concept—order : ny, element—order
ints Cnept] if Cnep 18 & concept in [Su, ne, Coept], € 18 an element in [Cpeprs ine], and i,y < ny. An
element e; is an element in [concept : cyep, Cnr, concept—order : ny, element—order : int, Cpepin]
if Cpep 18 @ concept in [cnf, M, Crepinl], € 18 an element in [Cpepin, int]], and i, < ng.

Thus, elements of ¢, can be concepts of orders which are less than the order of cyp,
individuals and attributes of any orders.

A number n; is an order in [e;, concept : Cpep, Sut, element—order : iy, Cpep] if € is an element
in [Jconcept : Cpep, Sy, concept—order : ng, element—order : iy, Coep]. It specifies the order in
[nepts Cnepl]- A number n; is an order in [e;, concept : cpep, Cng, element—order : ing, Cpeprn] if €
is an element in [concept : cpep, Cng, concept—order : ng, element—order : int, Cpepin]-

A number i, is an order in [[e;, concept : Cpep, Sit, concept—order : ny, Cuep] if € is an element
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in [concept : cuep, Stt, concept—order : ny, element—order : iy, Coep]. It specifies the order in
[cnepis €] A number i, is an order in [e;, concept : Cpep, Cnf, concept—order : ny, Cpepin] if € is
an element in [concept : cyep, Cny, concept—order : ny, element—order : iy, Cocpin]-

A conceptual ¢, is a concretization in [e:, concept - Cneps Stt, concept—order : ny, element—
order : iy] if € is an element in [concept : Cpep, Sy, concept—order : ny, element—order
int, Cnept]- 1t defines that e; is an element in [concept : cuep, S, concept—order : ny, element—
order : in]. A conceptual ¢pep, is a concretization in [e;, concept : Cpep, Cng, concept—order :
nt, element—order : i,,] if €; is an element in [concept : cpep, Cnf, concept—order : ny, element—

order : int, Cnepin]-

7.2.2. Kinds of elements

An element ¢ is an element in [concept : ¢yep, S, concept—order : ny, element—order : i) if
there exists ¢, such that e; is an element in [concept : ¢pep, S, concept—order : ny, element—
order : z'nt,cncpl]]. An element e; is an element in [[concept I Cpeps Cnf, concept—order : ny,
element—order : i, if there exists cpepn such that e; is an element in [concept : chep, Cny,

concept—order : ny, element—order : i,;, cncpl.n]].

An element ¢; is an element in [concept : ¢pep, Sy, concept—order : ny, Cpep ]| if there exists i,
such that e; is an element in [concept : ¢yep, Su, concept—order : ny, element—order : int, Cpepl]-
An element ¢; is an element in [concept : ¢yep, Cnf, concept—order : ny, Coepin] if there exists
int such that e; is an element in [concept : cpep, Coy, concept—order : ny, element—order
inta Cncpl.n]] .

An element ¢; is an element in [concept : Cpep, S, element—order : iy, Coep if there exists ny
such that ¢; is an element in [concept : cpep, Sit, concept—order : ny, element—order : ing, Cpepi]-
An element ¢; is an element in [concept : cuep, Conyf, element—order : ing, Cpepin] if there exists
n; such that e; is an element in [concept : cnep, Cny, concept—order : ny,element—order
Z.nta Cncpl.n]] .

An element e; is an element in [concept : Cpep, Sit, concept—order : ny] if there exist i,
and ¢pey such that e; is an element in [concept : cuep, S, concept—order : ng, element—order :
ints Cnepl])- A element e; is an element in [concept : Cpep, Cnf, concept—order : ny]| if there exist i,
and Cpeprn sSuch that e; is an element in [concept : c,ep, Cnf, concept—order : ny, element—order :
Z.nta Cncpl.n]] .

An element ¢; is an element in [concept : cpep, Str, element—order : i,,] if there exist n; and
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Cnept Such that e; is an element in [concept : Cpep, Su, concept—order : ny, element—order
int, Cnept]- An element e; is an element in [concept : ¢pep, Cng, element—order : i,,] if there exist
ng and Cpeprn, such that e is an element in [concept : cpep, Cnf, concept—order : ny, element—
order : int, Cnepin]-

An element e; is an element in [concept : Cpep, Sit, Cnept] if there exist n; and 4, such that e
is an element in [concept : cpep, Sut, concept—order : ny, element—order : ip, Cpepr]. An element
e; is an element in [concept : Cuep, Cuf, Cnepin] if there exist n, and i, such that e; is an element
in [concept : Cpep, Cng, concept—order : ny, element—order : int, Cpepin]-

An element e, is an element in [concept : Cpep, St] if there exist ny, i, and cpey such that e
is an element in [concept : cpep, Sut, concept—order : ny, element—order : ip, Cpepr]. An element
e; is an element in [concept : c,ep, Cny] if there exist ny, ine, and cpepp, such that e; is an element

in [concept : Cpep, Cng, concept—order : ny, element—order : int, Cpepin]-

7.2.3. Kinds of orders in the context of concepts

A number n; is an order in [e;, concept : Cpep, Sit, concept—order :, cpep] if € is an element
in [concept : cnep, Sit, concept—order : ny, Cpep]. A number n, is an order in [e;, concept :
Cneps Cnf, concept—order :, Cpepin] if € is an element in [concept : cuep, Cny, concept—order
Ty, Cncpl.n]]-

A number n; is an order in [e;, concept : Cpep, Sy, element—order : iy ] if € is an element
in [concept : cpep, Su, concept—order : ny, element—order : iy]. A number n, is an order in
[[el, concept : Cpep, Cnf, element—order : int]] if ¢; is an element in [[concept : Cnep, Cnf, CONCEPt—
order : ng, element—order : i,].

A number n; is an order in [e;, concept : cuep, S, concept—order : | if e is an element in
[concept = cnep, sut, concept—order : ng]]. A number n, is an order in [e;, concept : Cpep, Cny,

concept—order : | if e; is an element in [concept : ¢y, Cny, concept—order : ny.

7.2.4. Kinds of orders in the context of elements

A number i,; is an order in [e;, concept : Cpep, Str, element—order :, cpep] if € is an element
in [concept : Cpep, Sit, €lement—order : ing, Cpepr]. A number i, is an order in [e;, concept :
Creps Cnf element—order :, chepn] if € is an element in [concept : cuep, Cnf, element—order :
Z.nta Cncpl.n]]-

A number i, is an order in [e;, concept : Cpep, Stt, concept—order : ny] if e; is an element

in [concept : Cpep, Sy, concept—order : ny, element—order : i,]. A number i, is an order in
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[[el,concept : cncp,cnf,concept—order : nt]] if ¢; is an element in [[concept : Cpeps Cnf, CcONCEPt—
order : ng, element—order : iy].

A number i, is an order in [e;, concept : Cpep, S, element—order : | if ¢ is an element in
[concept : cpep, sit, element—order : iy,]. A number i, is an order in [e;, concept : Cpep, Cuf,

element—order : | if ¢; is an element in [concept : ¢pep, Cng, element—order : iy].

7.2.5. Kinds of concretizations

A conceptual ¢,y is a concretization in [e;, concept : ¢ep, Sut, concept—order : ny] if e, is an
element in [concept : Cpep, Sit, concept—order : ng, Cpep]. A conceptual ¢,epy is a concretization
in [e;, concept : cuep, Cny, concept—order : ny if €, is an element in [concept : cyep, Cnf, concept—
order : ng, Coepln]l-

A conceptual ¢,y is a concretization in [e;, concept : Cuep, Sit, element—order : i) if € is an
element in [concept : cuep, Sut, element—order : ing, Cpep]]. A conceptual Cpep.p 1S a concretization
in [[e;, concept : cuep, Cny, element—order : i) if €; is an element in [concept : cyep, Cnf, element—
order : int, Cnepin]-

A conceptual ¢,y is a concretization in [[e;, concept : ¢pep, Sti] if € is an element in [concept :
Cnep» St cncpl]]. A conceptual ¢,epr.p i a concretization in [e1, concept : Cnep» Cn f]] if ¢; is an element

in [concept : Cpep, Cufy Crepinl-

P Let cpa1 = (=3 : 10, -2 : inch,—1 : area,0 : e, 41,1 : triangle,2 : Euclidean,3 : 2),
Cnetz = (=3 :2,—2: cm,—1 : perimeter,0 : e, 49,1 : rectangle, 2 : Euclidean,3 : 2), and
[support syu] = {cner1, Cner2}- Then the following properties hold:

— 10, inch, area, €, 41 are elements in [concept : triangle, su;

—2, cm, perimeter, e 42 are elements in [concept : rectangle, sy];

—10, inch, area, e 41, 2, cm, perimeter, €49, triangle, rectangle are elements in
[concept : Eucludian, syl

—10, inch, area, €41, 2, cm, perimeter, e, 4.2, triangle, rectangle, FEucludian are
elements in [concept : 2, syl

— Cper1 18 @ concretization in [concept : triangle], [concept : Eucludian], [concept : 2]
in [ss];

— Cper2 18 & concretization in [concept : rectangle], [concept : Eucludian], [concept : 2]
in [s4];

—1is an order in [e; 42, concept : rectangle, sy, concept—order :J;
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— 0 is an order in [e; 41, concept : triangle, sy, element—order :];
— —1is an order in [area, concept : triangle, sy, element—order :|;

— —2 is an order in [em, concept : Eucludian, sy, element—order :].
7.3. The property of direct concepts

Proposition 6. If ¢, is a concept in [sy] and ¢; is an element in [concept : ¢pep, S, concept—
order : 1], then ¢, is either an individual in [s;], or €; is an attribute in [sy].

Proof. This follows from the definition of direct concepts. O
7.4. The content of concepts

The content of a concept describes its semantics.

A set s, is the content in [concept : Cpep, Stt, concept—order : ny, element—order : ing, Cpep] if
s¢ is the set of all elements in [concept : c,ep, S, concept—order : ny, element—order : ing, Cpepl].-
A set s; is the content in [concept : Cpep, Cnf, concept—order : ny, element—order : ing, Cpepin]
if s; is the set of all elements in [concept : Cpep, Cnf, concept—order : ny, element—order :
inta Cncpl.n]] .

A set s; is the content in [concept : Cpep, Stt, concept—order : ng, element—order : iy if s; =
Ucmplﬂsw]] si[concept : Cpep, i, concept—order : ny, element—order : i, Cpept]]. A set s, is the
content in [concept : Cpep, Cng, concept—order : ny, element—order : iy] if s, = Ucncpm[[cnf]] Sy
[concept : cpep, cnf, concept—order : ny, element—order : int, Cpepin]-

A set s; is the content in [concept : cnep, Sit, concept—order : ni] if s, = |, . si[concept :
Creps St concept—order : ny, element—order : i,]. A set s, is the content in [concept : ¢uep, Cnf,
concept—order : n if s, = Uim ny si[concept : cuep, Cny, concept—order : ny, element—order :
int]]-

A set s; is the content in [concept : ¢hep, Ste] if ¢ = |J

n, St [[concept * Cneps St concept—order :

ng. A set s; is the content in [concept : cuep, cuy] if s¢ = U, sifconcept : cpep, cny, concept—
order : n].

@D Let cha1 = (=3 : 10, -2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2),
Cnetz = (—3:2,—2: em, —1 : perimeter,0 : e, 49,1 : rectangle, 2 : Euclidean, 3 : 2), and
[support sy] = {cne1, Cner2}- Then the following properties hold:

— {10, inch, area, e; 41} is the content in [concept : triangle, su];

— {2, em, perimeter, e; 42} is the content in [concept : rectangle, sy
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— {10, inch, area, e, 41,2, cm, perimeter, e, 4.9, triangle, rectangle} is the content in
[concept : Eucludian, syl);
— {10, inch, area, e, 41,2, cm, perimeter, e, 4.9, triangle, rectangle, Eucludian} is the

content in [concept : 2, s4].
7.5. Mediators
7.5.1. Mediators, elements, degrees

An element e;; is a mediator in [e;, concept : cyep, Sit, concept—order : ny, element—order :
int, Cnept] 1f €7 1s an element in [concept : cyep, S, concept—order : ny, element—order : int, Chept]s
er1 is an element in [Cpeprs ine1], and iy < i1 < my. It is between e and cpep I Cpep
in the position 4,.1, thus separating e; from ¢, In cpep. An element e;; is a mediator
in [e;, concept : Cpep, Cnf, concept—order : ny, element—order : in, Cpepin] if € is an element
in Jeoncept : Cpep, Cny, concept—order : ny, element—order : ing, Cpepin], €1 is an element in
[[Cncpl.na int.l]]7 and Z-nt < int.l < Ty

An element e;; is a mediator in [e;, concept : cpep, Sut, concept—order : ny, element—order :
int, Cnept] if there exists i,,;1 such that e, is a mediator in [e;, concept : ¢pep, Stt, concept—order :
ng, element—order : int, Cpep]]. An element e;; is a mediator in [e;, concept : cpep, Cn g, concept—
order : ny,element—order : in, Coeprn] if there exists i,.; such that e;; is a mediator in
[er, concept : Cuep, Cnf, concept—order : ny, element—order : ing, Cpepin]-

An element ¢; is an element in [concept : Cpep, Stt, concept—order : ng, element—order
int, Cnept, Mmediator—degree : ngq] if € is an element in [concept : cpep, Sut, concept—order
ng, element—order : ing, Cpepr]] and ngeq is the number of orders iy 1 in [¢pepr, €] such that i, <
int1 < M. It is separated from cpe, in Cuep DY Mgr1 of mediators. An element e; is an element
in Jeoncept : cuep, Cnf, concept—order : ny, element—order : ing, Coepln, mediator—degree : g1
if e, is an element in [concept : Cpep, Cny, concept—order : ny, element—order : iy, Cpeprn] and
Ngt.1 is the number of orders i,:1 in [Cpepin, €] such that i,y < ipe1 < 0.

A number ng; is a degree in [e;, concept : Cpep, Sit, concept—order : ny, element—order :
ints Cnepl, mediator—degree : | if e is an element in [concept : cuep, Sut, concept—order : ny,
element—order : int, Cpepi, mediator—degree : ng:1]. It specifies how many mediators separate
e from cpep In Chepr. A number ngq is a degree in [e;, concept @ Cpep, Cng, concept—order
ng, element—order : iny, Cpepin, mediator—degree : | if e, is an element in [concept : cpep, Cny,

concept—order : ng, element—order : int, Cpepin, mediator—degree : ng1].
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7.5.2. Kinds of elements

An element ¢; is an element in [concept : Cuep, S, concept—order : ng, element—order
int, mediator—degree : ng 1] if there exists ¢, such that e; is an element in [concept
Creps Stt, concept—order : ng, element—order : in, Cpep, mediator—degree : ng1]]. An element
e is an element in [concept : Cpep, Cny, concept—order : ng, element—order : iy, mediator—
degree : ng 1] if there exists ¢,ep., such that e; is an element in [concept : Cpep, Cnf, concept—
order : ng, element—order : int, Cnepl.n, mediator—degree : Ngq].

An element e; is an element in [concept : cpep, Su, concept—order : ny, Cpepr, mediator—
degree : ngq] if there exists i,; such that e; is an element in [concept : ¢pep, Sut, concept—order :
ng, element—order : in, Cpepr, mediator—degree : ng1]l.  An element e; is an element in
[concept : Cpep, Cnf, concept—order : ng, Cpepin, mediator—degree : ng 1] if there exists i,; such
that ¢, is an element in [concept : cpep, Cny, concept—order : ny, element—order : ing, Cpepins
mediator—degree : ng1].

An element ¢; is an element in [concept : Cpep, Sy, element—order : iy, Cpepr, mediator—
degree : ngq] if there exists n, such that e; is an element in [concept : ¢pep, Sut, concept—order :
ng, element—order : ing, Chepr, mediator—degree : ngeq1].  An element e; is an element in
[concept : cuep, Cny, element—order : in, Cpepin, mediator—degree : ng.1] if there exists n, such
that e; is an element in [concept : cpep, Cng, concept—order : ng,element—order : int, Cnepln,
mediator—degree : Ng1].

An element e; is an element in [concept : Cpep, Str, concept—order : ng, mediator—degree :
Nat.1]] if there exist i,; and ¢pey such that e is an element in [concept : Cpep, S, concept—order :
ng, element—order : ing, Chepr, mediator—degree : ng1]. An element e; is an element in
[concept : cuep, Cnf, concept—order : ny, mediator—degree : ng 1] if there exist i, and cpepin
such that e; is an element in [concept : ¢,ep, Cnr, concept—order : ny, element—order : ing, Cnepln,
mediator—degree : N 1].

