System Informatics (Cucremuas mndopmaruka), No. 8 (2016) 1

VIIK 004.052, 519.179.2

A Verification Method for a Family of Multi-agent
Systems of Ambiguity Resolution»

Natalia Garanina (A.P. Ershov Institute of Informatics Systems),
FElena Sidorova (A.P. Ershov Institute of Informatics Systems)

In the paper we describe a verification method for families of distributed systems gen-
erated by context-sensitive network grammar of a special kind. The method is based on
model checking technique and abstraction. A representative model depends on a specifi-
cation grammar for family of systems. This model simulates a behavior of the systems
in such a way that properties which hold for the representative model are satisfied for all
these systems. We show using this method for verification of some properties of multiagent
system for resolution of context-dependent ambiguities in ontology population.

Keywords: model checking, context-sensitive network grammar, multi-agent systems,

abstraction

1. Introduction

The motivation of our work is the ambiguity resolution problem in the frame of ontology
population from natural language texts. In [6] we describe text analysis algorithms producing
a system of information agents. But features of natural language cause ontology population
ambiguities, which these agents have to resolve. We proposed to evaluate the cardinality of
agents’ contexts, i.e. how much an agent is related with the other agents of the resulting system
via the information contained in it, and to mark the agents the most integrated in the text.
We developed an ambiguity resolution algorithm [5], removing the less integrated agents from
the system.

All agents in parallel perform rather complicate protocols with periodic local synchroniza-
tions. Hence, it is reasonable to use formal verification methods for proving correctness of the
algorithm. We choose model checking technique for a particular multi-agent system. We verify
rather specific multi-agent system of conflict resolution. The works on multi-agent systems
usually focus on the behavior of agents, methods of communication between agents, knowledge
and belief of an agent about environment and other agents, etc [4, 9]. Works about conflict

resolution process usually consider the process in terms of the behavior of the agent depending

2 Garanina N.O., Sidorova E.A. A Verification Method for a Family of Multi-agent Systems of Ambiguity Resolution

on its internal state, reasoning and argumentation methods etc. [8]. The dynamics of the agents
connections is not a subject of these researches. There are papers related to the dynamics of
weighted connections, but they are not the typed and their changes does not affect the internals
of the agent [7]. On the other hand there are works on the study of social networks, in which
the agents are connected by the typed connections, but their weight does not matter [1]. To the
best of our knowledge, there are no works on model checking for a conflict resolution algorithm

of the suggested type.

Model checking technique is widely used for verification of distributed and multiagent sys-
tems [2]. In our case we would like to verify not a particular agent network, but infinite family
of such systems. For verification of infinite network families the model checking method was
suggested in [3]. This method is based on using a context-free network grammar generating
families of distributed systems, and on abstraction by finite automata. The idea of the method
is to construct an invariant network based on a given grammar. This invariant simulates be-
havior of all systems in the family and is consistent with abstract functions associated with
properties to be verified which are expressed by branching time logic VC'T'L. Due to consistent
simulation, properties holding for the representative invariant also holds for all systems in the
family. But authors studied context-free grammars only, while our model of the multiagent
system is generated by a context-sensitive grammar of a special kind. In the paper we define
such network grammar by adding notions of a quasi-terminal and a merging operator to the
standard definition. We show that this verification method still can be used for network families

generated by the new grammar.

The rest of the paper is organized as follows. The next section 2 gives base definitions.
Section 3 presents results on a new merging operator, used in our context-sensitive network
grammar. Section 4 describes using our method for the multiagent system of ambiguity reso-

lution. We conclude in the last section 5 with a discussion of further research.

Acknowledgments. The research has been supported by Russian Foundation for Basic
Research (grant 15-07-04144) and Siberian Branch of Russian Academy of Science (Integra-
tion Grant n.15/10 “Mathematical and Methodological Aspects of Intellectual Information Sys-

tems”).

2. Base Definitions

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 3

Let us give necessary definitions from [3] in a modified form. Modification concerns a merging

operator and quasi-terminals in a network grammar.

Definition 1.
A Labeled Transition System (LTS) is a structure M = (S, R, ACT, Sy), where
e S is the set of states,
e 55 C S is the set of initial states,
e ACT is the set of actions, and
e R C SxACT x S is the total transition relation, such that for every s € S there is action
a and state s’ for which (s,a,s’) € R (denote as s —).

Let Lacr be the class of LTSs whose set of actions is a subset of ACT. Let L(sacr)
be the class of LTSs whose state set is a subset of S and whose action set is the subset of
ACT. Let ACTy,ACTy, C ACT. Let we are given two LTSs M; = (S, Ry, ACTy, S}) and
My = (Sy, Ry, AC'T5, S2) in the class Lacr.

Definition 2.
A function ||: Lacr X Lact — Lacr is called a composition function iff My || My has the form
(S1 x Sy, R, ACTy U ACTy, S} x S2).

A function U : Lacr X Lact — Lacr is called a merging function ifft My U M, has the form

(S, U Sy, R, ACT, U ACTy, St U S2).

The definition of R’ depends upon the exact semantics of the composition and merging function.

Let S® be words of length i with S as the alphabet.

Definition 3.

Given a state set S and a set of actions ACT, any subset of [J;2, L(si,act) is called a network
on the tuple (S, ACT).

We give a definition of a context-sensitive network grammar with quasi-terminals (CSNQ-
grammar) to describe networks, which is the modified definition of a context-free network
grammar from [3]. The set of all LTSs derived by a network grammar forms a network which
is an LTS also. Let S be a state set and ACT be a set of actions. CSNQ-grammar G =
(T, Qt,t, N, P,S) is a grammar, where

e T is a set of terminals, each of which is an LTS in Lgacr), these LTSs are sometimes

referred to as basic processes,

4 Garanina N.O., Sidorova E.A. A Verification Method for a Family of Multi-agent Systems of Ambiguity Resolution

e Q1 is a set of quasi-terminals, each of which is an LTS in L(g acT), their merging gives an
LTS,
e a mapping t : Qt — T associates quasi-terminals to terminals,
e /V is a set of nonterminals, each nonterminal defines a network,
e P is a set of production rules of the following forms:
—A — B |; C, where A € N, and B,C € TUQtU N, and ||; is a composition
function.
—{A1, .. A} — t(A) U . Ui t(Ay), where A € Qt, and U; is a merging function.
e S € N represents the network generated by the grammar.
Note, that this grammar is context-free with respect to composition functions and context-
sensitive with respect to merging functions.
In order to express properties of a model composed from finite, but unspecified number of

LTSs, we define a finite automaton on alphabet S.

Definition 4.

D = (Q,qo, 6, F) is a deterministic automaton over S, where

e () is the set of automaton states,

® ¢y € () is the initial state,

e C (@ xS x (@ is the transition relation,

o I C () is the set of accepting states, and

e (D) C S* is the set of words accepted by D.
We use finite automata over S for specification of atomic state properties. Let D be an automa-
ton over S. State s satisfies D (s = D) iff s € L(D). A specification language is a universal
branching temporal logic VCT'L [3| with finite automata over S as the atomic formulas. Syn-
tax of VCT'L consists of formulas that are composed of Boolean constants, atomic formulas,
connectives =, V, A, and branching time modalities AXp, AGy, and p AUy with standard
semantics.

Recall definitions for abstract LTS from [3]. For the simplicity, here the specification lan-
guage contains a single atomic formula D. Given an automaton D = (Q, qo,d, F)) and a word
w € S* the function induced by w on Q, f, : Q — @Q, is defined by f,(q) = ¢ iff ¢ — ¢. Note
that w € L(D) if and only if f,(q0) € F. Two states s and s are equivalent s = §" iff f; = fl.
The function fs is called the abstraction of s and is denoted by h(s). Relation |= is extended
to abstract states: h(s) = D iff fs(q) € F. Hence s = D iff h(s) E D.

System Informatics (Cucremuas nudopmaruka), No. 8 (2016))

Let Fp be the set of functions corresponding to the deterministic automaton D. The ab-
straction function h extended to Fp is defined by h(f) = f for f € Fp and extension the
function h to (SU Fp) is h((ay, as, ..., a,)) = h(ay) o ... o h(a,). From now on we consider LTSs

in the network N on the tuple (S U Fp, ACT).

Definition 5. (of abstract LTS)
Given an LTS M = (S%, R, ACT, Sy) in the network N, the corresponding abstract LTS is
defined by h(M) = (S", R" ACT, S&), where
o S" = {h(s)|s € S’} is the set of abstract states,
o Sh = {h(s)|s € Sp}, and
e the relation R" is defined as follows. For any hy, hy € S", and a € ACT:
(hi,a,hy) € R" < 3sy, s9lhy = h(s1) A hy = h(s2) A (81,0, 82) € R).

M’ simulates M (denoted M =< M’) iff there is a simulation preorder £ C Sx S5’ ((s,5') € £
denoted s < s’) that satisfies the following conditions: for every sy € Sy there is s, € S such
that sg < 5. For every s,¢', if s < ¢’ then

e h(s) = h(s'), and

e for every s; such that s —— s; there is s} such that s’ — s} and s; < s/.
3. The Merging Operator in the Verification Framework

The first two propositions of the following lemma were proved in [3], the last is proved below:

Lemma 1.
1. M < h(M), i.e., h(M) simulates M.
2.1f M < M’, then h(M) < h(M’).
3. MUM' < h(M)Uh(M)
Proof of (3) is obvious: M UM’" < h(M U M’) due to (1), and h(M U M') = h(M)Uh(M").00
The following theorem about satisfiability of properties in an LTS and its simulator was

proved in [3| and holds for our new framework.