An element ¢; is an element in [concept : cpep, S, element—order : iy, mediator—degree :
nata] if there exist n; and ey such that e; is an element in [concept : ¢pep, Sit, concept—order :
ng, element—order : in, Cpepr, mediator—degree : ng1]l.  An element e; is an element in
[concept : Cpep, Cnf, element—order : iy, mediator—degree : ng 1] if there exist n; and chepin
such that ¢; is an element in [concept : cuep, Cnyf, concept—order : ny, element—order : ing, Cpepins
mediator—degree : ng1].

An element e, is an element in [concept : cuep, Stt, Cnepi, mediator—degree : nge 1] if there exist
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n; and i, such that e; is an element in [concept : cpep, Sit, concept—order : ny, element—order :
int, Cnept, Mmediator—degree : ng1]. An element e; is an element in [concept : Cpep, Cnf, Crepins
mediator—degree : ng 1] if there exist n; and i, such that e; is an element in [concept :
Cnep, Cnf, cOncept—order : ny, element—order : int, Cpepi.n, mediator—degree : Nat.1]-

An element ¢; is an element in [concept : cpep, S, mediator—degree : ng 1] if there exist ny,
int, and Cpep such that e; is an element in [concept : cpep, Str, concept—order : ny, element—
order : int, Coepl, mediator—degree : ng 1] An element e; is an element in [concept : cuep, o,
mediator—degree : ng 1] if there exist ny, i, and cpepn such that e; is an element in [concept :

Creps Cnf > concept—order : ng, element—order : ing, Cpepin, mediator—degree : ng 1]

7.5.3. Kinds of degrees

A number ng; is a degree in [e;, concept : Cnep, Sit, concept—order : ny, element—order :
int, mediator—degree : | if e; is an element in [concept : cpep, S, concept—order : ny, element—
order : in, mediator—degree : ng1]]. A number ng, is a degree in [e;, concept : Cuep, Cuf,
concept—order : n;, element—order : iy, mediator—degree : | if e; is an element in [concept :
Cneps Cnf, concept—order : ny, element—order : iy, mediator—degree : ng1].

A number ny ;1 is a degree in [e;, concept : Cpep, Sit, concept—order : ny, Cpepr, mediator—
degree : | if e; is an element in [concept : cpep, S, concept—order : nyg, Cpep, mediator—degree :
Nat.1]]. A number ng, 1 is a degree in [e;, concept : Cpep, Cnf, concept—order : ny, Cpepl.n, mediator—
degree : | if e; is an element in [concept : cpep, Cny, concept—order : ny, Cpepin, mediator—degree :
nat,l]]-

A number n,.; is a degree in [e;, concept : cuep, S, element—order : in, Cpepr, mediator—
degree : | if ¢; is an element in [concept : cyep, Sut, element—order : int, Cpepr, mediator—degree :
Nata]. A number ng; is a degree in [e;, concept : Cpep, Cng, element—order : ing, Cpepins
mediator—degree : | if €, is an element in [concept : Cuep, Cny, element—order : ing, Cneplin,
mediator—degree : N 1].

A number n,.; is a degree in [e;, concept : Cpep, Su, element—order : i, Cpepr, mediator—
degree : ]| if ¢, is an element in [concept : Cpep, Sit, Crepr, mediator—degree : ng1]. A number
Nt 18 a degree in [e;, concept : Cpep, Cnf, €lement—order : ing, Cpepin, mediator—degree : | if ¢
is an element in [concept : cuep, Cnfs Cnepln, Mmediator—degree : N 1]

A number n, ; is a degree in [e;, concept : cpep, S, concept—order : ny, mediator—degree : |

if €, is an element in [concept : cuep, S, concept—order : ng, mediator—degree : ng1]. A
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number nq ; is a degree in [e;, concept : Cpep, Cnf, concept—order : ny, mediator—degree : | if ¢
is an element in [concept : cyep, Cnf, concept—order : ny, mediator—degree : Ng1].

A number ng 1 is a degree in [e;, concept : Cuep, Sit, element—order : i, mediator—degree : |
if €; is an element in [concept : cuep, Su, element—order : iy, mediator—degree : ngq]. A
number ny ;1 is a degree in [e;, concept : chep, Cnf, element—order : iy, mediator—degree : | if
e; is an element in [concept : cyep, Cny, element—order : iy, mediator—degree : ng.1].

A number nyq is a degree in [e;, concept : Cuep, Sut, mediator—degree : || if ¢; is an element
in [concept : Cpep, Stt, mediator—degree : ng1]]. A number ng,; is a degree in [e;, concept :
Cneps Cnf> mediator—degree : || if e; is an element in [concept : ¢pep, Cng, mediator—degree : ngq].

P Let chun1 = (=3 : 10,—2 : inch,—1 : area,0 : f,,1 : triangle,2 : Euclidean,3 : 2),

Cnetz = (=3 : 10, -2 : inch,—1 : area,0 : f;,2 : Euclidean,3 : 2), and [support s;| =
{Cnei1, Cner2}. Then f, is an element in the following contexts:

— [concept : triangle, sy] with the decree 0 and without mediators;

— [concept : Euclidean, sy;] with the decree 1 and the mediator triangle;

— [concept : 2, sy;] with the decree 2 and the mediators triangle and Euclidean;

— [concept : Euclidean, s;;] with the decree 0 and without mediators;

— [concept : 2, 5] with the decree 1 and the mediator Euclidean.

7.6. Direct elements

An element ¢; is a direct element in [concept : cpep, Su, concept—order : n,, element—order :
l ncpsy Otty ty

int, Cnept] if € 1s an element in [concept : ¢pep, Sy, concept—order : ny, element—order : ing, Coepls

mediator—degree : 0]. An element ¢; is a direct element in [concept : ¢pep, Cny, concept—order :

ng, element—order : int, Cpepin] if € is an element in [concept : Cpep, Cnf, concept—order

ny, element—order : in, Cpepin, mediator—degree : 0].
7.6.1. Kinds of direct elements

An element ¢; is a direct element in [concept : ¢yep, Sy, concept—order : ny, element—order :
int] if there exists ¢,qp such that e; is a direct element in [concept : cuep, Sit, concept—order :
ng, element—order : ip, Coepin].  An element e; is a direct element in [concept : Cpep, Cuf,
concept—order : ng, element—order : i, if there exists ¢, such that e; is a direct element in
[concept : cuep, Cny, concept—order : ny, element—order : ing, Cpepin]-

An element ¢ is a direct element in [concept : Cpep, S, concept—order : ny, Cpep ] if there exists

int such that e; is a direct element in [concept : cpep, S, concept—order : ng, element—order :
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ints Cnept]- An element e; is a direct element in [concept : ¢nep, Cnf, concept—order : ng, Cpepin]
if there exists ¢,; such that ¢, is a direct element in [concept : cpep, Cnf, concept—order
nt, element—order : i, Cpepin]-

An element ¢ is a direct element in [concept : Cpep, S, element—order : iy, Coep] if there ex-
ists n, such that e; is a direct element in [concept : c,ep, s, concept—order : ny, element—order :
ints Cnept]- An element e; is a direct element in [concept : cpep, Cnf, element—order : ing, Cpepin]
if there exists n; such that e, is a direct element in [concept : cpep, Cpnf, concept—order
ng, element—order : int, Cpepin]-

An element ¢; is a direct element in [concept : ¢pep, Sy, concept—order : ng] if there exist i,
and ¢,y such that e; is a direct element in [concept : cpep, Str, concept—order : ny, element—
order : int, Cnept]. An element e is a direct element in [concept : Cpep, Cnf, concept—order : ng]| if
there exist i,¢ and ¢y, such that e is a direct element in [concept : ¢pep, Cnf, concept—order :
nt, element—order : int, Cnepin]-

An element ¢, is a direct element in [concept : cuep, S, element—order : i,] if there exist n
and ¢,y such that e; is a direct element in [concept : cpep, S, concept—order : ny, element—
order : in, Coept]. An element e; is a direct element in [concept : Cpep, oy, element—order : i,
if there exist n; and ¢y, such that e is a direct element in [concept : ¢ep, Cnf, concept—order :
ng, element—order : int, Cpepin]-

An element ¢; is a direct element in [concept : Cpep, Stty Cnep]] if there exist n, and i, such
that ¢; is a direct element in [concept : ¢yep, S, concept—order : ny, element—order : int, Cpepl]-
An element ¢ is a direct element in [concept : Cpep, Cnf, Crepin] if there exist n; and 4, such that
e; is a direct element in [concept : cyep, Cnf, concept—order : ny, element—order : ing, Cpepin]-

An element ¢, is a direct element in [concept : cpep, S]] if there exist ng, ine, and c,ep such
that e; is a direct element in [concept : cpep, Sit, concept—order : ny, element—order : ing, Cpepi]-
An element e, is a direct element in [concept : ¢,ep, Cnf] if there exist ny, iy, and ¢,epr, such that

e; is a direct element in [concept : cpep, Cnyf, concept—order : ny, element—order : ing, Cpepin]-

@D Let cpepr = (=3 : 10, =2 : inch,—1 : area,0 : f,,1 : triangle,2 : Euclidean,3 : 2) and
Stt = (Cnept  3). Then the following properties hold:
— f, is a direct element in [concept : triangle, sy] that means that f, is a triangle in
[[Stt]];
— triangle is a direct element in [concept : Eucludian, su] that means that classification

of geometric figures in Eucludian space includes triangles in [sy];
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— FEucludian is a direct element in [concept : 2, sy] that means that classification of

two-dimensional spaces includes Eucludian space in [sy].

7.7. The direct content of concepts

A set s; is the direct content in [concept : Cpep, Stt, concept—order : ny,element—order :
ints Cnept]) if st 1s the set of all direct elements in [concept : ¢pep, S, concept—order : ny, element—
order : ipt,Cnept]. A set s; is the direct content in [concept : cpep, Cng, concept—order :
ng, element—order : iy, Coepin] if S¢ is the set of all direct elements in [concept : cpep, Cny,

concept—order : ng, element—order : ing, Cpepin]-

A set s; is the direct content in [concept : Cpep, Sit, concept—order : ny, element—order : iy
if s, = Ucncpz[[m]] si[concept : Cpep, S, concept—order : ny, element—order : ing, Coep]. A set
s¢ is the direct content in [concept : cCpep, Cny, concept—order : ny, element—order : iy if

S¢ = Ucncpm[[cnf]] s[concept : Cpep, Cng, concept—order : ny, element—order : ing, Cpepin]-

A set s; is the direct content in [concept : cpep, s, concept—order = ng] if s, = U, . sl
concept : Cpep, Stt, concept—order : ng, element—order : iy]. A set s; is the direct content in
[concept : cpep, cny, concept—order = n.] if s, = U, _, silconcept : cnep, cny, concept—order :

ng, element—order : iy].

A set s; is the direct content in [concept : cnep, s4]] if s¢ = U, si[concept : cuep, 51, concept—

n

order : my]]. A set s; is the direct content in [concept : cuep, Cny] if 50 = Unt s¢[concept -

Creps Cnf, cONCEpt—order : ny.

@D Let cha1 = (=3 : 10, -2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2),
Cnetz = (=3 1 10,—2 : inch,—1 : area,0 : e, 49,1 : triangle,2 : Riemannian,3 : 2),
Cnets = (=3 110, =2 :inch,—1 : area,0 : e 41,3 : 2), and [support su| = {Cne1, Cner2,
Cne3}- Then the following properties hold:

—{e1 g1, €142} s the direct content in [concept : triangle, su];

— {triangle} is the direct content in [concept : Eucludian, sy];

— {triangle} is the direct content in [concept : Riemannian, syl

— {Eucludian, Riemannian} is the direct content in [concept : 2, sy];

—{e1g1} is the direct content in [concept : 2, sy].

7.8. The content of concepts in the context of mediators
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A set s; is the content in [concept : cpep, Str, concept—order : ny, element—order : in, Coepi,
mediator—degree : ng 1] if s; is the set of all elements in [concept : cuep, S, concept—order :
ng, element—order : int, Coepr, mediator—degree : ngq]]. A set s; is the content in [concept :
Cneps Cnfs concept—order : ny, element—order : in, Cpepin, mediator—degree : ng1] if s; is the
set of all elements in [concept : cuep, Cuf, concept—order : ny,element—order : ing, Cpepins
mediator—degree : Ng1].

A set s; is the content in [concept : cuep, Su, concept—order : ny, element—order : i,
mediator—degree : ng1] if s; = Ucncpz[[Szt]] se[concept : chep, Str, concept—order : ny, element—
order : ing, Cepl, mediator—degree : ng1]l. A set s, is the content in [concept : cuep, Cnf,
concept—order : ny, element—order : i,, mediator—degree : ng.] if s, = Ucncpz.n[[cnf]] St
[concept : cpep, cnf, concept—order : ny, element—order : ing, Cpepl.n, mediator—degree : ngq].

A set s; is the content in [concept : ¢yep, i, concept—order : ny, mediator—degree : ngq] if
S = Uim<nt se[concept : Cpep, Sit, concept—order : ng, element—order : iy, mediator—degree :
Nat1]]. A set s, is the content in [concept : cpep, Cnf, concept—order : ny, mediator—degree :
Nata] if 84 = UW<W se[concept @ Cpep, Cng, concept—order : ng, element—order : i,:, mediator—
degree : ngiq].

A set s; is the content in [concept : cnep, 811, mediator—degree : ng.1] if s, = J,, si[concept :

n
Cneps Stt, concept—order : i, mediator—degree : ng1]. A set s, is the content in [concept :
Cneps Cny, mediator—degree @ nga] if s¢ = U, silconcept 1 cnep, cuy, concept—order : iy,
mediator—degree : N 1].
@D Let chu1 = (=3 : 10,—2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 :
2), Cha2 = (=3 : 10,2 : inch,—1 : area,0 : e 42,1 : triangle,2 : Riemannian,3 :
2), Cnas = (=3 : 10,—2 : inch,—1 : perimeter,0 : e 43,2 : Euclidean,3 : 2), and
[support su] = {Cne11s Cnet2s Cne3}- Then the following properties hold:
—{e1g1, €142} is the content in [concept : 2, sy, mediator—degree : 2];
—{e14.3} is the content in [concept : 2, sy, mediator—degree : 1];
—{area} is the content in [concept : 2, s, mediator—degree : 3];

— {perimeter} is the content in [concept : 2, sy, mediator—degree : 2].

8. Classification and interpretation of concepts

Concepts are classified according to their orders.

8.1. Concepts of the order 1
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A concept ¢ in [S4, 1] models a usual concept in [ss,;]. Elements in [concept : cpep, St

concept—order : 1 are attributes and individuals in [sy]].

@D Let cha1 = (=3 : 10, -2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2),
Cnetz = (—3:2,=2: em, —1 : perimeter,0 : €. 42,1 : triangle,2 : Euclidean, 3 : 2), and
[support syu] = {cne1, ne2}- Then the following properties hold:

— the direct concept triangle models triangles in [sy]);

— the individuals ¢; 5.1 and e; 45 are elements of the order 0 of the direct concept triangle
in [sy] that means that e, ,; and e, are triangles in [sy];

— the attributes area and perimeter are elements of the order —1 of the direct concept
triangle in [[s;] that means that classification of numerical characteristics of triangles
includes area and perimeter in [sy];

— the attributes inch and cm are elements of the order —2 of the direct concept triangle
in [sy] that means that classification of units of measurement of numerical charac-
teristics of triangles includes inches and centimetres in [sy];

—the attributes 10 and 2 are elements of the order —3 of the direct concept triangle
in [sy] that means that classification of numeral systems for representing values of

numerical characteristics of triangles includes decimal and binary systems in [s;].
8.2. Concepts of the order 2

A concept ¢pep In [[S4, 2] models a concept space in [ss,:]. Elements in [concept : cpep, Si,

concept—order : 2 are attributes, individuals and direct concepts in [su]].