Theorem 1.
Let ¢ be a formula in VCT'L over the atomic formula D. Let M and M’ be two LTSs such that
M < M'. Let s < ¢. Then s’ = ¢ implies s = ¢.

6 Garanina N.O., Sidorova E.A. A Verification Method for a Family of Multi-agent Systems of Ambiguity Resolution

Definition 6.
A merging or composition operator ® € {U, ||} is called monotonic with respect to a simulation
preorder = if and only if given LTSs such that M; < M, and M| < M/, we have that M, e M| <
M, e M. A network grammar G is called monotonic if and only if all rules in the grammar use

only monotonic composition and merging operators.

We modify a synchronous framework from [3| with results for the merging operator. Let
models be a form of LTSs, Moore machines M = (S, R, I, O, Sy) such that inputs I and outputs
O must be disjoint. In addition, they have a special internal action denoted by 7. The set of
actions is ACT = {7} U 29 where each noninternal action is a set of inputs and outputs. A
transition s — ¢ from s in a machine M with a = i U o such that ¢ C I and 0 C O occurs only
if the environment supplies inputs ¢ and the machine M produces the outputs o.

Naturally, for the merging operator inputs and outputs of merging machines must be disjoint
also. Let INO’' = and O NI = (. The merging of M and M’, M" = M U M’ is defined by

oS =5SUy5,

e S;) = SpUS,

e/"=1TUIand O" =0UCO, and

o s’ s/ is a transition in R” iff the following holds: s” — s/ is a transition in R and

/
a . o . .
s" — s is a transition in R’ for some a,a’ such that «” = a or ¢ = a'.

Lemma 2.

The merging U is monotonic with respect to <.

Proof. Let M = (S,R,1,0,S5), My = (S1,R1,1;,01,510), M' = (S", R, I',0’, S}), M| =
(51, Ry, 11, 01,81) be four Moore machines. Assume that M =< M; and M' <X M. Let
E C S xS and E' C S x S| be the corresponding simulation relations. We prove that
MUM' < M, UM,.

We say that (s”,s]) € E" iff (s",s]) € E or (s",s]) € E'. We show that E” has the
required properties. It is clear from the definition that given state sy € Sy U S, there exists
50,1 € So,1 U S} such that (so,s01) € EUE'.

Assume that (s,s1) € EUE'".

(1) By assumption, we have that h(s) = h(s;).
(2) Let s " t be a transition in M UM’. This means that there exists transition s —% ¢ in M

or transition s — ¢ in M’ such that ¢” = a or a” = o’. By definition there exists t; € S; U St

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 7

such that s; — t; or $; N t1, where (t,t1) € E or (t,t;) € E'. Therefore, s; AN t; and
(t,t1) € E”. The proof is thus complete. O

The notion of a representative give us a way to construct a simulation invariant. Given a
CSNQ-grammar G, we associate with each symbol A of the grammar a representative process
rep(A). Let us adopt the definition of a monotonicity property for a set of representative

processes of CSNQ-grammar:
e for every terminal and quasi-terminal A: h(rep(A)) = h(A), and
o for every rule A — B || C: h(rep(A)) = h(h(rep(B)) || h(rep(C))).
We extend the proof of the following theorem on context-free network grammar from [3| to

CSNQ-grammars:

Theorem 2.
Let G be a monotonic grammar and suppose we can find representatives for the symbols of G
that satisfy the monotonicity property. Let A be a symbol of the grammar G, and let a be an
LTS derived from A using the rules of the grammar G. Then, h(rep(A)) = a.

Proof. We prove that h(rep(A)) > h(a). Since h(a) = a, the result follows by transitivity. Let
A =% a, ie., Aderives a in k steps. Induction on k.
(k =0) Proved in [3].
(k = 1) In the case A, B are quasi-terminals in a rule A, B — t(A)Ut(B) and a = t(A) Ut(B).
The result follows from the monotonicity property and Lemma 1.

(k> 1) Proved in [3]. O

Verification method is exactly the same as in [3]. Assume that we are given monotonic
grammar G and VCT'L formula ¢ with atomic formulas Dy, ..., Dy. To check that every LTS

derived by the grammar G satisfies ¢ we perform the following steps:

1. For every symbol A in G choose representative process rep(A) and construct the abstract
LTS h(rep(A)) with respect to the formulas Dy, ..., Dy.

2. Check that the set of representatives satisfies the monotonicity property. Theorem 2
implies that for every a derived by the grammar G, h(rep(S)) = a.

3. Perform model checking on h(rep(S)) with specification ¢. By Theorem 1, if h(rep(S)) =
¢, then for all LTSs M derived by the grammar G, M = .

For finding monotonic representatives we could use an algorithm from [3] setting {t(A)} as an

initial representative association set of every quasi-terminal A.

8 Garanina N.O., Sidorova E.A. A Verification Method for a Family of Multi-agent Systems of Ambiguity Resolution

4. Verification of Multiagent Ambiguity Resolution

A detailed description of the multiagent algorithm for ambiguity resolution in ontology pop-
ulation is given in [5]. In this paper we sketch a communication structure without considering
agents’ actions on message processing.

Let a set of information agents be given. Some of agents are in a conflict corresponding to
some ambiguity. An agent-master constructs a conflict-free set of information agents taking into
account integration of conflict agents in the system. This integration is evaluated by computing
weights and conflict weights of the agents. A conflict is resolved by removing a weak agent from
the system. The agent-master performs the main protocol of constructing the conflict-free set,
while the information agents perform protocols of computing their weights.

Every information agent is connected with the master by two-way channel. Information
agents are linked with others by labeled connections of two types corresponding their conflict
reaction: removing (rem-type) and updating (upd-type). Every labeled connection is acyclic.
Processing of every conflict reaction induced by specified connection is considered to be certain
base process. An information agent can be union of such processes. This fact specifies a
form of a grammar generating family of our multiagent systems for various number of agents
connected in various ways. Agents are connected by two-way channels corresponding to these
labeled connections. This structure of multiagent network is generated by the following context-
sensitive grammar with quasi-terminals G = (T, Qt,t, N, P,S). Let a set of connections be
C ={c1,...,c,} and ¢! be a connection having conflict type k € {rem, del}.

e terminals 7' = {master} U{J;_,{root;, inter;, leaf;} Uvrtxs', and vrtzs' = {vrtz | vrtx =
inter; or vrtz = leaf;, j € [1..n|} and |vrtzs'| =i,
e quasi-terminals Qt = J!_ {INTER;, LEAF;},
e associate mapping t : Qt — T is defined by t(INTER;) = inter;, and t(LEAF;) = leaf;
for every i € [1..n],
e nonterminals N = {S}J_,{ROOT;, SUB;};
e set of production rules P for every i € [1..n]:
1. S — master ||, ROOT) || - .. ||m ROOT,
2. ROOT; — (ROOT; ||+ SUB;) \/(root; || SUB;)
3.5UB; — (SUB; Hcf SUB;)V(INTER,; ”af‘ SUB;)
(SUB; ||c§ LEAF;)\/(INTER; Hcf LEAF;)\
(inter; || SUB;) V(SUB; || & leafi)

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 9

(inter; || o LEAF;) VUNTER; || leaf;) \ (inter; || & leaf;)
4.{V1,.. Vit — tVi) U ... Ut(V,,) = vrta™, where for every j € [l.m]| V; €
{INTER,;, LEAF;}, and if V; = INTER, then for every [€ [1..m] holds V; # LEAF;

(i € [1..n]).
Parallel composition of agent-processes is synchronous. Protocols for computing weights and
conflict weights are highly parallel. Hence it is very important to prove that they terminate
and are synchronized properly. Satisfiability of these properties is necessary for correctness of

weight computing. Launch of these computing could be modeled by sending tokens.
Every base process is defined by the following state variables:

e Name : int is a name of the process;

e Channel: set of {name : int; ¢_type : bool; dir : bool; agn : int; rmuvd : bool}, where
name is a label of a connection, ¢_type is its type, dir is a direction: a child (dir = 0)
or a parent (dir = 1) named agn, and rmuvd is an absence status;

e Rmud : bool is an absence status;

e Active : bool is an activity status;

e WasActive : bool is a previous activity status.

In synchronous composition of base processes with different names the corresponding channels
of the same name must connect. In merging of processes with the same Name sets of channels
and sets of C'hannel join. Processes with different names cannot be merged and processes with
the same Name cannot be composed in parallel. Values of above variables define states of a base
process. Its input and output channels correspond to names, types and directions of Channel.
Transitions are defined by sending and receiving tokens through the channels. The initial state
is (Channel,0,0,0), where Channel is a nonempty set of channels with Channel.rmvd = 0,
and a number of channels with dir = 1 does not exceed 1 and a number of channels with

dir = 0 can be equal to 0.

We would like to verify the following properties expressed by YCT L. For the protocol of
parallel weight computing: AF({wasActive}* N AXAF{-Active}*) (every agent was active,
and then all computation will be terminated). For the protocol of conflict weight computing:
AF{-Active}* (all computation will be terminated); AG{Not2Rmuvd}* (Channels and agents
cannot be removed twice). For every atomic formula we construct a finite deterministic au-
tomaton. They are a base for abstract functions for states of our systems. Then we should

construct a set of consistent representatives for symbols of our grammar. This technique is not

10 Garanina N.O., Sidorova E.A. A Verification Method for a Family of Multi-agent Systems of Ambiguity Resolution

present here.