@D Let chaq = (=3 : 10,2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2),
Cnetz = (=3 12, =2 : em,—1 : perimeter,0 : e 42,1 : square,2 : Euclidean,3 : 2), and
[support sy] = {cner1, Cnar2}- Then the following properties hold:

— the concept space Euclidean models Euclidean space in [[sy];

—the direct concepts triangle and square are elements of the order 1 of the concept
space Fuclidean in [sy] that means that classification of geometric figures in Eu-
clidean space includes triangles and squares in [sy];

—the individuals e; 4,1 and €42 are elements of the order 0 of the concept space
Euclidean in [sy] that means that e, ,; and e, 42 are geometric figures in Euclidean
space in [sy];

— the attributes area and perimeter are elements of the order —1 of the concept space
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Euclidean in [sy] that means that classification of numerical characteristics of geo-
metric figures in Euclidean space includes area and perimeter in [sy];

—the attributes inch and cm are elements of the order —2 of the concept space
Euclidean in [s;] that means that classification of units of measurement of nu-
merical characteristics of geometric figures in Euclidean space includes inches and
centimetres in [sy];

— the attributes 10 and 2 are elements of the order —3 of the concept space Fuclidean
in [sy] that means that classification of numeral systems for representing values of
numerical characteristics of geometric figures in Euclidean space includes decimal and

binary systems in [s].
8.3. Concepts of the order 3

A concept ¢,¢p in [s4, 3] models a space of concept spaces in [s;,;]. Elements in [concept

Creps Stt, concept—order : 3] are attributes, individuals, direct concepts and concept spaces in
[[Stt]]'

P Let cpa1 = (=3 : 10, -2 : inch,—1 : area,0 : e, 41,1 : triangle,2 : Euclidean,3 : 2),
Cnetz = (=3 :2,—2: cm, —1 : perimeter,0 : €, 42,1 : square,2 : Riemannian,3 : 2), and
[support sy] = {cne11; Cner2}- Then the following properties hold:

— the concept space space 2 models two-dimensional space in [sy];

—the concept spaces Fuclidean and Riemannian are elements of the order 2 of the
concept space space 2 in [s;;] that means that classification of two-dimensional spaces
includes Euclidean space and Riemannian space in [s4];

—the direct concepts triangle and square are elements of the order 1 of the concept
space space 2 in [sy] that means that classification of geometric figures in two-
dimensional space includes triangles and squares in [sy]);

— the individuals ¢; ;1 and e; 49 are elements of the order 0 of the concept space space 2
in [s]] that means that e; ;1 and e; 45 are geometric figures in two-dimensional space
in [su];

—the attributes area and perimeter are elements of the order —1 of the concept space
space 2 in [sy] that means that classification of numerical characteristics of geometric
figures in two-dimensional space includes area and perimeter in [sy]);

— the attributes inch and c¢m are elements of the order —2 of the concept space space 2
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in [[sy] that means that classification of units of measurement of numerical character-
istics of geometric figures in two-dimensional space includes inches and centimetres
in [su];

—the attributes 10 and 2 are elements of the order —3 of the concept space space
2 in [sy] that means that classification of numeral systems for representing values
of numerical characteristics of geometric figures in two-dimensional space includes

decimal and binary systems in [sy].
8.4. Concepts of higher orders

A concept pep in sS4, ne], where ny > 3, is classified and interpreted in the similar way (by

the introduction of the space of concept space spaces and so on.).

9. Structure of attributes

Attributes use the same terminology as concepts.

9.1. Direct attributes

The usual attributes in [s;,;] which are interpreted as characteristics of elements in [ss 4]

are modelled by the special kind of attributes in [sy], direct attributes in [sy].

9.1.1. Direct concepts

An element ¢; is a direct attribute in [sy, chep] if € is a attribute in [sy, 1, ¢hep]. An element
e, is a direct attribute in [c¢,f, Chepin] if € is a attribute in [c,r, 1, Cpepin]-

An element ¢; is a direct attribute in [s;] if there exists ¢,q, such that ¢; is a direct attribute
in [S¢, Crept]- An element e; is a direct attribute in [c,f] if there exists cepn such that e; is a

direct attribute in [¢,f, Cnepin]-

9.1.2. Concretizations

A conceptual ¢y is a concretization in [direct—attribute : e, si] if e; is a attribute in
[stts 1, cnept] . A conceptual cpepn i a concretization in [direct—attribute : e, ¢ f] if € is a
attribute in [cur, 1, Creprn]-

A conceptual ¢,y is a concretization in [sy, direct—attribute :] if there exists e; such that
Cnepl 18 & concretization in [direct—attribute : e, su]. A conceptual ¢,y 1S a concretization

in [c,f, direct—attribute :] if there exists e, such that e, 1S a concretization in [direct—
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attribute : e, cnf].

@D Let cuq1 = (=3 : 10,-2 : inch,—1 : area,0 : f,,1 : triangle,2 : Euclidean,3 : 2),
Cnet2 = (—3: 10, -2 : inch, —1 : perimeter,0 : f,,1 : rectangle,2 : Euclidean,3 : 2), and
[support syu] = {cner1, Cner2}- Then the following properties hold:

—area and perimeter are direct attributes in sy;
— Cper1 18 a concretization in [direct—attribute : area, syl;

— Cna2 18 a concretization in [direct—attribute : perimeter, sy].

9.2. Elements of attributes
9.2.1. Elements, orders, concretizations

An element ¢; is an element in [attribute : ay, sy, attribute—order : ny, element—order :
int, Cnept] 1f @yt is an attibute in [sy, e, Chept], € is an element in [cpepr, ine], and —ny < ipe. An
element e; is an element in [attribute : ay, .z, attribute—order : ny, element—order : ing, Cpepin]
if a; is an attibute in [c,f, ¢, Cpepin]s € 1s an element in [Cpepin, ine], and —ng < iy.

Thus, elements of the attribute a;; can be attributes of orders which are less than the order
of ay, individuals and concepts of all orders.

A number n; is an order in [[e;, attribute : ay, Sy, element—order : iy, Chep] if €, is an element
in [attribute : ay, sy, attribute—order : ny, element—order : in, Cpep]. It specifies the order in
[¢nepi, ane]. A number n, is an order in [e;, attribute : ay, ¢, f, element—order : ing, Cpepin] if €
is an element in [attribute : ay, ¢, attribute—order : n,, element—order : iy, Cpepin]-

A number i, is an order in [e;, attribute : ay, Sy, attribute—order : ny, cpep] if € is an ele-
ment in
lattribute : ay, sy, attribute—order : ng,element—order : in, Coep]. It specifies the order in
lcnepis €] A number i, is an order in [e;, attribute : ay, cnz, attribute—order : ng, Cpepin] if €
is an element in [attribute : ay, c,f, attribute—order : ng, element—order : int, Coepin]-

A conceptual ¢, is a concretization in [e;, attribute : ay, sy, attribute—order : ng, element—
order : iy if €, is an element in [attribute : ay, sy, attribute—order : ny, element—order :
ints Cnept])- 1t defines that e; is an element in [attribute : ay, sy, attribute—order : ny, element—
order : iy]. A conceptual ¢y, is a concretization in [e;, attribute : ay, c,r, attribute—order :
ng, element—order : i,] if € is an element in [attribute : au,cns, attribute—order : ny,

element—order : int, Cpepin]-

9.2.2. Kinds of elements
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An element ¢; is an element in [attribute : ay, sy, attribute—order : ng, element—order : i,]
if there exists ¢ such that e; is an element in [attribute : ay, sy, attribute—order : ny,
element—order : iy, Coep]. An element e is an element in [attribute : ay, ¢, f, attribute—order :
ng, element—order : i,] if there exists ¢pep., such that e; is an element in [attribute : ay, ¢, f,
attribute—order : ng, element—order : ing, Coepinl-

An element e; is an element in [attribute : agy, Sy, attribute—order : ny, cpep] if there exists i,
such that e; is an element in [attribute : ay, sy, attribute—order : ny, element—order : ing, Cpepl]-
An element e; is an element in [attribute : ay, ¢, r, attribute—order : ny, ceprn] if there exists
int such that e; is an element in [attribute : ay,cnf, attribute—order : ng,element—order :
Ints Crepln]-

An element e; is an element in [attribute : ay, Sy, attribute—order : int, Cpep ] if there exists ny
such that e; is an element in [attribute : ay, sy, attribute—order : ny, element—order : int, Cpepl]-
An element ¢; is an element in [attribute : ay, ¢, f, attribute—order : iy, Coeprn] if there exists
n, such that e; is an element in [attribute : ay,c,y, attribute—order : n,, element—order :
Ints Crepln-

An element e; is an element in [attribute : ay, sy, attribute—order : ny] if there exist i,; and
Cnept SUch that e; is an element in [attribute : ay, sy, attribute—order : ng, element—order :
int, Cnept]- An element e; is an element in [attribute : ay, ¢, attribute—order : ]| if there exist
int and Cpeprn Such that e is an element in [attribute : ay, c,r, attribute—order : n,, element—
order : int, Cnepin]-

An element ¢; is an element in [attribute : ay, sy, element—order : i, if there exist n, and
Cnept SUch that e; is an element in [attribute : au, sy, attribute—order : ny, element—order :
int, Cnept] - An element e; is an element in [attribute : ay, ¢, r, element—order : i,,] if there exist
ny and Cpeprpn, such that e; is an element in [attribute : ay, c,f, attribute—order : n,, element—
order : int, Cnepin]-

An element ¢ is an element in [attribute : aw, S, Cnepr]) if there exist n, and 4, such that e; is
an element in [attribute : ay, Sy, attribute—order : ny, element—order : iy, Coep]. An element
e; is an element in [attribute : ay, Cpf, Coeprn] if there exist n; and i, such that e; is an element
in [attribute : ay, cnz, attribute—order : ny, element—order : ing, Cpepin]-

An element ¢; is an element in [attribute : ay, sy if there exist ny, iy, and ¢,y such that e; is
an element in [attribute : ay, sy, attribute—order : ngy, element—order : ing, Cpep]. An element

e, is an element in [attribute : ay, c,f] if there exist ny, i, and cpeprn such that e; is an element
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in [attribute : aw, cnf, attribute—order : ng, element—order : int, Cpepin]-

9.2.3. Kinds of orders in the context of attributes

A number n, is an order in [e;, attribute : ay, Sy, attribute—order :, cpep] if €, is an element
in [attribute : ay, sy, attribute—order : ny, cpep]]. A number n, is an order in [e;, attribute :
ity Cnf, attribute—order :, cheprn] if € is an element in [attribute : ay, c,p, attribute—order :
Ty, Cncpl.n]]-

A number n, is an order in [e;, attribute : ay, sy, element—order : i) if €, is an element
in [attribute : ay, Sy, attribute—order : ng, element—order : iy]. A number n; is an order in
ler, attribute = ay, c,p, element—order : i, if €, is an element in [attribute : ay, c,f, attribute—
order : ng, element—order : i,].

A number n, is an order in [e;, attribute : ay, sy, attribute—order : | if e, is an element
in [attribute : ay, Sy, attribute—order : ng]. A number n, is an order in [e;, attribute

e, Cnf, attribute—order : | if ¢ is an element in [attribute : ay, .y, attribute—order : ng.

9.2.4. Kinds of orders in the context of elements

A number i,,; is an order in [e;, attribute : ay, Sy, element—order :, ¢y if € is an element
in [attribute : ay, sy, element—order : int, Coep]. A number 4, is an order in [e;, attribute :
ity Cnf, element—order :, Cpepin] if € is an element in [attribute : ay,c,yr, element—order :
Z.mf; Cncpl.n]]-

A number i, is an order in [e;, attribute : ay, sy, attribute—order : ng) if €, is an element
in [attribute : ay, sy, attribute—order : ny, element—order : i,]. A number i,, is an order in
ler, attribute : ay, c,f, attribute—order : n if €; is an element in [attribute : ay, c,f, attribute—
order : ng, element—order : iy].

A number i,; is an order in [e;, attribute : ay, Sy, element—order : | if e, is an element
in [attribute : ay, sy, element—order : i,]. A number i, is an order in [e;, attribute

i, Cny, element—order : | if e, is an element in [attribute : ay, ¢, r, element—order : iy].

9.2.5. Kinds of concretizations

A conceptual ey is a concretization in [e;, attribute : aw, sy, attribute—order : ng]| if €, is
an element in [attribute : ay, Sy, attribute—order : ny, cuepl. A conceptual ¢,ep, is a con-
cretization in [e;, attribute : ay, cnz, attribute—order : ny]| if €, is an element in [attribute

Qtt, Cnf, attribute—order : ng, Coepin]-



108 Anureev I.S. Formalisms for conceptual design of closed information systems

A conceptual ¢,y is a concretization in [e;, attribute : asy, Sy, element—order : i) if € is
an element in [attribute : ay, su,element—order : in, Cpep]]. A conceptual cpep, is a con-
cretization in [e;, attribute : ay, c,yp, element—order : i) if € is an element in [attribute :
Qtt, Cnf, €lement—order : int, Cpepin]-

A conceptual ¢,y is a concretization in [e;, attribute : ay, su] if €; is an element in [attribute :
ity Stt, Cnepl]]- A conceptual ¢, 1S a concretization in [e;, attribute : ay, ¢, ] if € is an element

in [attribute : agy, Cof, Cnepln]l-

P Let cpa1 = (=3 : 10, -2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2),
Cnetz = (=3 : 10, =2 : inch,—1 : volume,0 : €, 49,1 : pyramid,2 : Riemannian,3 : 3),
and [support sy| = {Cnei1, Cnero}. Then the following properties hold:

— 2, Euclidean, triangle, e; 41 are elements in [attribute : area, sy];

— 3, Riemannian, pyramid, e, 4 are elements in [attribute : volume, sy]);

— 2, Fuclidean, triangle, e, 41, 3, Riemannian, pyramid, €, 42, area, volume are ele-
ments in [attribute : inch, sy];

— 2, Buclidean, triangle, e, 4.1, 3, Riemannian, pyramid, e; 42, area, volume, inch are
elements in [attribute : 10, sy];

— Cpe1 18 & concretization in [attribute : area], [attribute : inch], [attribute : 10] in
[[Stt]]Q

— Cpa2 18 a concretization in [attribute : volume], [attribute : inch], [attribute : 10] in
[se]:;

—1is an order in [e; 42, attribute : volume, sy, attribute—order :J;

—0 is an order in [e; 41, attribute : area, sy, element—order :];

— 1 is an order in [triangle, attribute : area, s, element—order

— 2 is an order in [Fucludian, attribute : inch, sy, element—order :].
9.3. The property of direct attributes

Proposition 7. If ay is an attribute in [s;] and e; is an element in [attribute : ay, sy,
attribute—order : 1], then e is either an individual or ¢; is a concept in [sy].

Proof. This follows from the definition of direct attributes. O
9.4. The content of attributes

The content of a attributes describes its semantics.
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A set s; is the content in [attribute : ay, sy, attribute—order : ng, element—order : int, Cpepi]
if s; is the set of all elements in [attribute : ay, Sy, attribute—order : ny,element—order :
ints Cepl]- A set s, is the content in [attribute : ay, ¢, attribute—order : ny, element—order :
ints Cnepln] if St 1s the set of all elements in [attribute : ay, c,f, attribute—order : n;, element—
order : int, Cnepin]-

A set s, is the content in [attribute : ay, sy, attribute—order : ngy, element—order : i, if s, =
Ucncpz[[at]] silattribute @ ay, sy, attribute—order : ny, element—order : int, Cpept]. A set sy is the
content in [attribute : ay, cny, attribute—order : ng, element—order : i,] if s, = Ucncpm[[cnf]] S¢
lattribute : ay, cnf, attribute—order : ny, element—order : int, Cocpln]-

A set s; is the content in [attribute : ay, sy, attribute—order : ny]| if s; = U_nt<im se]
attribute : ay, Sy, attribute—order : ny, element—order : iy]. A set s, is the content in

lattribute : ay, cnp, attribute—order : n,] if s¢ = U silattribute : ay, cnp, attribute—

—nt<int
order : ng, element—order : i,].

A set s; is the content in [attribute : ay, sy] if s, = U,, si[attribute : ay, sy, attribute—

order : ;. A set s; is the content in [attribute : ay,caf]) if s¢ = U, si[attribute : ay, cny,
attribute—order : n].

@D Let cha1 = (=3 : 10, -2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2),
Cnetz = (=3 :10,—=2 : inch,—1 : volume,0 : e 42,1 : pyramid,2 : Riemannian,3 : 3),
and [support si| = {¢ne1, Cnao}. Then the following properties hold:

—{2, Euclidean, triangle, e; 41} is the content in [attribute : area, sy;

— {3, Riemannian, pyramid, e, , -} is the content in [attribute : volume, su];

—{2, Euclidean, triangle, e, 41, 3, Riemannian, pyramid, e; 4.2, area, volume} is the
content in [attribute : inch, syu;

—{2, Euclidean, triangle, e, 41, 3, Riemannian, pyramid, e, 4.2, area, volume, inch}  is

the content in [concept : 10, sy].