5. Conclusion

In the paper we present the verification method for families of distributed systems specified
by a context-sensitive grammar with quasi-terminals. This method can be used for verification
of the multi-agent system of ambiguity resolution in ontology population. Properties of the
system are expressed by VCT L-formulas.

In the near future we plan to implement the suggested method using model checking tool
SPIN and give formal proofs of correctness of the ambiguity resolution algorithm. But some
properties concerning agent interaction cannot be expressed easily in this framework. This fact
is a reason for trying other more expressive formalisms for properties. Other research direction

is to extend the method for other types of context-sensitive grammars.

Crmmcok aurepaTyphbl

1. Bergenti F., Franchi E., Poggi A. Selected models for agent-based simulation of social networks //
In: Procs. 3rd Symposium on Social Networks and Multiagent Systems (SNAMAS 2011) 2011, pp.
27-32.

2. Clarke E.M., Grumberg O., Peled D. Model Checking. MIT Press, 1999.

3. Clarke E.M., Grumberg O., Jha S. Verifying Parameterized Networks // In: ACM Transactions
on Programming Languages and Systems, Vol. 19, No. 5, September 1997. Pages 726-750.

4. Fagin R., Halpern J.Y., Moses Y., Vardi M.Y. Reasoning about Knowledge. MIT Press, 1995.
Garanina N., Sidorova E. An Approach to Ambiguity Resolution for Ontology Population // Proc.
of the 24th International Workshop on CS&P. Rzeszow, Poland, Sep. 28-30, 2015. — University of
Rzeszow, 2015, Vol. 1, pp 134-145.

6. Garanina N. O., Sidorova E. A. Ontology Population as Algebraic Information System Processing
Based on Multi-agent Natural Language Text Analysis Algorithms//Programming and Computer
Software, 2015, V. 41, n.3, pp. 140-148.

7. De Gennaro M.C., Jadbabaie, A. Decentralized Control of Connectivity for Multi-Agent Systems
// In: Proc. of 45th IEEE Conference on Decision and Control, pp. 3628 - 3633.

8. Huhns M. N., Stephens L. M. Multiagent Systems and Societies of Agents // In: Multiagent
Systems, MIT Press, 1999 pp. 79-120.

9. Wooldridge, M. An Introduction to Multiagent Systems. Willey&Sons Ltd, 2002.

System Informatics (Cucremuas nnpopmaruka), No. 8 (2016) 11

VY JIK 004.415.53

Bepudukanus npomMbIllJICHHbIX aJITOPUTMOB YIIPABJICHUSA
metoaoM Model checking B coueTanum ¢ KoHuenuuen

BUPTYAJIbHbIX 00bEKTOB YIIPABJICHHUS

JIax T.B. (Mncmumym asmomamuku u 2n1exkmpomempuu CO PAH,
Hosocubupckuii cocyoapcmeenmwiil ynusepcumem),
3w6un B.E. (Mucmumym asmomamuxu u s1exkmpomempuu CO PAH,

Hoesocubupcxuii cocyoapcmeennwiii yuugepcumem,)

Ha ceropssuHuii neHb TeKylas IIpakTUKa IPOMBIIIIEHHOW aBTOMATH3alUU TaKOBa, 4YTO
TECTHPOBAHKE YMPABISIONINX AITOPUTMOB B MOJABIISIONIEM OOJIBIIMHCTBE CIIy4acB HAYMHACTCS
Tonbko mpu 3amycke I[IO Ha peanbHOM oObekTe. B pesynbrare mpoBepka anropurma
OTKJIafbIBaeTCA O 3Tala IyCKO-HalaJouHBIX paboT Ha oOBbeKTe aBTOMaru3auuu. B crarbe
HNpEMIOKEH IOAXOA K TECTUPOBAHUIO AJITOPUTMOB YIIPABIEHUS HAa OCHOBE KOHLENLUU
BUPTYaJbHBIX OOBEKTOB ympaBieHus. Jlng rapaHTud, 4YTO QJITOPUTM YIIpaBJICHUS
YIIOBIETBOPSET TOJHOCTHIO HAKIAJbIBAEMBIM Ha HEro TpeOOBaHWSIMHU, HCIOJB3YETCS METOJ

Bepudukaiuu Model checking.

Kniroueswie cnosa: AJZBOPMWIMbl ynpaejieHus, npoMblUIEHHAA asmomMamusayust, npoyecc-

OpUEHMUPOBAHHOE npocpammuposanue, a3vik Reflex, eepucpuxayus, Model checking..
1. BBenenue

Ha cerognsamnui 1eHb TeKyIlas MIPaKTUKa IIPOMBIIIJICHHON aBTOMATHU3alUu IIPEII0JIaraeT, YTo
aBTOMAaTU3MPOBAHHBIE CHCTEMBI YIPABJIECHUS CO3AAIOTCA MCKIIOYMTENBbHO Ha 0aze 1u@poBoit
TEXHUKM B BHUJEC IPOrPAMMHO-ANIAPATHBIX KOMIUIEKCOB. [Ipy 3TOM Ha COBpPEMEHHOM »JTame
HaOJto1aeTCcsl yeTKas TeHAEHLUS K YCJIOXKHEHHUIO MPOrpaMMHON COCTaBISIOLIEH TaKUX CHCTEM,
MOBBIIIEHUIO €€ (PYHKIMOHATIBLHOCTH U OOLIEH TPYyHIOeMKOCTH ee peann3auuu. Poct 3HaunMocTu
IPOrpaMMHOr0 obOecredeHus] B O0JIACTH MPOMBIIIICHHONH aBTOMaTHU3allid, BBICOKAas CTOMMOCTb
JIOTUYECKUX OMIMOOK B MPOrpaMMax JaBHO YK€ HaXOASATCS B IPOTUBOPEUHH C TEKYLIEH MpaKTUKON
pa3paboTKK YHpaBISIOIUX MporpamMMm, KOTOpas BeIeTcs B paMKax BOJONAJHON MOJENIH.
TectupoBaHue ynpaBiSOIUX aITOPUTMOB B MOJABIAIONIEM OOJIBIIMHCTBE CIyyaeB HauyMHAeTCs

tonpko mpu 3amycke [IO Ha peanbHOM o0bekTe. B pesynpTare mnpoBepka ajropurMa

12 JIax T.B., 3106un B.E.. Bepudukanus MpoOMBIIIECHHBIX aJITOPUTMOB yripaBieHus metoaoM Model checking ...

OTKJIaJbIBA€TCS J0 ATala MyCKO-HaJaJ04YHbIX paboT Ha 0ObEeKTe aBTOMAaTH3aluK. Takas MpakTUKa
YypeBaTa BEICOKMMH PUCKAMU, HEIITATHBIMU CUTYAI[USIMU WK JTa)Ke aBapUsIMU Ha OOBEKTE.

Jlis perieHust mpoOJIeMbl TECTUPOBAHUS YIIPABISIONIUX aIrOPUTMOB B THCTHTYTE aBTOMAaTUKH U
anektpomerpun CO PAH Obuta mpenokeHa KOHIEHIUS BUPTYAIbHBIX OOBEKTOB YIPaBICHUS
(BOY) — mporpaMMHBIX HMMHUTAaTOPOB aBTOMATHU3HPYEMOIO TEXHHYECKOTO IIpolecca, co
CBOMCTBaMH, CXOXXHUMHU CO CBOHcCTBaMu Mojaenupyemoro oObekta [1]. Kom BOY (Puc. 1)
WCIIOJTHSCTCS. HE3aBUCMMO OT airopuTMma ympasieHus (AY), co3maBaeMoro paspaboTUHKOM.
YHudunupoBanaeli 0OMeH AaHHBIMH Mexay BOY u anroputmom ympaBiieHHs oOecrieuyuBaeT
COXpaHEHHE CBfA3€H MpU HU3MEHEHHWU airoputMa. Takod MOAXOA TMO3BOJHI HCIOJIb30BATh

HUTCPALIMOHHYIO MOJC/Ib pa3pa60TK1/1 M OTJIAXUBATH KO AJITOpHUTMA YIpPaBJICHUA 0 IOTalla IIyCKa-

HaJIaJIKH.
OTtnanka
B3aHMO-
= AY AeiicT BUA BOVY P
(> =| avuBoOv [& N
=
= |
6K v Om udxu BOY,
i Omubxun AY, Fm Cﬂ % : : 7
HJIH €T0 pa3BUTHE HJIH €r0 Pa3BUTHE

Puc. 1. Utepanonnas Mojenb pa3padoTKu anropuTMa yrpasieHus (AY) ¢ UCToIb30BaHUEM
BUPTYyaJIbHOTO 00beKTa ynpasienus (BOY)

bruto coznano I1O Ha 6aze cpenst LabVIEW, koTopoe no3Bonniio 3amyckaTb 0JJHOBPEMEHHO U
tectupoBath BOY u AY, umutupys 0OMeH 1aHHBIMU U BHEIIHUE COOBITHA [2], ¥ C IIOMOUIbIO HETO
ObUT OTJIAXKEH AJITOPUTM YIpaBieHUS BOJIbIINM COTHEUHBIM BAKYYMHBIM TEJIECKOIIOM.

Onnako B mporiecce paboThl ObLT BHISIBIICH Psii HEIOCTATKOB TAKOTO MOAX0/a. DTH HEJOCTATKU
CBSI3aHBl C TEM, YTO TECTUPOBaHHE He OOEeCIeYrBaeT TIOJHOTY IOKPHITUS TEeCTaMH BCeil
(YHKIMOHATIBHOCTH JITOPUTMA. TakkKe MpU TaKOM IOAXO0Je MHOXECTBO ONepalnuil MpruxoauiIoch
BBITIOJIHATH BPYUHYIO OIIEpaTopy.

DTO0 pacTArUBaJIO MPOLECC TECTUPOBAHUE U YBEIUYMBAIO BO3MOKHOCTh MTPOIMYIIEHHBIX OIIHOO0K
U HEHUCCJIEIOBAaHHBIX MOBEACHUN alropuTMa ynpasieHus. [loaTomy A aBTOMaTu3anuy NpoBEPKU
aJIrOpUTMa YNpaBJeHUs ObUIO MPeJUIOKEHO BOCMOJb30BaThes moaxogoM Model chescking. Otor
MOJIXOJT XOpOILIO ceOsl 3apeKOMEHI0Bal MpU BepU(PHUKANN PEAUTHUPYIOIINX CHCTEM, T.€. CHCTEM,
B3aUMOJICHCTBYIOIINX C OKpykeHweMm. Ha mannpiii momeHT moaxoa Model checking axktuBHO

Pa3sBUBACTCA.

System Informatics (Cucremuas nnpopmaruka), No. 8 (2016) 13

B cratbe paccmarpuBarOTCs OCOOCHHOCTHM Pa3pabOTKW YIPABISIONIMX — alrOPUTMOB
IMPOMBIIIJICHHOI'O YPOBHA, HCCICAYIOTCA HpO6JIeMBI TCCTUPOBAHUA AJITOPUTMOB YIPABJICHUA B
HpI/I60pOCTp06HI/II/I, OIMUCBIBACTCA MOAXOJ K TCCTHUPOBAHUIO AJITOPUTMOB YIPABJICHUSA HAa OCHOBC
KOHIICTIIIMM ~ BUPTYaJIbHBIX OOBEKTOB ympaBiecHus. [IpeiokeH crmocod aBTOMaTH3aIUU

tectupoBanus AY ¢ ucnons3oBanreM moaxoaa Model checking [3].

2. Cnenuduka pazpadoTKu aJropuTMOB YNIPABJIEHUS U

npeumymecTa si3bika Reflex

3amaun aBTOMAaTU3allMd UMEIOT PSAJl XapaKTEepPHBIX OcoOeHHocTed, u moTtoMy Ha I1O u sA3bIKK
MIPOrPaMMHUPOBAHUS, KOTOPBIE HCIIOJIB3YIOTCS B pa3paboTke AY, HaKIaIbpIBaeTCs Pl OCOOBIX
TpeboBanuii. [lockonbpKy cucteMa yrnpaBieHHs BO3ACHCTBYET HA OOBEKT YIPaBICHUS Yepe3 OpraHbl
yIpaBJICHUS U pearupyeT coObITUS Ha 00BEKTE TaK, KaK 3TO OMPEENICHO B AITOPUTME YIIPABICHUS,
OT YIPABISIONIETO AITOpPUTMa TPeOyeTcs NHUKINYHOCTh: OH CUMTHIBACT BXOJHBIC CHUTHAIBI,
oOpabateiBaeT U (POPMHUPYET BBIXOJHBIC CUTHAIBL. OT aJIrOpUTMa TaKKe TPEOYeTCsl aJIeKBaTHOCTh
peakIuy 10 BPEMEHH COOBITHSM Ha OOBEKTE, T.C. CHHXPOHHU3AIMSA HCIIOTHEHHUS alTOpUTMa C
¢dbu3nyecKUMHU TMpoleccaMd BO BHemIHeW cpene. [lockonbky Ha OOBEKTE YIpaBICHHUS 3a4acTyIo
MHOKECTBO TPOIIECCOB BO3HUKAIOT M IPOTEKAIOT OJHOBPEMEHHO, TpeOyeTcsi, 4TOOBI CpelCcTBa
pa3paboTKH MPEIOCTABIISII BO3MOXXHOCTh 00€CIIEYHTh JIOTHICCKHN MapajljIelIi3M ajrOpUTMA.

brnarogapss >TMM OCOOEHHOCTSM CTpaTeTMH CO3JAaHUS YOPABIAIOIIUX alTOPUTMOB B
MIPOMBIIIJICHHOW aBTOMAaTH3allMUd W HCIOJIb3yeMble S3BIKM MPOTPAMMHPOBAHUS OTIUYAIOTCS OT
MIPaKTUKHU, TpUMeHsieMoil ipu coznanuu 110, He B3anMOAEHCTBYIONIETO C peaIbHBIMU OObEKTaMH.

JIJis co31aHus TPOMBINIJICHHBIX aITOPUTMOB YIIPABIICHUS MCIIOIB3YETCS MHOKECTBO TOIXO0JIOB:
s3piku ctangapra MOK 61131-3, sa3biku oOmiero HasHaueHus (takue, kak C, C++ unmu Delphi),
SI3BIKOBO-OPUEHTHPOBAHHOE MPOrpaMMHUPOBAHHE c HCITOTh30BaHUEM peIMeTHO-
OPUEHTHUPOBAHHBIX S3bIKOB M mpouee [4]. Kakaplii 3 Takux MOIXOAOB MMEET OMpeeICHHbIE
MPEUMYIIIECTBA U HEIOCTATKH, W, HE BJABasCh TIIyOOKO B JCTallM, CICAYeT YIOMSIHYTh, YTO B
KOHEYHOM CYETE€ BBIOOp JIeaeTCs B TIOJB3Y TOTO PEHICHHS, KOTOPOE HAWIYJIIAM 00pa3oM
COOTBETCTBYET OCOOCHHOCTSIM aBTOMATHU3HPyeMOro oobekTa. OHAKO B IMOCIETHEE BPEMS B CBSI3U C
HefocTaTkaMu crangapra MOK [5] HaOmromaemass TEHIEHIMS TaKOBa, 4YTO TpPH pa3pabOTKe
MIPOMBIIIIJICHHBIX QJITOPUTMOB YIPABICHUS BCE Yallle OTKAa3bIBAIOTCA OT s36IKOB MOK B moIb3y
00 S3BIKOB OOIIEr0 Ha3HAYCHHS, JTUOO HOBBIX, CIICIIUATM3UPOBAHHBIX I Y3KOTO MPHUMCHCHUS,

(bopmanu3MoB.

14 JIax T.B., 3106un B.E.. Bepudukanus MpoOMBIIIECHHBIX aJITOPUTMOB yripaBieHus metoaoM Model checking ...

IIponiecc-oprentTupoBanHblil 36k Reflex Obl1 cozman 11 onMcaHUs alrOpUTMOB YIPaBICHUS
IpU pEIIeHUH 33/a4 TPOMBIIUICHHOW aBromaru3zauuu [6]. S3pik Reflex ornuuaercs psgom
JOCTOMHCTB:

1) AnexBaTHOCTB 3a/ja4yaM MPOMBIIUICHHOW aBTOMATU3ALUH;

2) JIerkocTb B U3y4CHHU;

3) SI3pik Reflex — BBICOKOYPOBHEBBIH S3bIK MPOTPAMMHUpPOBAHHS, pa3pabOTUUKy He TpeOyercs

paboTaTh B TEpMHHAX HU3KOYPOBHEBBIX OIEpaIuii ¢ 000pyJ0BaHUEM;

4) AnropuTMBl, cO3IaHHbIC Ha si3bIKe Reflex, He 3aBHCAT OT cpebl CTIOIHEHHS;

5) SI3pik Reflex nomyckaer BbI30BbI (DYHKIMIA, HamUCaHHBIX Ha JPYTrHX s3bIKaxX

MPOrPAMMHUPOBAHMUS.

3. Konnenuusi BUPTyaJbHbIX 00bEKTOB yIIpaBJeHHus Ha 0a3e

LabVIEW c¢ ucnouan3oBanueMm a3bika Reflex

Konuenmus BOY nns urepaunonHol pa3paborku AY Obuia peaqu3zoBaHa C MCIOJIb30BAaHUEM
mexanu3zma DLL, makera LabVIEW [7] u Tpancnstopa sizbika Reflex. Mutepdeiic O6bu1 cozman
CpelICTBAaMH IIaKeTa MPHUKIATHBIX NPOrpaMM TeXHUYEeCKUX BbluucieHuin LabVIEW, kortopsrii
LIMPOKO UCIIOJIb3YETCS Il UMUTALMOHHOTO MOJIEIMPOBAHUSA. AJITOPUTM YIIPABJICHUS U ONMCAHUE
BOY co3pnaercs Ha s3bike Reflex.