9.5. Mediators
9.5.1. Mediators, elements, degrees

An element e, is a mediator in [[e;, attribute : ay, sy, attribute—order : ng, element—order :
ints Cnepls ine.1]] if € 1s an element in [attribute : ay, su, attribute—order : ng, element—order :
ints Cnept]]s €11 18 an element in [cheprs inea], and —ny < iy < ine. It is between ay and e in

Cnepi 1N the position 7,1, thus separating e; from ay in cpep. An element e;; is a mediator in
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[er, attribute : a, ¢, f, attribute—order : ng, element—order : int, Cpepin, ine1] if € is an element
in [attribute : ay, c,y, attribute—order : ng, element—order : in, Cocpinl, €11 1 an element in
[[Cncpl.na int.l]]7 and —ny < Z.mf.l < int-

An element e;; is a mediator in [[e;, attribute : ay, sy, attribute—order : ng, element—order :
int, Cnept] 1f there exists i,.1 such that e is a mediator in [e;, attribute : ay, sy, attribute—
order : ng, element—order : int, Cpepl, ine1]]. An element e;; is a mediator in [e;, attribute :
ity Cnf, attribute—order : ng, element—order : i, Coepin] if there exists i,.1 such that e;; is a

mediator in [e;, attribute : ay, c,y, attribute—order : ny, element—order : ine, Coepin, int.1])-

An element ¢; is an element in [attribute : ay, sy, attribute—order : ny, element—order :
ints Cnepl, mediator—degree : ng.1] if e; is an element in [attribute : ay, sy, attribute—order :
ng, element—order : iy, Cpept]] and ngeq is the number of orders 4, 1 in [¢pep, €] such that —n, <
int.1 < ine. It is separated from ay in Cpep by 14e1 of mediators. An element e; is an element in
[attribute : ay, c,y, attribute—order : ng, element—order : int, Cpepin, mediator—degree : ng 1]
if ¢; is an element in [attribute : ay, cof, attribute—order : ny, element—order : int, Cpepin] and

Nt is the number of orders i,;1 in [Cpepin, €] such that —ny <ineq < i

A number n,.; is a degree in [e;, attribute : ay, sy, attribute—order : ng, element—order :
ints Cnepl, mediator—degree : | if e is an element in [attribute : ay, sy, attribute—order
ng, element—order : iy, Cpepr, mediator—degree : ngq]. It specifies how many mediators sepa-
rate e; from ay in ¢pey. A number ng g is a degree in [e;, attribute : ay, ¢, 5, attribute—order :
ng, element—order : ing, Cpepln, mediator—degree : || if €; is an element in [attribute : ay, ¢y,

attribute—order : ny, element—order : in, Cocpl.n, mediator—degree : N q].

9.5.2. Kinds of elements

An element ¢; is an element in [attribute : ay, sy, attribute—order : ny, element—order :
int, mediator—degree : ng 1] if there exists ey such that e, is an element in [attribute
ity Stt, attribute—order : ng, element—order : int, Cpepi, mediator—degree : ng1]. An element
e; is an element in [attribute : ay, c,y, attribute—order : ny, element—order : i, mediator—
degree : ng.1] if there exists ¢pep, such that e; is an element in [attribute : ay, ¢, f, attribute—
order : ng, element—order : int, Cnepl.n, mediator—degree : ngq].

An element ¢; is an element in [attribute : ay, sy, attribute—order : ny, Cpep, mediator—
degree : ng1] if there exists i,; such that e, is an element in [attribute : ay, sy, attribute—

order : ng, element—order : int, Cpepi, mediator—degree : ng 1. An element e; is an element
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in [attribute : au,cnf, attribute—order : ng, Cpepin, mediator—degree : ngeq] if there exists
int such that e; is an element in [attribute : ay,c,y, attribute—order : ny, element—order :
ity Cnepl.n, Mediator—degree : Ngq].

An element e; is an element in [attribute : ay, Sy, element—order : iy, Cpep, mediator—
degree : ng 1] if there exists n, such that e; is an element in [attribute : ay, sy, attribute—order :
ng, element—order : in, Cpepr, mediator—degree : ng1]l.  An element e; is an element in
[attribute : ay, cnf, element—order : int, Cpepin, mediator—degree : ng 1] if there exists n; such
that e; is an element in [attribute : ay, cny, attribute—order : ny, element—order : ing, Cpepins
mediator—degree : ng1].

An element ¢, is an element in [attribute : ay, Sy, attribute—order : ny, mediator—degree :
Nat1] if there exist 4,,; and ¢,qy such that e; is an element in [attribute : ay, Su, attribute—order :
ng, element—order : in, Cpepr, mediator—degree : ng1]l.  An element e; is an element in
[attribute : ay, c,y, attribute—order : ny, mediator—degree : ng 1] if there exist i,; and cpepin
such that e; is an element in [attribute : ay, c,y, attribute—order : ny, element—order : iy,
Crepl.n, Mediator—degree : Mg 1.

An element ¢; is an element in [attribute : ay, Sy, element—order : iy, mediator—degree :
Nata] if there exist ny and ¢,q, such that e; is an element in [attribute : ay, Su, attribute—order :
ng, element—order : in, Coepr, mediator—degree : ngq]].  An element e is an element in
[attribute : ay, cny, element—order : i, mediator—degree : ng1] if there exist n; and cpepin
such that e; is an element in [attribute : ay, c,y, attribute—order : ny, element—order : iy,
Cnepln, mediator—degree : N 1]

An element ¢; is an element in [attribute : aw, Str, Cnept, mediator—degree : ng 1] if there exist
ny and i,,; such that e; is an element in [attribute : ay, sy, attribute—order : ny, element—order :
ints Cnepl, mediator—degree : ng1]. An element e is an element in [attribute : ay, Cof, Cnepln,
mediator—degree : ng 1] if there exist n; and i, such that ¢; is an element in [attribute :
Qut, Cnf, attribute—order : ny, element—order : ing, Cpepl.n, mediator—degree : ng1].

An element ¢; is an element in [attribute : ay, Sy, mediator—degree : g if there exist ny,
int, and ey such that e; is an element in [attribute : ay, su, attribute—order : n,, element—
order : ing, Cpepi, mediator—degree : ng1]. An element e; is an element in [attribute : ay, ¢,
mediator—degree : ng 1] if there exist n¢, int, and cpepr, such that e; is an element in [attribute :

ity Cnf, attribute—order : ng, element—order : int, Cpepin, mediator—degree : ng 1]

9.5.3. Kinds of degrees
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A number ng.; is a degree in [e;, attribute : ay, sy, attribute—order : ng, element—order :
int, mediator—degree : | if ¢; is an element in [attribute : ay, sy, attribute—order : ny, element—
order : iy, mediator—degree : ng1]]. A number ng g is a degree in [e, attribute : ay, ¢y,
attribute—order : ng, element—order : i,;, mediator—degree : | if e, is an element in [attribute :
e, Cnf, attribute—order : ng, element—order : iy, mediator—degree : ng 1]

A number ng is a degree in [e;, attribute : ay, sy, attribute—order : ng, chep, mediator—
degree : || if e; is an element in [attribute : ay, Sy, attribute—order : ng, Cpep, mediator—degree :
Nat.1]. A number ng is a degree in [e;, attribute : ay,c,y, attribute—order : ny, Cpepln,
mediator—degree : | if e, is an element in [attribute : auy, c,y, attribute—order : ny, Cpepin,
mediator—degree : Ng1].

A number ng; is a degree in [e;, attribute : ay, s, element—order : in, Chep, mediator—
degree : || if ¢; is an element in [attribute : ay, su, element—order : int, Cpepr, mediator—degree :
Nat.1]. A number ng,; is a degree in [e;, attribute : ay,cnf, element—order : ing, Cnepln,
mediator—degree : | if e; is an element in [attribute : ay,c,f, element—order : int, Cnepin,
mediator—degree : Ng1].

A number ng; is a degree in [e;, attribute : ay, sy, element—order : i, Cpep, mediator—
degree : | if ¢ is an element in [attribute : a, S, Cnepl, mediator—degree : ngq]. A number
Nat1 18 a degree in [e;, attribute : ay, c,f, element—order : iy, Cpepin, mediator—degree : | if ¢
is an element in [attribute : ay, chf, Cnepln, mediator—degree : ngq].

A number ng, 1 is a degree in [e;, attribute : ay, sy, attribute—order : ng, mediator—degree : |
if ¢, is an element in [attribute : ay, Sy, attribute—order : ny, mediator—degree : ng1]. A
number ny. 1 is a degree in [e;, attribute : ay, ¢, r, attribute—order : n,, mediator—degree : | if
e, is an element in [attribute : ay, ¢, f, attribute—order : ny, mediator—degree : ng1].

A number n,, ;1 is a degree in [e;, attribute : ay, Sy, element—order : iy, mediator—degree : |
if €, is an element in [attribute : ay, Sy, element—order : i, mediator—degree : ng1]. A
number ny ;1 is a degree in [e;, attribute : ay, cnf, element—order : iy, mediator—degree : | if
e; is an element in [attribute : ay, ¢, f, element—order : i,,, mediator—degree : ng1].

A number nyq is a degree in [e;, attribute : ay, sy, mediator—degree : | if ¢; is an element
in [attribute : ay, sy, mediator—degree : ng.1]. A number ng. is a degree in [e;, attribute :

ity Cnp, mediator—degree : || if €, is an element in [attribute : auw, ¢, p, mediator—degree : ng:1].

@D Let cu1 = (=3 : 10,—2 : inch,—1 : area,0 : f,,1 : triangle,2 : Euclidean,3 : 2),

Cnetz = (=3 : 10,2 : em,0 : f,,1 : triangle,2 : Euclidean,3 : 2), and [support sy| =
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{Cnei.1, Cner2}. Then f; is an element in the following contexts:
— [attribute : area, sy;] with the decree 0 and without mediators;
— [attribute : inch, sy with the decree 1 and the mediator area;
— [attribute : 10, s] with the decree 2 and the mediators area and inch;
— [attribute : em, sy] with the decree 0 and without mediators;

— [attribute : 10, s;;] with the decree 1 and the mediator c¢m.

9.6. Direct elements

An element ¢ is a direct element in [attribute : ay, sy, attribute—order : ng, element—order :
ints Cnept] 1f € 1s an element in [attribute : ay, sy, attribute—order : ny, element—order :
int, Cnept, Mmediator—degree : 0]. An element e; is a direct element in [attribute : ay,cpy,
attribute—order : ny, element—order : int, Cpepin] if € is an element in [attribute : ay, c,y,

attribute—order : ng, element—order : iy, Coepr.n, mediator—degree : 0].

9.6.1. Kinds of direct elements

An element ¢; is a direct element in [attribute : ay, sy, attribute—order : ng, element—order :
int] if there exists c,qy such that e; is a direct element in [attribute : ay, Sy, attribute—order :
ng, element—order : iy, Coep].  An element e is a direct element in [attribute : ay,c,y,
attribute—order : ny, element—order : i,] if there exists ¢, such that e is a direct ele-
ment in [attribute : ay, ¢, f, attribute—order : ng, element—order : iy, Chepin]-

An element ¢; is a direct element in [attribute : ay, Sy, attribute—order : ng, ¢pep] if there
exists i,; such that e; is a direct element in [attribute : ay, sy, attribute—order : ny, element—
order : int, Coep]. An element e; is a direct element in [attribute : ay, ¢y, attribute—order :
N, Cnepin] 1f there exists 4,, such that e; is a direct element in [attribute : ay, cnp, attribute—
order : ng, element—order : int, Cpepin]-

An element ¢; is a direct element in [attribute : asy, s, element—order : ing, Cpep] if there
exists ny such that ¢; is a direct element in [attribute : ay, Sy, attribute—order : ny, element—
order : in, Cpept]. An element e; is a direct element in [attribute : ay, ¢, r, element—order :
ints Cnepl.n] 1f there exists n; such that e; is a direct element in [attribute : ay, c,f, attribute—
order : ng, element—order : int, Cnepln]-

An element ¢; is a direct element in [attribute : ay, sy, attribute—order : n;] if there ex-
ist i,; and cpey such that e; is a direct element in [attribute : ay, Sy, attribute—order :

ng, element—order : i, Coep].  An element e is a direct element in [attribute : ay,cyy,
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attribute—order : ng] if there exist i,: and ¢, such that e is a direct element in [attribute :
ity Cnf, attribute—order : ng, element—order : ing, Coepinll-

An element ¢; is a direct element in [attribute : ay, Sy, element—order : i,] if there exist ny
and ¢,y such that e; is a direct element in [attribute : ay, sy, attribute—order : ny, element—
order : int, Coept]. An element e; is a direct element in [attribute : ay, cnf, element—order : i, ] if
there exist n; and ¢, such that e; is a direct element in [attribute : ay, ¢, attribute—order :
nt, element—order : i, Cpepin]-

An element ¢, is a direct element in [attribute : ay, Sy, Cnep] if there exist ny and 4, such that
e, is a direct element in [attribute : ay, sy, attribute—order : ng, element—order : ing, Cpep]. An
element e, is a direct element in [attribute : aw, Cnf, Cnepin] if there exist n, and 4, such that e
is a direct element in [attribute : ay, ¢, s, attribute—order : n,, element—order : iy, Cpepin]-

An element ¢ is a direct element in [attribute : ay, sy if there exist ny, iy, and ¢,y such that
e, is a direct element in [attribute : ay, sy, attribute—order : ng, element—order : ing, Cpep]. An
element e; is a direct element in [attribute : ay, c,f] if there exist ny, iy, and ¢peppn such that

e, is a direct element in [attribute : ay, cnz, attribute—order : ng, element—order : ing, Cpepin]-

D Let cpepr = (=3 : 10, -2 : inch,—1 : area,0 : f,,1 : triangle,2 : Euclidean,3 : 2) and
Stt = (Cpept * 3). Then the following properties hold:
— fy is a direct element in [attribute : area, s;;] that means that classification of nu-
merical characteristics of f, includes area in [su];
— area is a direct element in [attribute : inch, sy] that means that classification of units
of measurement of numerical characteristics of geometric figures includes inches in
Hstt]];
—inch is a direct element in [attribute : 10, sy that means that classification of nu-
meral systems for representing values of numerical characteristics of geometric figures

includes decimal system in [sy].
9.7. The direct content of attributes

A set s, is the direct content in [attribute : ay, Sy, attribute—order : n,,element—order :
ints Cnept]] 1f s¢ is the set of all direct elements in [attribute : auy, sy, attribute—order : ny,
element—order : ip,Cpep]. A set s is the direct content in [attribute : auy,cuy,
attribute—order : ny, element—order : int, Cpepin] if s¢ is the set of all direct elements in

lattribute : aw, c,f, attribute—order : ng, element—order : int, Cpepin]-
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A set s, is the direct content in [attribute : ay, sy, attribute—order : ng, element—order : i,]
if 5, = Ucncpl[[sﬁ]] silattribute : ay, Sy, attribute—order : ny, element—order : i, Cpept]]. A set
s; is the direct content in [attribute : ay,c,y, attribute—order : ny, element—order : i, if
Sp = Ucmpl‘n[[cnf]] silattribute = ay, cnp, attribute—order : ny, element—order : ing, Chepin]-

A set s; is the direct content in [attribute : aw, st, attribute—order : n.] if s; = J_, ; s
attribute : ay, Sy, attribute—order : ny, element—order : iy]. A set s; is the direct content
in [attribute : ay, coyp, attribute—order @ ny] if s, = \J_, ; siattribute : ay, cny, attribute—
order : ng, element—order : i,].

A set s; is the direct content in [attribute : ay, si] if s, = U,,, si[attribute : ay, sy, attribute—
order : ny]. A set s; is the direct content in [attribute : au,cns] if s¢ = U,, silattribute :

ity Cnf, attribute—order : ny].