IIpu utepannoHHON pa3paboTKe aaropuTMa yrpaBlIeHUs Ha ocHOBe KoHueniuu BOVY paborta
IIPOUCXOJUT IO CXeMe, M300paXKeHHO Ha puc. 2:

1) Ha si3pike Peduiexc co3maercst onucanue JOruveckd o0ocoOieHHoi yactu AY (Hampumep,

4yacTh aIrOpUTMa, OTBEYAIOIIAsl 3@ ONPENEICHHYIO0 (DYHKIIMOHAIBHOCT);

2) Ha sa3pike Peduiexc cosmaercs ommcanume d3jeMeHta BOY, COOTBETCTBYIOLIETO
(YHKIIMOHMPOBAHUIO 3TOT0 AY;

3) BOY u AY Ttpancmupyrorcss B DLL, kortopble BcTpamBaroTcs B omiagouHoe I[1O.
JIOTIOJIHUTENBHO TPAHCISATOP CO3aeT KOH(UTYpallMOHHbIE (Paiiiibl, KOTOPbIE aBTOMATUYECKU
HMHTErpUpyroTcs B otnaaounoe [10;

4) OmepaTop 3a OTJIAJOYHBIM HMHTEpQEcOM MPOBOJUT TECTHpOBaHME Oyoka AY: 3amyckaer
OJTHOBPEMEHHO M TecThpyeT nomaroBo AY u BOYVY, mMmutupyer nepemauy OaHHBIX OT
orepaTtopa uHTepdeiica ymnpaiaenus g AY, UMUTUPYET Iepenady AAHHBIX C JIaTYMKOB
o0BbEeKTa YIpaBieHUS. ODTO TO3BOJSET UMHUTHPOBATh HEIUTATHbIE CUTyallMd Ha OOBEKTe
yIIpaBJIEHUS: aBapHUU, MOJIOMKH OOOPYAOBAaHHS U OTCYTCTBHE CBSI3U C 00OpYJOBaHUEM — H

OICHUBATHL PCAKIHIO AY Ha HHUX;

System Informatics (Cucremuas nnpopmaruka), No. 8 (2016) 15

5) Eciu ObLI0 BBISIBIIEHO HECOOTBETCTBHUE MOBeAeHUS AY TpeOoBaHUAM crienn(DUKAIIAH, HIIH JKE
Haiimens!l ommOKd B onucanuu AY wiaun BOVY na s3pike Reflex, BHOCATCS M3MEHEHHUA B KOJ,
AY unmu BOY, u TpaHCISIMS U TECTUPOBAHKUE MMPOUCXOIST 3aHOBO;

6) Eciin TecTHpoBaHME MPOILIO YCIENIHO, He ObUIO BBIABICHO OMIMOOK B omucanusx BOY wu
AY, u ObUIO YCTaHOBJIEHO, 4TO AY yIOBJIETBOPSET HAKIIAJbIBAEMbIM Ha HEro MpHU3HAKaM,

OMUCHIBACTCS CICAYIOMMM JOTHYECKUA MOIyNb AY U cO3/[aeTcsi COOTBETCTBYIOLIUM OJIOK

BOY.
1 AY 2 BOY
(Ha Asbike Reflex) (Ha asblke Reflex)
\3/
BxoaHble gaHHbIe 4 4 | BxopgHble gaHHble
ns AY —> [10 gna TectupoBaHma (LabVIEW) [« s BOY
5 o
TecTupoBaHue npowno TecTupoBaHue npowwno
HEYCMELWHO YCMELWHO
WenpaeneHue owmnbok nubo B
AY, nu6o B BOY, nu6o so Cnepylowas
BXOAHbIX AaHHbIX uTepaunA

Puc. 2. UtepanmonHas cxema pa3paboTKH aJrOpUTMOB yIIpaBlieHUs] Ha OCHOBE KoHIlenuuu BOY

PaccmoTpenHas Bbllie cxema pa3paboTku Oblia ompoOoBaHa MpH pa3paboTKe aaropuTMa
yIpaBJIeHUS CUCTEMbI BaKyyMUpOBaHUs bonbiinM coimHeuHbIM BakyyMHBIH TeneckonoMm (BCBT, r

WpkyTck, nocenok JIucTesiHka).

3.1. HemocTraTku pa3padoTaHHOI0 MeTO/1a

NMPoOBepPKHU 0e30macHocTH AY

Onnako npu pabote Haa cuctemoit BakyymupoBanusi BCBT Obuto oOpamieHo BHUMaHHUE Ha Pl
HEyI00CTB JaHHOTO T0/1X0/1a K pa3paboTke AY:

* bounbiioe komu4ecTBO paboThl «BpyuHYyIO». OmnepaTopy MPUXOIUTCS BPYYHYIO 3amycKaTh
BOY u AY, tectupoBaTh HX TMOIIArOBO, UMHUTHUPOBATh Tepeaady IaHHBIX OT ormepaTopa
uHTepdeiica ynpasienus s AY U nepenady JaHHBIX ¢ JaTYUKOB OOBEKTA YIIPABIICHUS;

* [lomHOTa TOKPBITHUS aNrOpUTMa TECTaMH HEW3BECTHA. TeCTHpOBaHWE HE CIIOCOOHO JaTh

TOYHBIN OTBCT, HACKOJILKO IMOJIHO TECThI IMOKPBLIBAIOT (I)YHKLII/IOHH.JILHOCTB AY, 1 HAaCKOJIBKO

16 JIax T.B., 3106un B.E.. Bepudukanus MpoOMBIIIECHHBIX aJITOPUTMOB yripaBieHus metoaoM Model checking ...

TOYHO BBINIOJIHAIOTCA TpeOoBaHUs, HakiabiBaeMble Ha AY. K ToMy e, TecTUpoBaHUE yallle
BCETO BBIABJISIET YacThle OMIMOKH, B TO BpeMS KaK PEIKUE, HO KPUTHUECKHE OIMOKH, MOTYT
YCKOJIB3HYTh OT BHUMaHUS. C IIOMOIIBIO TECTUPOBAHHE METOJOM «UYEPHOTO SILIUKa»
HEBO3MO>KHO JI0Ka3aTh OTCYTCTBUE OUIMOOK B IIPOrpaMMe.

JlJi1 TOYHOTO JA0Ka3aTeNbCTBA, YTO AY yIOBIETBOPSIET HAKJIAAbIBAEMbIM Ha HEro TpeOOBaHUSAM,

HEO0XO/IUM CTPOTHH U HEITPOTUBOPEUUBBIA MaTeMaTHUECKU anmapar.
4. Ucnoab3oBanue Metoaa Model checking 15 TectupoBanusi AY

Jlnst mpoBepKu KOppeKTHOCTH AY B yjaeane HE0OX0AUMO IepedpaTh BCce BO3MOXKHBIE IYTH €T0
BBIUMCJICHUS, OJHAKO I CHUCTEM, B3aMMOJCHCTBYIOLIUMX C OKpY)KalIled cpemoi, 3Ta 3agada
HEBBIMOJIHIMA, TaK KaK TaKUX IyTel MOXKET OoKa3aThCs OSCKOHEUHOE MHOXECTBO. B HacTosmuit
MOMEHT MJISi TOTO, YTOOBI IMOKa3aTh, YTO aJTOPUTM COOTBETCTBYET HAKJIAJbIBAEMBIM Ha HETO
TpeOOBAHUSAM, HCIIOIB3YIOTCS METOABI BepU(BUKAIIH.

Cpenu CymiecTBYIOIIMX METOJIOB BepuU(UKAIMKU Al aBTOMAaTU3allMd TeCTUpOBaHUA AY ObLI
BbiOpan meron Model Checking. Ilpu Bepuduxamum anroputma mnoaxogoM Model Checking
MIPOBEPSAETCS,, YTO HEKOTOPOE CBOWCTBO TIOBEACHUS aJrOpUTMa YIPAaBJICHHUS, BBIPAKEHHOE
(bopMyIIOi TEeMIOpaIbHON JIOTWKH, BBIMOJHACTCS IS MOJEIN CHUCTEMbl C KOHEYHBIM YHCIOM
cocTostui [3].

Tak kak s3plk Reflex Oa3upyercss Ha MoJenu KOHEYHOIO THUIepaBTOMAaTa, NPEAOCTaBIsAET
JIOTHYECKUH TMapajuien3M, CPEICTBA B3aMMOACHUCTBUS MEXIY MPOLECCaMy M JaeT BO3MOXKHOCTb
KOHTPOJIMPOBATh BPEMs HAXOXKACHHUS TIpollecca B TEKYIIEM COCTOSHHUH, 3To nenmaer Reflex
yI0OHBIM JJIs1 ONIMCaHUs BepU(PULIPYEMOI MOAETN CUCTEMBI, KOTOpas PU BepUPHUKALIMH METOJJOM
Model Checking npeacrasisiercs B BuJie MOAM(PUIMPOBAHHOI'O KOHEYHOTI'O aBTOMATa.

Wrepannonnas cxema pa3padotku AY Obl1a u3menena (puc.3)

1) Ha s3pike Reflex cosmaercs ommcanwe vactu AY, a Takke Ha (OPMATLHOM S3bIKE
TEMIIOPAJIbHOW JIOTMKM ONUCHIBAIOTCS TpeOoBaHusi K AY. TpeOoBaHMs, OMHCHIBAEMbIE Ha
3TOM HE 3Talle, He YUUThIBaIOT B3aumoaeicteue AY ¢ BOY — 310 Te TpeboBaHMs, KOTOpbIE
paccMaTpUBAIOT BHYTPEHHIOKO JIOTHKY (YHKIMOHHUPOBaHUS AY, He 3aBUCAIIYI0 OT oOMeHa
JTAHHBIMU C BHEILIHEN CPEIOM.