@D Let cha1 = (=3 : 10,2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2),
Cnetz = (=3 : 10,—2 : em,—1 : area,0 : e 42,1 : triangle,2 : Euclidean,3 : 2),
Cnets = (=3 1 10,0 : e 41,1 : triangle,2 : Euclidean,3 : 2), and [support s;| =

{Cnei1, Cner.2, Cners - Then the following properties hold:

—{e1g1, €142} s the direct content in [attribute : area, su];
—{area} is the direct content in [attribute : inch, syl;
—{area} is the direct content in [attribute : ecm, sy];

— {inch,cm} is the direct content in [attribute : 10, sy];

—{e1g1} is the direct content in [attribute : 10, sy].
9.8. The content of attributes in the context of mediators

A set s, is the content in [attribute : ay, Sy, attribute—order : ng, element—order : iy, Cpepl,
mediator—degree : ng.1] if s is the set of all elements in [attribute : ay, sy, attribute—order :
nt, element—order : int, Cpepr, mediator—degree : ng1]. A set s; is the content in [attribute :
ity Cnf, attribute—order : ng, element—order : int, Cpepin, mediator—degree : ngq] if s; is the
set of all elements in [attribute : au,c,f, attribute—order : ny, element—order : ing, Cpepins
mediator—degree : ng1].

A set s; is the content in [attribute : ay, Sy, attribute—order : ny,element—order : iy,
mediator—degree : ng 1] if s; = Ucncpl[[stt]] si[attribute : ay, sy, attribute—order : ng, element—
order : int, Cpepl, mediator—degree : ng1]. A set sy is the content in [attribute : auy,cyy,

attribute—order : ny, element—order : i,, mediator—degree : ng.] if s, = [, inlens] St
nepl.n [tn
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lattribute : aw, c,f, attribute—order : ng, element—order : int, Cpepin, mediator—degree : ng1].

A set s; is the content in [attribute : ay, sy, attribute—order : ng, mediator—degree : N1
if s = Ufm <ing sifattribute : ay, sy, attribute—order : ny, element—order : i, mediator—
degree : ngi1]. A set s; is the content in [attribute : ay, ¢, attribute—order : ng, mediator—
degree : naa] if s; = J_,,o;  silattribute : ay, c,p, attribute—order : ny, element—order :
int, mediator—degree : ng 1]

A set s; is the content in [attribute : ay, Sy, mediator—degree : ng.] if s, = Unt se]
attribute : ay, Sy, attribute—order : iy, mediator—degree : ng1]]. A set s; is the content in
[attribute : ay, e, mediator—degree : nga] if s, = U, sdlattribute : ay, ez, attribute—order :

int, mediator—degree : ng 1]

@D Let chu1 = (=3 : 10, -2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2),
Cnetz = (=3 1 10,—=2 : inch,—1 : perimeter,0 : €, 42,1 : triangle,2 : Euclidean,3 :
2), Chas = (=3 : 10,—-2 : inch,0 : e 43,1 : rectangle,2 : Euclidean,3 : 2), and
[support su] = {Cner1s Cnei2s Cnas}- Then the following properties hold:

—{e1g1, €142} is the content in [attribute : 10, s, mediator—degree : 2];
—{e14.3} is the content in [attribute : 10, sy, mediator—degree : 1
—{triangle} is the content in [attribute : 10, sy, mediator—degree : 3];

— {rectangle} is the content in [attribute : 10, s;;, mediator—degree : 2].
10. Classification and interpretation of attributes

Attributes are classified according to their orders.
10.1. Attributes of the order 1

An attribute ay in sy, 1] models a usual attribute in [ss,;]. Elements in [attribute :

ity S, attribute—order : 1] are individuals and concepts in [sy].

P Let cpa1 = (=3 : 10, -2 : inch,—1 : area,0 : e, 41,1 : triangle,2 : Euclidean,3 : 2),
Cnetz = (=3 : 10, =2 : inch,—1 : area,0 : €, 42,1 : square,2 : Riemannian,3 : 3), and
[support sy] = {cner1; Cner2}- Then the following properties hold:

— the direct attribute area classifies geometric figures having area in [sy];
—the individuals €; 41 and e; 42 are elements of the order 0 of the direct attribute area
in [sy] that means that classification of numerical characteristics of e, 41 and €4

includes area in [sy];
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—the concepts triangle and square are elements of the order 1 of the direct attribute
area in [sy]] that means that classification of numerical characteristics of triangles
and squares includes area in [sy];

—the concept spaces Fuclidean and Riemannian are elements of the order 2 of the
direct attribute area in [sy] that means that classification of numerical characteristics
of geometric figures in Euclidean and Riemannian spaces includes area in [sy];

— the concept space spaces 2 and 3 are elements of the order 3 of the direct attribute
area in [sy] that means that classification of numerical characteristics of geometric

figures in two-dimensional and three-dimensional spaces includes area in [sy].
10.2. Attributes of the order 2

An attribute ay in [sy, 2] models an attribute space in [s;,;]. Elements in [attribute :

gty S, attribute—order : 2] are direct attributes, individuals and concepts in [sy].

@D Let chu1 = (=3 : 10, -2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2),
Cnetz = (=3 :10,—-2 : inch, —1 : perimeter,0 : e, 42,1 : square,2 : Riemannian,3 : 3),
and [support su| = {¢ne1, Cna2}. Then the following properties hold:

— the attribute space inch classifies numerical characteristics of geometric figures mea-
sured in inches in [sy];

—the direct attributes area and perimeter are elements of the order —1 of the at-
tribute space inch in [sy] that means that classification of numerical characteristics
of geometric figures measured in inches includes area and perimeter in [sy];

— the individuals €; 4 ; and ¢; 42 are elements of the order 0 of the attribute space inch in
[s#] that means that classifications of geometric figures with numerical characteristics
measured in inches includes €; 4,1 and ;49 in [sy];

—the concepts triangle and square are elements of the order 1 of the attribute space
inch in [s4] that means that classifications of geometric figures with numerical char-
acteristics measured in inches includes triangles and squares [sy];

—the concept spaces Fuclidean and Riemannian are elements of the order 2 of the
attribute space inch in [[s;] that means that classifications of spaces containing ge-
ometric figures with numerical characteristics measured in inches includes Euclidean
and Riemannian spaces in [sy];

— the concept space spaces 2 and 3 are elements of the order 3 of the attribute space inch
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in [s4] that means that classifications of dimensions of spaces containing geometric
figures with numerical characteristics measured in inches includes dimensions 2 and

3 in [[Stt]]'
10.3. Attributes of the order 3

An attribute ay in [sy,3] models a space of attribute spaces in [ss,;]. Elements in
[attribute : ay, sy, attribute—order : 3] are attribute spaces, direct attributes, individuals

and concepts in [sy].

P Let cpa1 = (=3 : 10, -2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2),
Cnetz = (=3 :10, =2 : em, —1 : perimeter,0 : €42, 1 : square,2 : Riemannian, 3 : 3), and
[support sy] = {cne11; Cner2}- Then the following properties hold:

—the attribute space space 10 classifies numerical characteristics of geometric figures
with values represented in decimal system;

— the attribute spaces inch and cm are elements of the order —2 of the attribute space
space 10 in [s;] that means that classifications of units of measurement of numerical
characteristics of geometric figures with values represented in decimal system includes
inches and centimeters in [sy];

—the direct attributes area and perimeter are elements of the order —11 of the at-
tribute space space 10 in [sy] that means that classifications of numerical charac-
teristics of geometric figures with values represented in decimal system includes area
and perimeter in [sy];

—the individuals ¢;,; and ;42 are elements of the order 0 of the attribute space
space 10 in [s4] that means that classifications of geometric figures with numerical
characteristics with values represented in decimal system includes €; 41 and €; 42 in
[ss:];

—the concepts triangle and square are elements of the order 1 of the attribute space
space 10 in [sy] that means that classifications of geometric figures with numeri-
cal characteristics with values represented in decimal system includes triangles and
squares in [sy];

—the concept spaces Fuclidean and Riemannian are elements of the order 2 of the
attribute space space 10 in [s;] that means that classifications of spaces containing

geometric figures with numerical characteristics with values represented in decimal
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system includes Euclidean space and Riemannian space in [sy]);

— the concept space spaces 10 and 2 are elements of the order 3 of the attribute space
space 10 in [s4] that means that classifications of dimensions of spaces containing
geometric figures with numerical characteristics with values represented in decimal

system includes dimensions 10 and 2 in [sy].
10.4. Attributes of higher orders

An attribute ay in sy, 7]}, where n, > 3, is classified and interpreted in the similar way (by

the introduction of spaces of attribute space spaces and so on.).

11. Classification of conceptuals

11.1. General principles and definitions

We use the two-level scheme of classification of conceptuals. The upper (first) level is defined
by the maximal order of attributes of a conceptual. This level is described by the notion of
concretization order of a conceptual. The lower (second) level is defined by the set of all element

orders of a conceptual. This level is described by the notion of integral order of a conceptual.

11.1.1. Concretization orders of conceptuals

The number 0 is an order in [¢,y] if the minimal order in [¢,cp, element :] is greater than

or equal to 0. A number n; is an order in [¢,ep] if —n¢ is @ minimal order in [¢pep, element :].

@D Let cha1 = (=3 : 10, -2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2),
Cnetz = (=2 1 inch,—1 : area,0 : e 49,1 : triangle,2 : Euclidean,3 : 2), cyus = (=1 :
area,0 : e 43,1 : triangle,2 : Euclidean,3 : 2), chua = (0 1 €1 44,1 @ triangle,2 :
Euclidean,3 : 2), cpas = (1 : triangle,2 : Euclidean,3 : 2), cuas = (2 : Euclidean, 3 :
2), and ¢,q7 = (3 : 2). Then the conceptuals ¢pe1, Cnero, Cnes have the orders 3, 2, 1

and the conceptuals ¢,c.4, Cherss Cnel6, Cner7 have the order 0.

Conceptuals of the order n; concretizes conceptuals of the orders which are less than n,.
They define the special kinds of such conceptuals and are used to classify them. Concretization
is performed by attributes of the order n, and their values. Therefore, the order of a conceptual

is also called the concretization order of the conceptual.

11.1.2. Integral orders of conceptuals
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11.1.2.1. Integral orders

A set s; is an integral order in [cyepu] if s¢ is a set of all orders in [¢pep, element :].

@D Let cha1 = (=3 : 10, -2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2),
Cnet1 = (=3 :10,—=1 : area,1 : triangle,3 : 2), c¢pa1 = (=2 : inch,—1 : area,2 :
Euclidean,3 : 2). Then o,;[cha1] = {—3,—2,—1,0,1,2,3}, o.:[cnaz] = {-3,—1,1,3},
and o, ;[chas] = {—2,—-1,2,3}.

11.1.2.2. Refined integral orders
A set s, is a refined integral order in [cpepn] if s is a result of replacement of zero or more
orders i, in [[cnepr, element ]| in the set o, ;[crep] by 0bjects ins : [Cnept int]. A refined integral
order in [[¢pep] refines an integral order in [c,qp], providing information on some elements of
Cnept With their orders. Let ¢ep @ 0,5, denote a conceptual ¢, which has the refined integral
order o, ; ,.
@D Let cpepr = (=3 : 10, =2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2).
Then {-3,-2,—-1,0,1,2,3}, {-3,—2 : inch,—1,0,1 : triangle,2,3} and {—3 : 10,2 :
inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2} are refined integral orders in

[enen]-

11.1.2.3. Properties of integral orders

Proposition 8. A conceptual ¢y, has the single integral order.

Proof. This follows from the definition of the integral order of a conceptual. O

Proposition 9. A conceptual ¢, has a finite set of refined integral orders.

Proof. This follows from the definition of the refined integral order and the finite number of
orders of conceptuals in the context of elements. O

Proposition 10. The integral order in [¢,ep] is a refined integral order in [c,ep]-

Proof. This follows from the definition of the refined integral order of a conceptual. O

11.1.2.4. Notes

Conceptuals of the same concretization order are classified according to their integral orders.
Each integral order defines a separate kind of conceptuals.

Conceptuals allow to model ontological elements in detail. Each kind of conceptuals models

a separate kind of ontological elements.
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11.2. Modelling of ontological elements by conceptuals of the order 0

In this section conceptuals of the order 0 is classified according to their integral orders and
the ontological elements modelled by conceptuals of this classification is described.

A conceptual ¢,q : {0} models the individual [¢,ep 0].

@ The conceptual (0 : f,) models the geometric figure f,.

A conceptual e 1 {0, 1} models the individual [¢,ey 0] from the concept [¢pepn 1]

@ The conceptual (0: f,,1 : triangle) models the triangle f,.

A conceptual ¢,y : {1} models the concept [cpep 1].

P A conceptual (1 : triangle) models triangles.

A conceptual et {1,2} models the concept [cpep 1] from the concept space [Chep 2].

@ The conceptual (1 : triangle,2 : Euclidean) models triangles in Euclidean space.

A conceptual ey : {2} models the concept space [cpep 2]

@ The conceptual (2 : Fuclidean) models Euclidean space.

A conceptual e 1 {0,2} models the individual [¢,e 0] from the concept space [cpep 2].

@ The conceptual (0 : f,,2 : Fuclidean) models the geometric figure f; in Euclidean space.

A conceptual ¢, : {0, 1,2} models the individual [¢,e 0] from the concept [cpep 1] from
the concept space [¢hepr 2]

@ The conceptual (0 : f,,1 : triangle,2 : Euclidean) models the triangle f, in Euclidean

space.

Classification of other conceptuals of the order 0 and description of the ontological elements
modelled by these conceptuals is performed in a similar way (by the introduction of the concept
space space and so on.). For example, a conceptual ¢,y : {0,1,2,3} models the individual
[Chept 0] from the concept [cpep 1] from the concept space [cpep 2] from the concept space space
[Crepl 3]

@ The conceptual (0 : f,, 1 : triangle,2 : Euclidean,3 : 2) models the triangle f, in two-

dimensional Euclidean space.

11.3. Modelling of ontological elements by conceptuals of the order 1

In this section conceptuals of the order 1 is classified according to their integral orders and
the ontological elements modelled by conceptuals of this classification is described.

A conceptual ¢,y @ {—1} models the attribute [cpen — 1].
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P The conceptual (—1 : area) models area of geometric figures.

A conceptual ¢,y 0 {—1,0} models the attribute [c, — 1] of the individual [c;,ep 0].

@ The conceptual (—1 : area,0 : f;) models area of the geometric figure f,.

A conceptual ¢, 0 {—1,0, 1} models the attribute [¢, — 1] of the individual [¢,q 0] from
the concept [Cpep 1]

@ The conceptual (—1 : area,0 : f,,1: triangle) models area of the triangle f,.

A conceptual ¢, 0 {—1, 1} models the attribute [, — 1] of individuals from the concept
[Crepl 1]

@ The conceptual (—1 : area, 1 : triangle) models area of triangles.

A conceptual ¢ 0 {—1,0,1,2} models the attribute [c o — 1] of the individual [¢,ep 0]
from the concept [c,ep 1] from the concept space [cpep 2]

@ The conceptual (—1 : area,0 : f,,1: triangle,2 : Euclidean) models area of the triangle
fy in Euclidean space.
A conceptual ¢, : {—1, 1,2} models the attribute [¢,, — 1] of individuals from the concept
[Chepr 1] from the concept space [Cpep 2]

@ The conceptual (—1 : area,1 : triangle,2 : Fuclidean) models area of triangles in Eu-
clidean space.
A conceptual ¢, 0 {—1,0,2} models the attribute [¢, — 1] of the individual [¢,q 0] from
the concept space [Cpep 2]
@ The conceptual (—1 : area,0 : f;,2 : Fuclidean) models area of the geometric figure f,
in Euclidean space.

A conceptual ¢, @ {—1,2} models the attribute [c,eu — 1] of individuals from concepts

from the concept space [cpep 2]

@ The conceptual (—1 : area,?2 : Euclidean) models area of geometric figures in Euclidean

space.

Correlation between other kinds of conceptuals of the order 1 and the corresponding kinds

of ontological elements is performed in a similar way.

11.4. Modelling of ontological elements by conceptuals of the order 2

In this section conceptuals of the order 2 is classified according to their integral orders and

the ontological elements modelled by conceptuals of this classification is described.
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A conceptual ¢pep : {—2, —1} models the attribute [¢pe, —1] in the attribute space [¢hen —2].

@ The conceptual (-2 : inch, —1 : area) models area measured in inches.

A conceptual ¢, ¢ {—2, —1,0} models the attribute [¢,e — 1] of the individual [¢,ep 0] in
the attribute space [chep — 2].

@ The conceptual (=2 : inch,—1 : area,0 : f,) models area of the geometric figure f,

measured in inches.

A conceptual ¢, 0 {—2,—1,0, 1} models the attribute [¢,e — 1] of the individual [¢pep 0]

from the concept [c,e 1] in the attribute space [chep — 2]

@ The conceptual (-2 : inch, —1 : area,0 : f,,1 : triangle) models area of the triangle f,

measured in inches.
A conceptual ey @ {—2,—1,1} models the attribute [¢,n — 1] of individuals from the
concept [cpep 1] in the attribute space [cpep — 2J.
@ The conceptual (=2 : inch, —1 : area, 1 : triangle) models area of triangles measured in
inches.
A conceptual ¢, {—2,—1,0, 1,2} models the attribute [¢,,e — 1] of the individual [¢,ep 0]
from the concept [c,ep 1] from the concept space [cnen 2] in the attribute space [cpepn — 2J.
@ The conceptual (-2 : inch, —1 : area,0 : f,,1 : triangle,2 : Euclidean) models area of
the triangle f, in Euclidean space measured in inches.
A conceptual ¢pep : {—2,—1,1,2} models the attribute [¢, — 1] of individuals from the
concept [Cpep 1] from the concept space [cpen 2] in the attribute space [Cpep — 2].
@ The conceptual (—2 : inch, —1 : area, 1 : triangle,2 : Fuclidean) models area of triangles
in Euclidean space measured in inches.
A conceptual ¢, 0 {—2,—1,0,2} models the attribute [¢,e — 1] of the individual [¢ep O]
from the concept space [cpepn 2] in the attribute space [Cpep — 2]

@ The conceptual (-2 : inch, —1 : area,0 : f,,2 : Euclidean) models area of the geometric

figure f, in Euclidean space measured in inches.

A conceptual ¢pep : {—2, —1,2} models the attribute [cpen — 1] of individuals from concepts

from the concept space [cpen 2] in the attribute space [cpepn — 2]

P The conceptual (=2 : inch,—1 : area,2 : Fuclidean) models area of geometric figures in

Euclidean space measured in inches.



124 Anureev I.S. Formalisms for conceptual design of closed information systems

A conceptual ¢, 0 {—2,0} models the individual [¢e 0] in the attribute space [cpep — 2].

@ The conceptual (—2 : inch,0 : f,) models the geometric figure f, with numerical charac-

teristics measured in inches.

A conceptual ¢pep : {—2,0, 1} models the individual [¢pe 0] from the concept [¢pep 1] in the

attribute space [cpep — 2J.

@ The conceptual (—2 : inch,0 : f,,1 : triangle) models the triangle f, with numerical

characteristics measured in inches.
A conceptual e 0 {—2, 1} models the concept [, 1] in the attribute space [cpep — 2].

@ The conceptual (—2 : inch, 1 : triangle) models triangles with numerical characteristics

measured in inches.

A conceptual ¢,e 0 {—2,1,2} models the concept [cpen 1] from the concept space [¢pep 2]

in the attribute space [chep — 2.

@ The conceptual (=2 : inch,1 : triangle,2 : Fuclidean) models triangles in Euclidean

space with numerical characteristics measured in inches.
A conceptual ¢ep : {—2, 2} models the concept space [,y 2] in the attribute space [¢,ep —2].

@ The conceptual (=2 : inch,2 : Fuclidean) models geometric figures in Euclidean space

with numerical characteristics measured in inches.

A conceptual ¢, 0 {—2,0,2} models the individual [¢,y 0] from the concept space [chepr 2]

in the attribute space [chep — 2.

@ The conceptual (=2 : inch,0 : f;,2 : Euclidean) models the geometric figure f, in

Euclidean space with numerical characteristics measured in inches.

A conceptual ¢ @ {—2,0,1,2} models the individual [¢uen 0] from the concept [chep 1]

from the concept space [cpen 2] in the attribute space [Cpep — 2]

@ The conceptual (=2 : inch,0 : f,,1 : triangle,2 : Euclidean) models the triangle f, in

Euclidean space with numerical characteristics measured in inches.

Correlation between other kinds of conceptuals of the order 2 and the corresponding kinds

of ontological elements is performed in a similar way.

11.5. Modelling of ontological elements by conceptuals of the higher

orders
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Classification of conceptuals of the order 3 or higher and description of the ontological
elements modelled by conceptuals of this classification is performed in a similar way (by the
introduction of the attribute space space and so on.).

@ The conceptual (-3 : 10,—2 : inch,—1 : area,0 : f,,1 : triangle,2 : Euclidean,

3 : 2) models area of the triangle f, in two-dimensional Euclidean space measured in

inches in decimal system.

12. Modelling of relations, types, domains, inheritance

12.1. Relations and their instances

Finite binary relations are modelled by direct concepts and their instances are modelled by
the elements of the order 0 of these concepts, represented by pairs of elements.

Finite relations of the arity n; are modelled by direct concepts and their instances are
modelled by the elements of the order 0 of these concepts, represented by sequence elements of
the length n,.

Finite relations of the variable arity are modelled by direct concepts and their instances are
modelled by the elements of the order 0 of these concepts, represented by sequence elements of

the variable length.

12.2. Types and domains

Finite types are modelled by direct concepts and their values are modelled by the elements
of the order 0 of these concepts. Domains as the special kind of finite types are also modelled by
direct concepts and their values are modelled by the elements of the order 0 of these concepts.

Types of attributes of the order n; are modelled by the special attribute type of the order
n; + 1. Values of this attribute are types.

P Let cpep = (=2 : type, —1 : area,0 : f,), and sy = (Cpep : real). Then the area of the

geometric figure f, is a real number in [s;].
P Let cpepr = (=2 : type, —1 : area,0 : %), and sy = (Cpep : Teal). Then the area of any

geometric figure is a real number in [s,]. The semantics of * is defined in section ??

12.3. Inheritance

12.3.1. Inheritance on elements
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The usual inheritance relation on concepts is generalized to the inheritance relation on
elements of the same order in [s;]. It is modelled by the special direct concept inheritance
and their instances are modelled by the elements of the order 0 of the concept inheritance,
represented by the triples of elements. Elements of the triple specify the inheriting element,
the inherited element and their order. An element e; inherits from e;1 in [sy, in] if [sy (O :
(€1, €11, 0nt), 1 = inheritance)] # und.

Inheritance on elements redefines interpretation value of conceptuals as follows:

o if sy Cpep] # und, then [value Cpepr Stt] = [Stt Cnepl);

o if [syt Cpepi] = und, i, is @ maximal order in [¢,qp, element :], s; is a set of e;[[s] such that
[Crepl Tne] inherits from e; in [Su, ine], s¢ # 0, and [value [Crepl ine © €1] Sit] = [value [Crepl ine :
er1] su) for all e, ;1 € s, then [value cpep Si) = [value [Cpept int © €1] s, Where e; € s;

e otherwise, [value cpep i) = und.

12.3.2. Inheritance on direct concepts

The inheritance on direct concepts is the special case of the inheritance on elements.

A concept ¢pepq inherits from a concept ¢p prai i [si] if cuepa inherits from ¢, prq1 in
[[Stta 1]]

12.3.3. Inheritance on element sequences

The inheritance relation on elements is generalized to the inheritance relation on element
sequences. This relation is modelled by the special direct concept inheritance :: sq and their
instances are modelled by the elements of the order 0 of this concept, represented by the
triples of sequence elements of the same length. The elements of the triple specify inheriting
elements, inherited elements and their orders. An element e; () inherits from e; ()1 in [Se, ine.(4)]
if ne) = (Intds o ntme )y Intd < ooo < lnemy,, [len ey = [len epya] = ng, and [sy (0 :
(€105 €L(1).15 Int.(x))s L 1 inheritance :: 5q)] # und.

Inheritance on ordered elements redefines interpretation value of conceptuals as follows:

o if sy Cpep] # und, then [value Cpepr Stt] = [Stt Cnepl);
oif
— [s4 Cncpl] = und,
—lpt1 < ... <lptp, are orders in [cpep, element ],
—for all 4y if 44 > dpe1 and iy is an order in [¢pep, element :], then i, coincides with

one of the numbers i,: 1, ..., tnt.n,,
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— ¢ 18 a set of e[s] such that ([cuept inta], - - s [Crept Tntn,]) inherits from e; in [su, (ine1,
]

— 5 # @7

— [value [cuept tnta 2 €0 - 1], inen, = €0 - 0] Su) = [value [coept Tnta €11 - 1], ...,

intm, © €11 - 1] su) for each e, €1 € s,

then [value cpep Sit| = [value [cuepr inta €1 - 1), .o intn, @ (€1 - Tu)] Su), Where e, € sy

e otherwise, [value Cpep Si] = und.
13. Generic conceptuals

A generic conceptual defines a set of conceptuals satisfying a certain template and sets the
default value for these conceptuals. Conceptuals from this set are called instances of the generic

conceptual. The template of the generic conceptual is defined by its form.
13.1. The main definitions
13.1.1. Generic conceptuals

Let * € Ayy,. A conceptual ¢,epfsu] is a generic conceptual in [sy,] if there exists opq[Cpepi]

such that [cuep 0rd] € {*, (%, 1), (%, tp, Prm)s (52 %, Prm) }- The element p; s of the form [¢yep 0rd]

from this definition is called a substitution place in [cyepi, Sit, 0rq]. The number o,4 is called
an order in [p;s, Cpept, Sue]. The elements ¢, and p,,, are called a type and parameter in

[[pl.sa Cnepl s Stt, Ord]] .

13.1.2. Kinds of generic conceptuals

A conceptual ¢, 4 is partially typed in [s;] if there exist p; s, t, and o, such that p;, is a
substitution place in [cpepig, Su, 0ra] and ¢, is a type in [prs, Cuepl.gs Stt, Ordl-

A conceptual ¢4 is typed in [sy] if for all p,s and o,4 if p; s is a substitution place in
[nepl.gs St 0ra], then there exists ¢, such that ¢, is a type in [pis, Coepigs Sit, Ord]-

A conceptual ¢4 i parametric in [[sy] if there exist p; s, pym and o,4 such that p;, is a

substitution place in [cpepig, Sits 0ra]] and pry, is @ parameter in [pys, Coepi.gs Sit, Ord]-

13.1.3. Instances of generic conceptuals

A conceptual ¢,y is an instance in [cyeprg, Su]l, if the following properties hold:

o if [Chepig Int] 1S NOt a substitution place in [Chepig, Stts tnt], then [Cnept int] = [Cneplg intl;
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o if [Chepiy int] 1S a substitution place in [Ceprgs Stt, int], then [Cpepr int] i an element in
[[Smint]];

o if [Creprg int] € {(*,8p), (*,tp, Prm)}, then [cpep ine] is an element in [concept : t,, sy,
concept—order : 1, element—order : 0];

o if p.,, is a parameter in [prs.1, Crept.g, Stts Or.e.1] and [Prs2, Crepi.gs Stts Ore2]l, then [Crepr 0pc.1]

= [Cncpl 07‘.6.2] .

13.1.4. States with generic conceptuals

A state sy is a state with generic conceptuals, if the following properties hold:
e (the consistency property) if cpe g1 F Cneig2, then there is no ¢,y such that ¢,y is an
instance of ¢, 41 In [S4] and cpep s an instance of ¢pe g0 in [su];
e interpretation value of conceptuals is redefined as follows:
—if [s4t Cpept] # und, then [value cuep Sit) = [Stt Crepll;
—if [Sy Cpep] = und and ¢,y is an instance in [Cpeprg, Suf, then [value cpep Su] =
[Stt Cncpl.g];

— otherwise, [value cuep Su) = und.

13.2. Examples of generic conceptuals

A conceptual cpepg 0 {—1,0 : %, 1} models the property that the value of the attribute
[Cheptg — 1] of individuals from the concept [chepy 1] equals [si Creprg] I [S] if it is not defined
explicitly.

@ The conceptual cpepy = (—1 : area,0 : %, 1 : triangle) models the property that area of

triangles equals [Sy Cheprg] In [[s1] if it is not defined explicitly.

A conceptual ¢,y 0 {—1,0 : *} models the property that the value of the attribute [c,eprg —
1] of individuals equals [s Cpepig] in [se] if it is not defined explicitly.

€ The conceptual ¢,epy = (—1 : area,0 : %) models the property that area of geometric

figures equals [S Cpepig) I [si] if it is not defined explicitly.

A conceptual ¢peprg @ {0 : %, 1} models the property that the value of individuals from the
concept [Cpeprg 1] equals [si Cpeprg] In [sy]) if it is not defined explicitly.

@ The conceptual cyeprg = (0 : %, 1 : triangle) models the property that the value of triangles

equals [si Cpeplrg] In [si] if it is not defined explicitly. What is the value of a triangle

depends on interpretation.
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13.3. Modelling of ontological elements and

their properties based on generic conceptuals

Generic conceptuals together with attributes allow to model ontological elements and their
properties in more detail.

A conceptual cpeprg @ {—2 @ type, —1,0 : *,1} models the property that the type of the
attribute [cpepry — 1] of individuals from the concept [cpepiy 1] equals sy Cpepig) in [sy] if it is

not defined for individuals explicitly.

@ The conceptual cpepg = (—2 : type, —1 : area,0 : *,1 : triangle) models the property
that the type of the attribute area of triangles equals [Sy; Cpepig] in [su] if it is not defined

for triangles explicitly.

A conceptual cpep g 0 {—2: type, —1,0 : *} models the property that the type of the attribute

[Cheprg — 1] of individuals equals [S¢ Cpeprg] In [sy]) if it is not defined for individuals explicitly.

@ The conceptual cpep g = (—2 : type, —1 : area,0 : *) models the property that the type
of the attribute area of geometric figures equals [sy; Cpepig] in [sy] if it is not defined for

geometric figures explicitly.
A conceptual ¢pepg 0 {—2 : type,0 : x} models the property that the type of individuals
equals [Si Cneprg) I [s] if it is not defined for individuals explicitly.
@ The conceptual cpep g = (—2 : type, 0 : ) models the property that the type of geometric

figures equals [Sy Cpeprg) I [S4¢] if it is not defined for geometric figures explicitly.

A conceptual ¢,ep 0 {—2 : type, 0 : %, 1} models the property that the type of individuals
from the concept [Cpepig 1] equals [sy Cpeprg] in [sy] if it is not defined for such individuals
explicitly.

@ The conceptual cpepg = (—2 : type, 0 : %, 1 : triangle) models the property that the type

of triangles equals [Sy Cpeprg) I [S1¢] if it is not defined for triangles explicitly.

14. The CCSL language

The CCSL language (Conceptual Configuration System Language) is a basic language of
CCSs. Interpretable elements of CCSL are called basic elements of CCSs.
L Tp,0, CON AN T Cpp).

Let Sp - (LE 2o, Y Yo, X120, U U, VIV, W:IWy, T1:T1.0y +-+y Ty

14.1. Syntax of CCSL
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An object o, is an atom in CCSL if

e 0, is a sequence of Unicode symbols except for the whitespace symbols and the symbols
7’7 ,7 (7 )7 Py and 5 or
® 0, is a special atom, or

" called a string, where o, is a sequence of Unicode symbols in which

e 0, has the form 7o, ¢’
each occurrence of the symbol ” is preceded by the symbol " and each occurrence of the
symbol ’ is doubled.

The set Ay, of special atoms includes the object ::= and can be extended.

An object o is an element in CCSL if o, € Ay, 0p = €1 : €11, 0p = (€1.4), OT 0p = €] 2 €)1.

The whitespace symbols and the semicolon in CCSL are element delimiters along with
comma. For example, (1, €2), (e11; €12) and (e €,2) represent the same element.

An element ¢;, is a conceptual in CCSL if all its attributes are integers.

An element ¢;, is a conceptual state in CCSL if all its attributes are conceptuals.

An element ¢, is a conceptual configuration in CCSL if [image €;,] C Sy.

The element (pattern p; var (v,.) seq (v,54)) in CCSL represents the pattern specification
(Pes (Vrs),s (Vrsx))-

The element (definition p; var (v,.) seq (v.s.4) then by) :: name :: n,, in CCSL represents

the element definition (p, (vr4), (Vr.s), bg) With the name n,.

For simplicity, we omit the names of interpretations and definitions below.
14.2. The special forms for interpretations and definitions

In this section we define the special forms for interpretations and definitions used below.

The form (interpretation p; var (v..) seq (vys4) then f,) :: name :: n,, denotes the inter-
pretation (p, (Vy4), (Ur.sx), fn) With the name n,,.