2) ABtomartnueckass Bepubukamus AY (BemmonHsiercs BepuduuupyromuM I[10). Ecmu
Bep(pUKATOp BBIHOCUT pEIICHHE, YTO TPEOOBaHMS HE BBIMOJHSIIOTCS, MPOUCXOAUT MOUCK
omnOoK (WM B onucaHuu AY, wid B GopMainu3aliu TpeOOBaHMIT), MMOCIe Yero BHOCATCS

He0oOXO0IMMBbIE UCIIPABIICHUS U BepUDUKAIIHsI TOBTOPSETCS

System Informatics (Cucremuas nnpopmaruka), No. 8 (2016) 17

3) Ha seike Reflex co3maercst ommcanme uwact BOY, a Takke Ha (GOpMaabHOM S3BIKE
TEMIIOPAJIbHON JIOTMKH OmNuChIBatoTCs TpeboBanuss k BOY. Tpebosanus k BOYVY,
OIMCHIBaEMbIE Ha 3TOM JTare, IPOBEPSIOT JIMIIb TO, YyTo noBeaeHne BOY coorBercTBYyeET
MOBE/ICHUIO PEAIbHOTO 00BEKTA YIIPABJICHHUS.

4) AsromaTtnueckas Bepudukanus BOY (Bemoansercs Bepubunupyommm [10). Ecou
BepU(PUKATOp BBIHOCUT PELICHHE, YTO TPEOOBaHMS HE BBIMOJHSIOTCS, MPOUCXOIUT IMOUCK
ommOoK (wmm B omucanuu AY, wim B (opMmanu3anuu TpeOOBaHUM), MOCIE Yero BHOCSITCS
He0OXO0IMMBbIE UCIIPABIICHUS U BepU(PUKAIISA TOBTOPSETCS

5) ®opmynupoBka TpeOOBaHHIA HA S3BIKE TEMITOPATBLHON JIOTUKH, HCTUHHOCTh KOTOPBIX 3aBHCUT
ot B3aumoeictus AY u BOY

6) ABroMaTHyeckoe rnocrpoeHue oouei monenu AY u BOVY (BbinosHsIeTCsS BEPUPHIUPYIOLTHM
I10)

7) ABromaTnueckass ~ Bepubukanus — obmeit momenu AY um BOVY(BbimosHseTcs
Bepupuuupytomum [10)

8) Eciu mo pesynbraTtam Bepu(UKanMUd ObLIO BBIHECEHO PEIICHHE, YTO HAKJIabIBacMbIe
TpeOOBaHUsI HE BBIMOIHAIOTCS, IPOUCXOAUT MOUCK OMMOOK (uiau B onucanuu BOY, wnu B
omucanun BOY, unu B ommcanuu TpeOOBaHMIl), TOCIE 4Yero MOBTOpsieTcs Bepuduxaims
obmeit monenu. Ecnu Bepudukanus npormwia ycnemso, To AY yZ0BI€TBOPSET HAKIIabIBaeM
TpeboBanusM. [IporcxoauT Bo3Bpar Ha M. 1. U ONMUCAHHE CIEIYIOUIETO JIOTHYECKOTO OJIoKa

aJIropuTMma.

18 JIsx T.B., 3106un B.E.. Bepudukaliysi IpOMBIIIICHHBIX aITOPUTMOB yripasieHust MmerogoM Model checking ...

Onucanue AY Ha Reflex Onucanue BOY Ha Reflex
u dopmanbHbIX Tpe6osaHm71 K AY u dopmanbHbIX Tpe6osaHMﬁ K BOY

**

Cneunduraumsa TpebosaHun 8 BOY u AY
1

i

{ MocTtpoeHue obobueHHo mogenu BOY u AY]
i [l
iyt 1l

Bepudukauyms

TpeboBaHusi He BbINOAHAKOTCSA
(HoBasi uTepaumsn)

Puc. 3. Cxema tectupoBanusi AY u BOYmeronom Model checking

4.1. Cxema Bepuukanmu Koaa, co3qaHHOro Ha sizbike Reflex, MmeTogom

Model Checking ¢ nomombio Bepuguxaropa SPIN
Jlyig peanuzanyy ONMMCAHHOM BBILIE CXEMBbI TPEOOBAIOCH CO3/1aHKE BepUPUKaTOpa KOAa Ha S3bIKE
Reflex. Ognako co3manue Bepuduratopa s meroga Model Checking ¢ Hyns — 3amada kpaitHe
oObeMHas, U TpeOyromas cepbe3HbIX 3arpar. [loaToMy OBUIO pElIeHO BOCHOJIb30BATHCS YXKe
CYIIECTBYIOIUM BepUPHUKATOPOM Spin.
Bepuduxanus kona Ha s3p1ke Reflex mpoxomut mo cienyrorieii cxeme:
1) Co3nmaetcs onucaHue alrOPUTMHYECKOT0 OJ10Ka Ha si3bike Reflex
2) TpaHcATOp aBTOMaTHYeCKH mpeobpasyer kon Ha sizbike Reflex B ko Ha si3bike Promela —
CTaHJapTHOM s3blke Bepudukaropa SPIN
3) Onucanue GopManbHBIX TpeOoBaHMt MeToAaMu Bepudukaropa SPIN
4) Tpaucnsaius TpeboBannii B 1361k Promela ¢ momornisio Bepudukatopa SPIN
5) ABtomarnueckast Bepudukarus Bepuduxkaropom SPIN
6) TpeOoBaHMsI BBITIONHSIOTCS — 3a[a4a BBIMOJHEHA. TpeOOBaHMs HE BBIMOJHSIIOTCS — MOUCK

OIIMOOK U B OIUCAHHH AJITOPUTMA Ha A3BIKEC Reﬂex, WM B OITMCAHUU Tpe6OBaHI/II7L

System Informatics (Cucremuas nnpopmaruka), No. 8 (2016) 19

Takum 00pa3oM, B IPEIIOKEHHOW CXeMEe aBTOMATUYECKH MTPOXOANUT BepU(UKAIUS allTOpUTMa, U
JUIS peann3alui HeoOXOAMMO OBLIO TOJBKO Peau30BaTh TPAHCIATOpP W3 si3bika Reflex B s3bIk
Promela.

Tako#i moaxo/] Mo3BoJseT W30ekKaTh OJHOTO U3 CAMBIX 3HAYUMBIX HEIOCTATKOB Mojxona Model
checking: HEOOXOUMOCTH HAaTBHEHINIETO TECTUPOBAHMS PE3YJIBTUPYIOMIETO KOJa. JTO CBS3aHO C
TeM, uto nipu Bepudukanuu merogom Model checking Bepudunmpyercs He pe3ynbTUPYIOMIUN KO/,
a TMOCTpOoeHHass Mojaenb anroputma. OmHako BepuduIHMpyeMas MOJIEb, CO3TAHHAS Ha SI3bIKE
Reflex, Tpancimpyercs B MCHOJNHSAEMBIA KO/ aaroputMma Ha s3bike CH, KOTOPBIH yxe He TpeOyer

JOIIOJTHUTEIBHOT O TeCTI/IPOBaHI/I}I.
5. 3akia0uyenue

Takum oOpa3om, B paboTe ObUI MPEAJIOKEH BapUaHT pean3allii KOHLENIUU HTEPALMOHHOMN
pa3paboOTKU YIPaBISIONINX AITOPUTMOB HA OCHOBE BHPTYAIBHOTO oObekTa ympasienus (BOYVY).
bouta paspaborana cxema aBTOMAaTHMYECKOW BepuU(HKAIIMHM aNropuTMa YIPABIEHUS C MOMOIIbIO
metona Model Checking. Tak kak onucanublii Ha si3bike Reflex anroputm Tpancmupyercs B
WCTIOJHSEMBI KO aJrOpUTMa, 3TO 3HAYUT, YTO MCIOJIH30BAHUE TPEATIOKEHHON CXEMBI TTO3BOJIHT
VAUTH OT C€aMOro 3HAYUTENBHOrO Hemocratka Bepupukamum wmerogom Model Checking:
HE0OXOIMMOCTH TOBTOPHOTO TECTHUPOBAHUS, TaK KaK B KJIACCHUYECKOM IOAXOJE BEePHUPHUIHPYETCS
HE cama KOHEYHas CHCTeMa, a ToJbKo ee mozenb. Mcnons3ys nmoaxon Model Checking moxxnO
MIPOBEPSATH KaK KOPPEKTHOE PyHKIIMOHUpoBaHue AY, Tak u noseaenue BOVY.

Konuenmus wrepanMoHHOW pa3padOTKU YIpaBISIONIMX alrOpUTMOB Ha oOcHOBe BOVY
spdexTuBHA JUIs 3a7ay CHIKEHHMsS] PUCKOB IPU BBOJE CHUCTEM YIPABJICHUS B SKCIUIyaTallHMIO.
Vcnonb30BaHue METO/Ia B pealibHBIX NMPOEKTaX MO aBTOMATH3alMK O3BOJISIET:

1. TecTpoBaTh CO3/aBaeMble AJITOPUTMBI, HAUYMHAS C CaMBIX PAaHHUX CTaauil pa3padOTKH,

BHEJIPUTH UTEPAITMIOHHYIO MOJIENb Pa3paOOTKH IS cydast IPOMBIIICHHON aBTOMATH3allNH;
2. obecrie4nTh KOHTPOJIb TPOLIECCA CO3JAHHS YIPABISIONIMX AITOPUTMOB W CHU3UTh
MICUXOJIOTHYECKYIO HAarpy3Ky Ha KOJUIEKTUB Pa3pabOoTUMKOB,;

3. COKpaTUTh BpeMsl BBIITOJHEHHS IPOEKTa U UMEIOIIMECS PUCKH dTara MyCcKO-HalaIKH;

4. ruOKO paciupsTh Kpyr JIHI, YYaCTBYIOIIMX B Ipolecce pa3paboTKH, B YaCTHOCTHU, YTOOBI
CBOEBPEMEHHO BBISIBIIATH M YCTPAHSTH OITUOKH B TEXHUYECKOM 3a/IaHUH.

PazpabGotanHblif OaX0A OBUT MCHOJB30BAH Ul OTJIAJKHU ITOPUTMA YIPaBICHUS BaKyyMHOMH

cucrtemoii BCBT.

Cnucok JurepaTypsl

20

JIax T.B., 3106un B.E.. Bepudukanus MpoOMBIIIECHHBIX aJITOPUTMOB yripaBieHus metoaoM Model checking ...

3106 B. E. HUtepanmnonHas pa3paboTka YIPaBISAIONIUX AJITOPUTMOB Ha OCHOBE HMHTAIIIOHHOTO
MOJISJINPOBaHUs 00beKTa yrpasieHus // ABToMarn3anus B npoMbinuieHHocTH. 2010. Ne 11. C. 43-48
JIsx T. B., 3r00un B. E. [IpuMeHeHne KOHLENINN BUPTYANbHBIX OOBbEKTOB YIPABICHUS AJISl PELICHUS
3aJad MPOMBIIICHHONW aBToMaru3auuu // Marepuansl J[leBsitoii MexayHaponHoilt EpimoBckoit
koHdpeperuuu PSI-2014 (r. Cankr-IletepOypr, Poccus, utons 2014r). C. 57-64.

C. Baier, J.P. Katoen, Principles of Model Checking. The MIT Press. Massachusetts Institute of
Technology, 2007.

Tlopsuxun A. A., 3106un B. E., JIyokoB A. A. Pazpabotka rpaduueckoro opmanusma ajsi OMUCaHUS
QITOPUTMOB B Mpolecc-opueHTHpoBaHHoM cTuie // BectH. HoBocu6. roc. yn-ta. Cepus:
Nudopmanmonnsie Texnonorun. 2013. T. 11, Beim. 2. C. 44-54.

3106uH B. E. K marunernro cranpapra IEC 1131-3. Utoru u nporHossl // [IpuGopsl M CHCTEMBI.
VYpasieHue, KOHTPOJIb, AMATHOCTHKA. 1999. Ne 1.

B. E. 3w06un. «Cu ¢ mpomeccamm» - S3BIK MPOTPAMMHUPOBAHUS JIOTHYECKHUX KOHTPOJUIEPOB //
Mexarponuka, aTomaTtu3anus, yrnpasienue. 2006. Ne 12 C. 31-35

k. Tpesuc. LabVIEW minst Bcex. M.: IMK Ilpecc, 2011. 912 c.

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 21

VIIK 004.414.38

Developing formal temporal requirements to distributed

program systems

Shoshmina I. V. (Peter the Great Saint-Petersburg Polytechnic University)

Developing temporal requirements to distributed program systems an engineer should
determine and systemize event sequences caused by system processes interleaving. A num-
ber of such sequences grow exponentially that makes the requirement development pro-
cedure nontrivial. This is why engineers prefer not to construct or construct elementary
formal requirements. As result powerful formal verification methods become unavailable
or some important properties of distributed systems leaved unexpressed. While it is well-
known, that development of formal requirement even without verification improves an
quality of a distributed system structure and functions.

In this paper we suggest a method for formal temporal systems development which is
easy-to-use. The method is based on scalable patterns of linear temporal logic formulas.

Using this method we developed formal temporal requirements to a practical program
control system (a vehicle power supply control system). Verifying the requirements with
the model checking method we found 3 critical errors that were missed by developers of
the vehicle power supply control system during design and testing.

Keywords: software requirement specification, requirement patterns, model checking,

linear temporal logic
1. Introduction

Developing temporal requirements to distributed asynchronous program system is compli-
cated in practice. Because an engineer should systemize an exponential number of system
behaviour sequences resulting as process interleaving.

The wide-spread approach to solve this problem is to use formulas patterns for requirements:
an engineer tries to find a requirement close to a pattern. Dwyer et al. in [1| developed the
specification pattern system (SPS). They analyzed 500 temporal requirements to systems from
different application fields and suggested patterns for the most typical ones. The main SPS
drawback it is too strict: patterns aren’t scalable to different events number.

De-facto SPS has become the standard [2], [8], [9], [10]. Later it was modified by different
way. In [2], [3] patterns were extended by real time and probabilistic requirements. In [4],

[5] there were suggested nested patterns for interval logic, in [6] — nested patterns for linear

22 Shoshmina I. V. Developing formal temporal requirements to distributed program systems

temporal logic. In [2], [7] authors described patterns in limited English.

In spite of these modifications the strict structure of SPS formulas has left unchanged. In
this research we develop patterns that, on one hand, could be scalable and, on another hand,
we give an easy way how to use these patterns to develop significant temporal requirements. As
a base for our patterns we use the temporal relation “leads-to” [11] where after an environment
stimulus somewhen in the future there should follow a system reaction. Our patterns are
formalised in the linear temporal logic (LTL).

Using our patterns we developed and verified formal temporal requirements to a power
vessel supply control system (PVSS). The PVSS were developed and provided to us by a
Russian ship control systems manufacturer. The original PVSS code was written on C+-+ and
contained 20000 code strings (not counting external libraries). One of the most complicated
PVSS characteristics was an asynchronous work of its modules. Verification allows us to find 3
critical errors that developers did not find neither during design nor during bench and program

testing.
2. Patterns of events sequences

Temporal requirements of program systems are often some event sequences. The most
suitable and concise temporal logic for describing event sequences is the linear temporal logic
(LTL). LTL—formulas consist of atomic propositions p € AP, Boolean operations and temporal
operations: Until — & and the Next time — X (NextTime). This is grammar for a LTL-

formula ¢:
pu=plop|leVel|Xeo|eUep (1)

To short fomulas we will use some extra operations, Boolean (=, A, etc.) and temporal ones:
Future — F, Globally — G, Release — R, Weak Until - W, where Fp = TUp; G p = ~F —p,
YR = (U —); oW b = GV oUY, and the true constant: T = pV —p. We use a
common formal semantics of LTL formulas defined on infinite sequences (i. e. [12]).

A lot of formulas decribing different temporal requirements could be constructed with LTL.
We consider one that has very practical application, when a system environment gives a stimulus
by an event s and then the system guarantees an event—reaction p somewhen in the future (p
is after s). We call the relation as the “unconditional response”. It’s a LTL formalization
Resp(s,p):

Resp(s,p) = s = Fp. (2)

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 23

The requirement “If someone from a floor calls an elevator then in the future the elevator will
stop at that floor”is an example of a requirement with the unconditional response. The response
relation in the form (2) is well-known as “leads—to” [11].

Now we require that a system should remember receiving a stimulus s until emitting a
reaction p by setting a condition ¢. So we get a “conditional response” relation denoted it as
Resp(s,p,t):

Resp(s,p,t) = s = tUp. (3)

Similarly we define a conditional precedence relation (before an event-reaction p should be

an event—stimulus s which sets a condition t), denoted as Prec(s,p,t) :
Prec(s,p,t) = —p= (tUp = —pUs). (4)

The requirement “If a fire fighting system switched on then before that a duty officer gave its a
corresponding command” is an example of a requirement with the precedence relation.
Formulas (3) and (4) describe local temporal relations between a stimulus and a reaction
in sense that a temporal relation is satisfied in a current state of a system behaviour. To
develop requirements we should consider temporal relations (3) or (4) in all states of a system
behaviour. Let’s consider 4 typical systems work phases: start, global, reqular, final. In a global
phase a temporal relation should be satisfied in all system states. Other phases define a scope
where a temporal relation is satisfied. In a final phase a temporal relation should be true
after the final phase started; in a start phase — before the phase finished; in a regular phase a
temporal relation should be satisfied during the phase. Defining phases bounds by events we

get following LTL formulas for temporal requirements:

global(s,p,t;0) = G@(s,p,1),

fin(s,p.tiq;9) = FGq= F global(s,p,t;),

start(s,p,t;r;) = —r = @(s,p,t) Wr,
)

reg(s,p,t;q,ri0) = G(q= start(s,p,t;r;p)), (5)

when ¢ is substituted by a formula Resp or Prec from (3)—(4), the formula global defines a
requirement in a global phase, formulas fin, start and reg — for final, start and regular phases
respectively. The variable ¢ defines an event of starting a final phase in fin, r — an event
ending a start phase in start, and variables ¢ and r — events starting and ending a regular

phase respectively.

24 Shoshmina I. V. Developing formal temporal requirements to distributed program systems

The suggested temporal relations (3)—(4) are so that they are easily scalable to stimuli
and reactions consisting from event sequences (not from one event): § = {sy,$2, ..., Sm},
7 = {p1,p2,...,pn} with sequences of conditions ¥ = {vy,va, ..., U1}, T = {t1,t0,... 10},

restricting stimuli and reactions respectively:

w(s) = st AU (oo Smo1 A (VU Sm) .. .),

X(_’,f) = tUPIN. .ty U (P ANt Upy)) -),
Resp(5,7,0,t) = u(5,0) = vold (sg A ... (vjU (5, A X(P, 1)) ...),
Prec(5,7,7,8) = —p1 = (x(7,) = —p1U u(5,7)) (6)

In this case requirements expressed in LTL formulas (5) aren’t changed except substituting ¢
by formulas Resp or Prec from (6) and adding .
If requirements depended on an infinite behaviour of environment we describe them by the

following LTL formula:
=, (7)

when ¢ is a formula from (5), ¢ — a formula defining an infinite environment behavior. Common
fairness requirements is a particular case of the formula (7).