The objects var (v,.) and seq (v,s.) in the form (interpretation ...) can be omitted. The
omitted objects correspond to var () and seq (), respectively.

Let {4}, {5}, {Ure1} and {v,. 2} are pairwise disjoint, and {v,.3} C {v,«} U{vs1} U
{vy.2}. The form (definition p, var (v,.) seq (Vrsx) abn (V1) und (vy.2) val (v,.3) where
Cna then by) called a definition form is defined as follows:

o (definition py var (vy..) seq (Ups.) und (Vy.1) abn (V4 2) val (vy.3) where c,q then by) is
a shortcut for (definition p, var (v,.) seq (Vrsx) abn (V1) und (Vy.2) val (v,.3) then

(if cng then by else und));
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o (definition p, var (v,.) seq (Vy.sx) und (Vy41) abn (vy.2) val (v,.3, v.) then by) is a short-
cut for (de finition p; var (v,.) seq (Vy.s..) und (Vy.1) abn (Vy.2) val (v, 3) then (let w be
v, in [subst (v, 2% :w) by])), where w is a new element that does not occur in this defi-
nition;

o (definition p; var (vy.) seq (Ursi) und (vy.1) abn (v..2) val () then by) is a shortcut
for (definition p; var (v,..) seq (Vysx) und (Vy.1) abn (Vy.2) then by);

e (definition p, var (v,.) seq (Vrsx) und (V.1, v.) abn (V..2) then by) is a shortcut for
(definition p, var (v..) seq (Vrsx) und (vp.1) abn (v,.2) then (if (v, is unde fined) then
und else by));

e (definition p; var (v..) seq (Uys.) und () abn (v,.2) then by) is a shortcut for (de finition
pr var (vp.) seq (Urss) abn (v,.2) then by);

o (definition p; var (v,.) seq (Vy.s.4) abn (Vy.2, v.) then by) is a shortcut for (definition p;
var (Vy..) seq (Vy.sx) abn (vp.2) then (if (v, is abnormal) then v, else by));

e (definition p; var (v,.) seq (v,s.4) abn () then by) is a shortcut for (de finition p, var (v,.)
seq (Vy.s.x) then by).

The element ¢,4 specifies the restriction on the values of the pattern variables. The undefined
value is propagated through the variables of v, ;. Abnormal values are propagated through
the variables of v, .. The special element v, :: * references to the value of element associated
with the pattern variable v,. A pattern variable is evaluated if the element associated with it is
evaluated. Thus, the sequence v, , 3 contains evaluated pattern variables. A pattern variable is
quoted if the element associated with it is not evaluated. Let F,,, 4 be a set of definition forms.

The objects var (v..), seq (Vrs«), und (vVp.1), abn (vVp.2), val (v,.3) and where ¢,q in the
form (de finition ...) can be omitted. The omitted objects correspond to var (), seq (), und (),

abn (), val () and where true, respectively.

15. Semantics of interpretable elements in CCSL

15.1. Abnormal elements operations

The element und is defined as follows:
(de finition und then und : q).
The element e, is defined as follows:

(de finition x var (x) where (z is exception) then x :: q) :: name :: ("Q”, exception).
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The definition satisfies the property: n, <[o.,....] ("@",exception) for each n,, such that n,,
is a name of an atomic element interpretation or element definition with the pattern distinct
from v,, where v, is a variable of this pattern.

The element e; :: q is defined as follows:
(interpretation x :: q var (x) then f,),

where [f,, sp] = 0.
15.2. Statements

The element (if x then y else z) is defined as follows:
(definition (if x then y else z) var (z, y, z) val (x)
then (if x:* then y else z):: atm);
(interpretation (if x then y else z)::atm var (x, y, z) then f,),
where [f, sp] = [if [xo # und] then [value yo [sp conf ::in]] else [value zq [sp conf ::in]].
The element (if = then y elseif z then u ... else v) is defined as follows:
(de finition (if x then y elseif z) var (x, y, z) seq (2)
then (if x then y else (if z))).
The element (let x be y in z) is defined as follows:
(interpretation (let x be y in z) var (x, y, z) then f,),
where [f,, sp] = [value [subst (zg : [value yo [sp conf ::in]]) zo] [sp conf ::in]].
The element e; of the form (let :: seq x be y in z), where x € E«), y € Ej (), and
[len x] = [len y], is defined by the rule
(rule (let ::seq x, y be z, w in v) var (z, z, v) seq (y, u)
then (let x be z in (let :: seq y be u in v)));
(rule (let :: seq be in v) var (v) then v).
The elements x, y and z are called a substitution variables specification, substitution values
specification and substitution body in [e;]. The elements of x and y are called substitution

variables and substitution values in [e;].
15.3. Characteristic functions for defined concepts

An object dy. is a concept definition if dy. is an interpretation of the form (interpretation
(€11 is er2) var (vr..) seq (vrss) then f,) :: name :: n,,, or ds. is a definition of the form

(de finition (e is e2) var (v..) seq (Vrs) then by) :: name :: n,,. Concept definitions specify
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concepts and their instances. Concepts specified by them are called defined concepts. The
elements e;; and ;5 are called an instance pattern and concept pattern in [dy.]. The element
(€11 s e12) is called a characteristic function in [dy.]. Let Dy, be a set of concept definitions.

An element ¢4 is a defined concept in [dy., sp]] if ¢nep is an instance in [(e;2, var (v,.) seq
(Ursx)), My, Sp]). An element ¢, 4 is a defined concept in [dy.] if there exists s, such that ¢,ep.q
is a defined concept in [dy., sp]. An element ¢, is a defined concept in [c,s] if there exists
df.cllcns]] such that cpepq is a defined concept in [dy.]. Let Cpepa be a set of defined concepts.

An element iy, is an instance in [dy.., sp] if 9,5, is an instance in [(e;.1, var (v..) seq (vy.5.4)),
my, sp]]. An element 4,4, is an instance in [dy ] if there exists s, such that c,,.4 is an instance
in [df.c, sp].

An element 4,4, is an instance in [chep.d, Cnf, df.c] if insen is an instance in [dy.c, Cpep.a] 1is @
defined concept in [dy.], and [value (instn @S Cnepd) Cnf (Mm)] # und. An element iy, is an
instance in [cpep.d, Cny] if there exists dy. such that i, is an instance in [Cpep.d; Cog, dfc]. An
element ¢, 4 is an instance in [c,r, m¢] if there exists ¢,epq such that 4,4, is an instance in
[¢nep.d, cngl- Let Iqy, be a set of instances.

A set s; is called a content in [¢ep.a, Cnr] if st 1s a set of all 4,4, such that i, is an instance
in [Cnep.da; cayl. Let [content Cpep.q cny] denote the content in [cep.a, Cos]-

The notion of defined concepts is extended to the definitions of the form (de finition (e;; is
era) var (Vy..) seq (Vy.s.) und (Vy..1) val (vy..3) where cyq then by). Let dy have this form. An
element ¢4 is a defined concept in [dy, sp] if cpep.q is @ defined concept in [dy1, sp], where df
is a definition of the form (de finition (e;1 is e12) var (v,..) seq (vrs.) then bg1) such that dy
is reduced to dy.;.

The element (z is atom) specifying that x is an atom is defined as follows:

(interpretation (x is atom) var (x) then f,),
where [f,, sp] = [if [x0 € Ay then true else und).

The element (x s update) specifying that z is an element update is defined as follows:
(interpretation (x is update) var (x) then f,),
where [f, sp] = [if [x0 € Up.] then true else und].

The element (x is multi—attribute) specifying that z is a multi-attribute element is defined
as follows:

(interpretation (x is multi—attribute) var (x) then f,),

where [f,, sp] = [if [0 € Elma) then true else und).
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The element (x is attribute) specifying that x is an attribute element is defined as follows:
(interpretation (x is attribute) var (x) then f,),
where [f,, sp] = [if [0 € Ei4] then true else und).

The element (z is sorted) specifying that z is a sorted element is defined as follows:
(interpretation (x is sorted) var (z) then f,),
where [f, sp] = [if [x0 € Ejs] then true else und).

The element (z is undefined) specifying that = equals und is defined as follows:
(interpretation (x is undefined) var (x) then f,),
where [f, sp] = [if [x0 = und] then true else und).

The element (x is de fined) specifying that x does not equal und is defined as follows:
(interpretation (x is defined) var (x) then f,).
where [f,, sp] = [if [xo # und] then true else und).

The element (z is exception) specifying that x is an exception is defined as follows:
(interpretation (x is exception) var (x) then f,),
where [f,, sp] = [if [x0 € Ey] then true else und].

The element (z is normal) specifying that x is a normal element is defined as follows:
(interpretation (x is normal) var (z) then f,),
where [f, sp] = [if [x0 € Epp] then true else und).

The element (z is abnormal) specifying that x is an abnormal element is defined as follows:
(interpretation (x is abnormal) var (z) then f,),
where [f,, sp] = [if [0 € Eia) then true else und).

The element (z is sequence) specifying that x is a sequence element is defined as follows:
(interpretation (x is sequence) var (z) then fy,),
where [f, sp] = [if [0 € By (] then true else und).

The element (x is set) specifying that the elements of the sequence element x are pairwise
distinct is defined as follows:
(definition (x is set) var (x) where (x is sequence) then (x is set) :: atm);
(interpretation (x is set) :: atm var (x) then f,),
where [f, sp] = [if [[xo . mea] # [To . muo] for all nyy and ngo such that nyy # nga,ngy <
[len xo] and nyo < [len xo]] then true else und).

The element (x is empty) specifying that x is an empty element is defined as follows:

(de finition (x is empty) var (x) then (x:q = ())).
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The element (z is nonempty) specifying that x is not an empty element is defined as follows:
(definition (x is monempty) var (x) then (x:q != ())).

The element (z is conceptual) specifying that x is a conceptual is defined as follows:
(interpretation (x is conceptual) var (x) then f,),
where [f,, sp] = [if [t0 € Chep] then true else und.

The element (z is (conceptual in y)) specifying that x is a conceptual in the context of the
state y is defined as follows:
(definition (x is (conceptual in y)) var (x, y)

where ((z is conceptual) and (y is state)) then (x is conceptual in y) :: atm);

(interpretation (x is (conceptual in y)) :: atm var (x, y) then f,),
where [f, sp] = [if [x0 € Crepyo]] then true else und.

The element (x is state) specifying that x is a conceptual state is defined as follows:
(interpretation (x is state) var (z) then f,),
where [f,, sp] = [if [0 € Su] then true else und).

The element (z is configuration) specifying that x is a conceptual configuration is defined
as follows:
(interpretation (x is configuration) var (x) then f,),
where [f,, sp] = [if [0 € Chy] then true else und).

The element (z is nat) specifying that z is a natural number is defined as follows:
(interpretation (x is nat) var (z) then f,),
where [f, sp] = [if [xo € N,| then true else und].

The element (z is nat0) specifying that x is either a natural number, or a zero is defined as
follows:
(interpretation (x is nat0) var (z) then f,),
where [f, sp] = [if [0 € Nio| then true else und).

The element (x is int) specifying that = is an integer is defined as follows:
(interpretation (x is int) var (x) then f,),
where [f, sp] = [if [x0 € L] then true else und].

The element (x is (satis fiable in y)) specifying that x is satisfiable in the context of variables
y is defined as follows:
(definition (x is (satisfiable in y)) var (z, y) where (y is sequence)

then (x is (satisfiable in y)) :: atm);
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(interpretation (x is (satisfiable in y)) :: atm var (x, y) then f,),
where [f,, sp] = [if [xo is satisfiable in [(yo, [sp conf ::in])]] then true else und].
The element (z is (valid in y)) specifying that z is valid in the context of variables y is
defined as follows:
(definition (x is (valid in y)) var (x, y) where (y is sequence)
then (x is (valid in y)) :: atm);
(interpretation (x is (valid in y)) :: atm var (z, y) then f,),
where [f,, sp] = [if [xo is valid in [(yo, [sp conf :: in])]] then true else und].
The element (x is (sequence y)) specifying that x is a sequence element such that the value
in [(e; is y)] does not equal und for each element ¢; of x is defined as follows:
(definition ((x y) is (sequence z)) var (z, z) seq (y)
then ((z is z) and ((y) is (sequence z)));

(definition (() is (sequence x)) var (x) then true).
15.4. Elements operations

The element () is defined as follows:
(definition () then () : q).
The element (len z) specifying the length of the element x is defined as follows:
(definition (len x) var (x) val (z) then (len x :: %) :: atm);
(interpretation (len x) :: atm var (x) then f,),
where
oif g € Ay, UU, U Ejg, then [f, sp] = 1;
o if 2o = (e;.4), then [f,, sp] = [len e;.].
The element (z = y) specifying the equality of the elements x and y is defined as follows:
(definition (x = y) var (x, y) val (x, y)
then (x % = y:x*):altm);
(interpretation (x = y):atm var (z, y) then f,),
where
e if 25 and yo are equal atoms, then [f, s,] = true;
oif vy € Upe, Yo € Upe, arglzo] = arglyo], and vi[zo] = vifyo]l, then [f,, sp] = true;
o if 79 € Ejs, Yo € Eus, eifzo] = eifyo]], and s, [xo] = sr¢[yo], then [f,, sp] = true;

o if 29 € Ei (4, Yo € Ei(), and o and yo are equal sequences, then [f, s3] = true;
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e otherwise, [f, sp] = und.
The element (z ! = y) specifying the inequality of the elements z and y is defined in the
similar way:.
The element (x . y) specifying the y-th element of the sequence element z is defined as
follows:
(de finition (x . y) var (z, y) val (z, y)
where ((z :: % is sequence) and (y :: x is nat)) then (r % . y:: %) atm);
(interpretation (x . y)::atm var (z, y) then f,),
where [f, sp] = [z0 - Yo
The element (x .. y) specifying the value of the attribute element x for the attribute y is
defined as follows:
(definition (x .. y) var (x, y) val (x) where (x :: % is attribute)
then (z:* .. y):atm);
(interpretation (x .. y):: atm var (z, y) then f,),
where [f, sp] = [To Yo]-
The element (r + y) specifying the concatenation of the sequence elements x and y is
defined as follows:
(definition (x + y) var (z, y) val (z, y)
where ((z :: % is sequence) and (y :: * is sequence)) then (x % —+ y:x):atm);
(interpretation (xr + y)::atm var (x, y) then f,),
where [f,, sp] = (€14 €1.1.+) for some e, and e; ;. such that zq = () and yo = €1 4.
The element (x . + y) specifying the addition of the element x to the head of the sequence
element y is defined as follows:
(definition (x .+ y) var (z, y) val (z, y) where (y: * is sequence)
then (x % .+ y:x):atm);
(interpretation (r .+ y) ::atm var (x, y) then f,),
where [f, sp] = [if [yo = (1) for some e;,] then (g e.) else und].
The element (x .+ :: set y) specifying the addition of the element x to the head of the
sequence element y representing a set is defined as follows:
(definition (x .+ = set y) var (z, y) val (xz, y) where (y:: * is set)
then (x % .+ :set y:: %) :atm);
(interpretation (x .+ :: set y) :: atm var (z, y) then f,),
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where [f, sp] = [if [yo = (e1..) for some e, then [if [xo € er.] then (e,.) else (zg €.4)] else
und).
The element (z + . y) specifying the addition of the element y to the tail of the sequence
element z is defined as follows:
(definition (x +. y) var (z, y) val (z, y) where (x : % is sequence)
then (z:% +. y:%):atm);
(interpretation (xr +. y) :: atm var (x, y) then f,),
where [f, sp] = [if [x0 = (e1.«) for some e;.] then (e, yo) else und).
The element (x + . :: set y) specifying the addition of the element y to the tail of the
sequence element x representing a set is defined as follows:
(definition (x +.: set y) var (z, y) val (z, y) where (z ::* is set)
then (x::% 4 .:set y:: %) :atm);
(interpretation (x +.:: set y)::atm var (v, y) then f,),
where [f,, sp] = [if [xo = (e1..) for some e, ] then [if [yo € €] then (e;.) else (e, yo)] else und).
The element (x — . :: set y) specifying the deletion of the element y from the sequence

element x representing a set is defined as follows:

(definition (x —.: set y) var (z, y) val (z, y) where (x :: * is set)
then (x % —.: sel y: %) atm);
(interpretation (x —.: set y) ::atm var (x, y) then f,),

where [f, sp) = [if [0 = (€141 Yo €1+.2) for some e, 1 and e;..o] then (ej.1 €.2) else [if [xg =
(€1.+) for some e;,] then (e..) else und|].
The element (upd x ¥y : 21, ..., Yn, : 2n,) SPecifying the sequential updates of the attribute

element x at the points 1, ..., Yn, by 21, ..., 25, is defined as follows:

(de finition (upd z y) var (z) seq (y) wval (z)

where ((x :: % is attribute) and ((y) is (sequence update))) then (upd :: att x :: % y));
(definition (upd :: att x y z) var (y) seq (z) und (z)

then (let w be (updl ::att z y) in (upd: att w z)));

(definition (upd :: att ) var (z) then x);

(de finition (updl ::att © y: z) var (x, y, z) val (z)

then (updl ::att x y:z: %) atm);

(interpretation (updl ::att x y: z):: atm var (z, y, z) then f,),

where [f, sp] = [z0 Yo : 20]-
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The element (upd x y : z) specifying the update of the sequence element x at the index y
by z is defined as follows:
(de finition (upd z y z) var (x, y, z) val (x, y, 2)
where ((z :: % is sequence) and (y:: x is nat) and (y::x <= ((len z:x:q) + 1)))
then (upd ::seq = ::x y % z: %) atm);
(interpretation (upd :: seq x y: z)::atm var (x, y, z) then f,),
where [f,, sp] = [att—obj—to—seq [[seq—to—att—obj x| yo : 20]]-
The element (x in :: set y) specifying that x is an element of the sequence element y is
defined as follows:
(definition (x in :: set y) var (x, y) where (y is sequence)
then (x in :: set y) :: atm);
(interpretation (x in :: set y) :: atm var (x, y) then f,),
where [f,, sp] = [z0 € o).
The element (z includes :: set y) specifying that the sequence element z includes the ele-
ments of the sequence element y is defined as follows:
(de finition (x includes :: set y) var (z, y)
where ((z is sequence) and (y is sequence)) then (x includes : set y) :: atm);
(interpretation (x includes :: set y) :: atm var (x, y) then f,),
where [f,, sp] = [if e € xo for each e; € yo] then true else und].
The element (attributes in x) specifying the sequence of attributes of the attribute element
x is defined as follows:
(definition (attributes in x) var (x) where (x is attribute)
then (attributes in x) :: atm);
(interpretation (attributes in x) :: atm var (x, y) then f,),
where [f, Sp] = (Qrg1s ey Qrgny) TOr To = (g1 1 VL1, ooy Qrgng © Vingg)-
The element (values in x) specifying the sequence of attribute values of the attribute element
x is defined as follows:
(de finition (values in x) var (x) where (x is attribute) then (values in x):: atm);
(interpretation (values in x) :: atm var (z, y) then f,),
where [f,, Sp] = (Vi1 -y Vingg) TOr To = (Arg1 = Vit ooy Qrgimgg © Vingg )-
The element (element in z) specifying the element of the sorted element x is defined as

follows:
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(definition (element in x) var (x) then (if x matches y::z var (y, z) then y:q)).
The element (sort in x) specifying the sort of the sorted element x is defined as follows:
(de finition (sort in x) var (x) then (if x matches y:: z var (y, z) then z:q)).
The element (attribute in x) specifying the attribute of the element update x is defined as
follows:
(de finition (attribute in z) var (x) then (if x matches y:z var (y, z) then y:: q)).
The element (value in x) specifying the value of the element update x is defined as follows:

(de finition (value in z) var (x) then (if x matches y:z var (y, z) then z:q)).
15.5. Boolean operations

The element true is defined as follows:
(de finition true then true : q).

The element (z and y) specifying the conjunction of z and y is defined as follows:
(definition (x and y) var (z, y) then (if x then y else und)).

The elements (x o, y), where o, € {or,=>, <=>} specifying the disjunction, implication
and equivalence of x and y are defined in the similar way.

The element (1 and x5 and ... and z,,) specifying the conjunction of x1, xs, ..., T,, is defined
as follows:
(de finition (x and y and z) var (x, y) seq (z) then ((z and y) and 2).

The element (z1 or x5 or ... or x,,) specifying the disjunction of x;, xs, ..., z,, is defined in
the similar way.

The element (not x) specifying the negation of x is defined as follows:

(de finition (not x) var (z) then (if z then und else true)).
15.6. Integers

The element 4, is defined as follows:
(definition x var (z) where (x is int) then x :: q) :: name : ("Q7 int).
The definition satisfies the property: ("@Q”, exception) <[o,,....] ("@",int).
The element (z + y) specifying the sum of z and y is defined as follows:
(definition (x + y) var (x, y) val (x, y)
where ((z :: % is int) and (y :: * is int)) then (x:x + y:%):atm);

(interpretation (xr + y)::atm var (x, y) then f,),
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where [f, sp] = [ro + ol
The elements (z o, y), where o, € {—, %, }, specifying the integer operations — and * are
defined in the similar way.
The element (z div y) specifying the quotient of x divided by y is defined as follows:
(definition (x div y) var (z, y) val (z, y)
where ((z:: % is int) and (y:: * is int) and (y:x = 0))
then (x % div y:: %) atm);
(interpretation (z div y) :: atm var (x, y) then f,),
where [f,, sp] = [z0 div yo).
The element (x mod y) specifying the integer operation mod is defined in the similar way.
The element (x < y) specifying that x is less than y is defined as follows:
(definition (x < y) var (x, y) val (x, y)
where ((z % is int) and (y == * is int)) then (z:x < y:x):atm);
(interpretation (x < y):atm var (z, y) then f,),
where [f, sp] = [r0 < wo)-
The elements (x o, y), where o, € {<=,>,>=}, specifying the integer relations <, > and

>, are defined in the similar way.
15.7. Conceptuals operations

The element (x in y) specifying the value of the conceptual z in the state y is defined as
follows:
(de finition (x in y) var (x, y)
where ((z is conceptual) and (z is state)) then (z in y) :: atm);
(interpretation (x in y):: atm var (z, y) then f,),
where [f, sp] = [yo %o)-
The element z :: state :: y specifying the value of the conceptual z in the substate with the
name y of the current configuration is defined as follows:
(definition x :: state ::y var (x, y) where (z is conceptual)
then (x in (conf ::q .. y)) x : state ::y :: atm);
(in x :: state :: y > atm var (z, y) then f,),
where (zg :: state 2 yo =2 atm, e # Cnf =45, €x F [[Cnf Yo] To] # Cny-

The element ¢, is a shortcut for ¢y 2 ().
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15.8. Countable concepts operations

A normal element ¢, is a countable concept in [c,f] if [[c,; countable—concept] (O :
Cnep.e)] € Ni. Thus, the substate countable—concept specifies countable concepts. Let Ciep.. be
a set of countable concepts. The element [[c, s countable—concept] (0 : ¢pepc)] is called an order
in [chep.cs Cnrl- Let Orgenep.c be a set of orders of countable concepts. An element 7y :: cc i Cpep.e
is called an instance in [cpepc]. An element ny :: cc t Cpep.e 1S an instance in [cpepe, Cng] if
1t < Ord.encp.c|Cnep.cs Cnf]-

The element (x is countable—concept) specifying that x is a countable concept is defined as
follows:

(de finition (x is countable—concept) var (z)
then (let w be ((enf .. countable—concept) .. (0:x)) in (w is int)).

The element 7 :: cc it ¢pep.c is defined by the rule:

(de finition x :: cc::y var (z, y) where ((x is int) and (y is countable—concept))

then x::cc:y:q).
15.9. Matching operations

The conditional pattern matching element e; of the form (if x matches y var z seq u then v
else w), where (y, z,u) is a pattern specification, is defined as follows:
(definition (if x matches y var z seq u then v else w) var (x, y, z, u, v, W)
where ((z is sequence) and (u is sequence) and (z includes :: set u))
then (if x matches y var z seq u then v else w) :: atm);
(interpretation (if x matches y var z seq u then v else w) :: atm
var (z, y, z, u, v, w) then f,),
where [value (if xg matches yo var zy seq ug then vy else wy) = atm Sy Cuyl, €1s # Cnf —>f.s,
[if [xo is an instance in [(yo, 2o, Uo), Me, Sp1] for some s;1] then [subst sp1 U (conf :in : cyy)
vo] else [subst (conf ::in : c,f) wol, e« # cnp. The objects x, y, z, u, v and w are called a
matched element, pattern, variable specification, sequence variable specification, then-branch
and else-branch in [e;]. The elements of z are called pattern variables in [e;]. The element ¢
executes the instance of the then-branch v in [sy4] if « is an instance in [y, s51]. Otherwise,
the element e; executes the else-branch w.
Let {4}, {05}, {Urs1} and {v,.2} are pairwise disjoint, and {v,.3} C {v,.} U{vs1} U

{vy«2}. The form (if e; matches p; var (v,..) seq (Vrsx) abn (V1) und (vy.2) val (v,.3) where
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Cna then e else e;) is defined as follows:

o (if e, matches py var (v,.) seq (Vy.s.s) und (Vy.1) abn (Vy.2) val (Vy.3) where c,q then e; 1
else e o) is a shortcut for (if e; matches p, var (v,..) seq (Vrs.) abn (Vy.1) und (v,42) val
(Ur3) then (if cpq then ey else €5 :: (nosubstexcept conf ::in)) else es);

o (if e; matches py var (vr.) seq (Upss) und (V1) abn (Vp.o) val (v,.3, v.) then ey else
er2) is a shortcut for (if e; matches p; var (v,.) seq (Ups.) und (vy.1) abn (vy.2) val
(Urx3) then (let w be v, in [subst (v, :: % : w) e;q]) else e2), where w is a new element
that does not occur in this definition;

o (if e, matches p, var (v..) seq (Vysx) und (Vy.1) abn (v..2) val () then ey else e o) is
a shortcut for (if e, matches p, var (v,..) seq (Vys.) und (V1) abn (v..2) then e, else
e12);

o (if e; matches py var (v..) seq (Vys.) und (Vys1, V) abn (v,.2) then by) is a shortcut for
(if e matches py var (v..) seq (Vys4) und (Vp.1) abn (V..2) then (if (v, is undefined)
then und else e; 1) else e5);

o (if e, matches p, var (v..) seq (Vrs.) und () abn (v..2) then ey else e;2) is a shortcut
for (if e; matches p; var (v,..) seq (Vrsx) abn (v,.2) then e else e;s);

o (if e, matches p; var (v,.) seq (Vy.s4) abn (Vp.2, v.) then e, else e;3) is a shortcut for
(if e, matches py var (v,.) seq (Vrs.) abn (vp.2) then (if (v, is abnormal) then v, else
er1) else ep2);

o (if e matches py var (v,..) seq (v.sx) abn () then e; else es) is a shortcut for

(if e matches p, var (v..) seq (V.s4) then e else e;3).

The element c¢,,4 specifies the restriction on the values of the pattern variables. The undefined
value is propagated through the variables of v,,;. Abnormal values are propagated through
the variables of v, 5. The special element v, :: * references to the value of element associated
with the pattern variable v,. A pattern variable is evaluated if the element associated with it
is evaluated. Thus, the sequence v, , 3 contains evaluated pattern variables. A pattern variable
is quoted if the element associated with it is not evaluated.

The objects var (v,.), seq (Vr.sx), und (Vy41), abn (vVy.2), val (v..3), where c,q and else €5
in this form can be omitted. The omitted objects correspond to var (), seq (), und (), abn (),
val (), where true and else skip, respectively.

The form (e, matches p, var (v,..) seq (Vrsx) und (Vps1) abn (Vy40) val (V..3) where c,q) is

a shortcut for (if e, matches p; var (v,..) seq (Vy.s.) und (Vy1) abn (Vy.2) val (V..3) where cpq
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then true else und). The objects var (v..), seq (Vrs.s), und (Vy.1), abn (Vy4.2), val (v,..3) and

where cpq in this form can be omitted. The omitted objects correspond to var (), seq (), und (),

abn (), val () and where true, respectively.

15.10. Configurations operations

The element conf :: cur specifying the current configuration is defined as follows:

(de finition conf :: cur then conf :: cur :: atm);

(interpretation conf :: cur :: atm then f,),

where [f,, sp] = Cns.

16. Justification of requirements

for conceptual configuration systems

In this section, we establish that CCSs meet the requirements stated in section 1:

1.

The formalism must model the conceptual structure of states and state objects of the
IQS. The conceptual structure of states of the IQS is modelled by elements (attributes,
concepts, individuals) and, in more detail, usual and generic conceptuals of conceptual

configurations.

. The formalism must model the content of the conceptual structure. The content of the

conceptual structure is modelled by conceptual configurations.

. The formalism must model information queries, information query objects, answers and

answer objects of the IQ)S. Information queries, information query objects, answers and

answer objects of the IQS are modelled by elements of the CCS.

. The formalism must model the interpretation function of the IQS. The interpretation

function of the IQS is modelled by the interpretation function value of the CCS.

. The formalism must be quite universal to model typical ontological elements. Models of

typical ontological elements is presented in sections 6-10, 12 and 13.

. The formalism must provide a quite complete classification of ontological elements, in-

cluding the determination of their new kinds and subkinds with arbitrary conceptual gran-
ularity. Classification of ontological elements based on the two-level scheme is presented

in section 11. The arbitrary conceptual granularity is provided by conceptuals.

. The model of the interpretation function must be extensible. The model of the interpre-

tation function of the IQS is extended by addition of element definitions.
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8. The formalism must have language support. The language associated with the formalism
must define syntactic representations of models of states, state objects, queries, query
objects, answers and answer objects and includes the set of predefined basic query models.
The CCSL language associated with CCSs defines syntactic representations of models of
states, state objects, queries, query objects, answers and answer objects and includes the

set of predefined basic query models.

Thus, the requirements are met for CCSs.

17. Comparison of conceptual configuration systems

with abstract state machines

Abstract state machines (ASMs) [3, 4] are the special kind of transition systems in which
states are algebraic systems. They are a formalism for abstract unified modelling of computer
systems. We compare CCSs with ASMs, based on the requirements stated in section 1:

1. The formalism models the conceptual structure of states of the I1QS. The conceptual struc-
ture of states of the IQS is modelled by the appropriate choice of symbols of the signature
of an algebraic system. Thus, both ASMs and CCSs model the conceptual structure of
states of the IQS, but CCSs make it by more natural ontological way.

2. The formalism models the content of the conceptual structure. The content of the con-
ceptual structure is modelled by the interpretation of signature symbols in a particular
state.

3. The formalism must model information queries, information query objects, answers and
answer objects of the IQ)S. Information queries and information query objects of the 1QS
are modelled by terms, and answers and answer objects of the IQS are modelled by values
of the terms. The element-based representation in CCSs is reacher than the term-based
representation in ASMs.

4. The formalism must model the interpretation function of the 1QS. The interpretation
function of the IQS are modelled by the term interpretation function that is simpler than
the element interpretation function in CCSs.

5. The formalism s quite universal to model typical ontological elements. In contrast to
CCSs, typical ontological elements are not naturally modelled by ASMs.

6. The formalism provides a quite complete classification of ontological elements, including

the determination of their new kinds and subkinds with arbitrary conceptual granularity.
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In contrast to CCSs, ASMs do not allow to classify naturally ontological elements and
define their new kinds and subkinds with arbitrary conceptual granularity.

7. The model of the interpretation function must be extensible. The model of the interpre-
tation function can not be directly extended in ASMs.

8. The formalism must have language support. There are two languages AsmL [5] and XasM
[6] for specification of ASMs. The AsmL language is more expressive than CTSL. It is
fully integrated into the Microsoft .NET environment and uses XML and Word for literate
specifications. XASM realizes a component-based modularization concept based on the

notion of external functions as defined in ASMs.

18. Conclusion

In the paper two formalisms (information query systems and conceptual configuration sys-
tems) for abstract unified modelling of the artifacts of the conceptual design of closed infor-
mation systems have been proposed. The basic definitions of the theory of CCSs have been
given. The classification and interpretation of elements of such conceptual structures of CCSs
as conceptuals, conceptual states, conceptual configurations, concepts and attributes has been
presented. The classification of ontological elements based on these conceptual structures has

been described. A language of CCSs has been defined.

The feature of conceptual design for closed information systems based on conceptual con-
figuration systems is that they allow us to describe the conceptual structure of states of the
information systems in detail. We plan to extend this formalism to describe both states and
state transitions in detail and apply it for conceptual design of wider class of information

systems.
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