Comparing patterns of [1] with ours ones by temporal relations structure we could resume
that 83 formulas from 217 LTL-formulas of [1] have a response relation Resp, 13 formulas —
a precedence relation Prec, while other 121 don’t contain relations between a stimulus and
a reaction. So our LTL—pattern coincide with existing practical requirements and even allow

scaling them to represent wider temporal dependencies.

3. Developing requirements to the power vessel supply control

system

The considered power vessel supply system (PVSS) consists of two power supply stations
(PS) while a power supply station contains a diesel, a generator, a generator cutout switch
(GCS). The power vessel supply control system coordinate the work of these PSs. Its structure
is shown at the fig. 1 inside the bold frame. We will use the abbreviation PVSS for the
power vessel supply system and for its control system. All PVSS controllers have independent
asynchronous behaviors coordinated by passing messages. Environment modules/devices the

PVSS works with are drawn outside the frame. The PVSS monitors and controls these devices

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 25

@ users: marine engineers, technicians, sailors

l

| skipper control post | | automated control panel |
power supply station 1 power supply power supply station 2
controller stations controller controller
A A
v v v v v v

diesel 1 generator 1 GCS1 diesel 2 generator 2 GCS 2
controller controller controller controller controller controller

sensors sensors Sensors sensors sensors sensors

diesel 1 generator 1 GCS1 diesel 2 generator 2 GCS2

Puc. 1. The PVSS Structure

by reading sensors values and setting signals. A diesel has the utmost number of sensors (12
pieces).

The PVSS provides electricity power to all vessel consumers. For that it dynamically switches
on/off power stations depending on loading. The PVSS activity could be quite complicated.
For example, to start a power station the PVSS starts a diesel at first. When the diesel rotation
becomes stable, PVSS starts a generator, after that it starts a generator cutout switch. And
only after that consumers get the electricity power. Moreover, procedures of switching power

stations on/off depend on PVSS modes and could be different.

“PSSV requirement specification” provided us by PVSS developers was written quite poor
and did not contain enough information about PVSS to develop formal temporal requirements.
So we used mainly “Bench testing program and technique”. The test from this manual is cited
at the fig. 2. To resolve ambiguity and uncertainty we used “Operating guide’, the PVSS code
too, and sometimes consulted with experts developed the PSSV.

At first we identified input/output events from tests in natural language (like at the fig. 2).
We will use some of them in requirements below.

To combine events into temporal requirements sequences we will use the patterns (5)—(6). If
someone would like to avoid the direct usage of formulas he/she could use the modified problem
frame approach and translate requirements to formulas from graphical problem frames [13]. In
general modified problem frames allow to construct temporal requirements unlike the original

one developed by M. Jackson [14].

The test at the fig. 2 describes the PVSS transition to a remote automated mode. Analysing

26 Shoshmina I. V. Developing formal temporal requirements to distributed program systems

D.1.2.1 Before start:

e DGI1 and DG2 stopped (banners “DG1 is ready to start” and “DG2 is ready to start” lighten in the ACP
window “Power Supply Station”);
e the SCP switch “PS mode” is in the position AUT;

D.1.2.2 Testing transition to the PS remote automated control mode.

D.1.2.2.1 Switch on the test bench “Testing PS control algorithms” buttons “DG1: ready to start”, “DG2: ready
to start”, “DG1: remote control on”, “DG2: remote control on”, “SCP control”.
D.1.2.2.2 That should have the following effects:
e on the ACP display the message “PS control mode — remote” received and indicators “Control mode
— remote”, “DG1 is ready to start”, “DG2 is ready to start” changed to yellow;
e on SCP lamps “DG1: SCP control”, “DG2: SCP control”, “DG1: ready to start”, “DG2: ready to start”

lighted up.

D.1.2.3 Testing results are accepted when all effects described above happened.

Puc. 2. Testing transition to a PVSS remote automated mode. Abbreviations: DG — diesel generator, ACP — automated

control panel, SCP — skipper control post, AUT — automated.

other tests of “Bench testing program and technique” we found out that the PVSS could transfer
to the remote automated mode independently of diesels state. This is why the test at the fig. 2
splits to few temporal requirements, in particular: “Transition to a remote automated mode”,
“Diesel 1 activation in the remote automated mode”, “Absence of a diesel 1 misactivation in the
remote automated mode” and symmetrical for the diesel 2.

Transition to a remote automated mode. Always when the PVSS is not in the remote
automated mode and it would be in this mode in the future then before that an operator gives
commands “DG1: remote control on”, “DG2: remote control on” on the ACP and changes the
switch “PS mode” in the position AUT on the SCP.

The requirement is written in LTL so:
G (ndist N\ F dist = —distU autosig), (8)

where autosig — the signal to set the remote automated mode (commands “DG1: remote
control on”, “DG2: remote control on” and the switch “PS mode” in the position AUT), dist —
the signal that the remote automated mode is set.
The other temporal requirement describes an absence of an unwanted diesel 1 activation.
Absence of a diesel 1 misactivation in the the remote automated mode. Always in
the remote automated mode the lamp “DG1: ready to start” wouldn’t light up until the diesel 1

15 ready to start.

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 27

The temporal relation in this requirement corresponds to the precedence pattern (6), so as

result we get:

G (dist = ((-readylamp A —=handU readylamp) =
—readylampU ready) W hand), (9)

where ready — the signal from sensors that the diesel 1 is ready to start (simulated at the fig. 2
as the ACP banner “DG1 is ready to start”), readylamp — the lamp “DG1: ready to start”
lights, hand = —dist — manual or local modes is set, dist — as in (8).

The diesel 1 in the test at the fig. 2 activated (becomes ready to start) if the remote auto-
mated mode is set enough long. This is modelled in LTL as “somewhen forever”.

The diesel 1 activation in the the remote automated mode. If somewhen forever
the remote automated mode is set up then somewhen forever the lamp “DG1: ready to start”
would light up to the sensors signal that the diesel 1 is ready to start.

Formally:

FGdist = F G (ready = —handU readylamp), (10)

where dist, hand, readylamp, ready — the same are in (9).

At the tab. 1 we compare our formal temporal requirements development to PVSS and
“Bench testing program and technique”. As result, we described more events explicitly than it
was in an events table of “Bench testing program and technique”. We found out requirements
that unnecessary repeated in different tests. We defined requirements that were formulated
implicitly, for example, the requirement (9) is implicit in the test at the fig. 2. So we resume
that developing formal temporal requirements with the patterns (5)—(6) gives a better structure
of requirement specification than informal procedures. But some requirements described by

quite complicated LTL formulas containing 10-15 events.
4. Verifying the power vessel supply control system

We claim that our patterns allow to describe important requirements to distributed pro-
grams. To approve that we verified the PVSS with respect to developed formal temporal
requirements using SPIN [15]. At first we constructed a PVSS model in Promela, the input
language of SPIN. A PVSS module algorithm was modeled as an independent asynchronous

process. Processes coordinated their work transferring messages by asynchronous channels.

28

Shoshmina I. V. Developing formal temporal requirements to distributed program systems

Table 1

Comparing formal requirement development method and bench testing program on the PVSS

Formal requirement develop-

ment method

Testing program

Number of explicitly enu- | 71 20
merated events
Number of requirements or | 36 requirements 23 tests

tests

Average size of a require-

ment or a test

10-15 subformulas (prece-
dence relation), 30-36 sub-

formulas (response relation)

2 pages (A4)

Development time

2 weeks

unknown

Because the PVSS model was large we reduced it manually.

To check our temporal require-

ments we used 4 reduced models of the PVSS model. Correctness of reduced models is proved

by correspondence of counterexamples traces in Promela with traces in the original C++ code.

Let’s consider one of the critical error found out in the PVSS verification. Because this error

obviously shows problems that developers of program systems meet with, and such errors are

quite difficult to analyze and understand without verification.

Starting a reserve diesel-generator while another one crashed If the power station 2

hardware failures infinitely often, and the power station 1 hardware works properly infinitely

long, and always in case of failure of the power station 1 hardware the protection would be reset

and the remote automated mode with the power station 2 priority is set, then somewhen in the

future for every reserve response the diesel-generator 1 would start.

Formally the requirement is so:

/\g]:l;i/\/\]:g—'bi/\]:g—meset/\

J

/\ G (bj = Freset) N FGprior2l =

F G (reserv = prior21U lampon),

(11)

when b; — sensors data of the diesel-generator 2, b; — sensors data of the diesel-generator 1,

reset — reset a protection, prior2l — the remote automated mode with the power station 2

priority is set, reserv — the signal to starting a reserve diesel-generator, lampon — the lamp

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 29

signalling the diesel-generator 1 started lights up. The requirement part “infinitely often” allow
to model cases when hardware failures happen regular, but messages about these failures come
with some delays.

SPIN found out a counterexample violated the formula (11) at the depth 29915. The re-
quirement violated because the message which the generator cutout switch 1 controller sent to
the power station 1 controller came with delay and blocked starting a reserve diesel-generator.

This error is impossible to detect while bench testing, because it’s impossible to produce
unknown quantity of hardware failures with unknown delay. And it’s difficult to detect while
program testing because it happens in a very seldom set of circumstances. But because of this
error a vessel loses the electrical power control at all.

Interesting that developers observed such a behaviour in vessel sea trials, but they were
sure that the error was caused by hardware (not by controllers coordination). So they tried
to solve it by adding checks of the generator cutout switch data. And this obviously didn’t
help. Developers were not beginners: they specialize in power vessel supply control systems
development. Except 23 bench tests they checked the PVSS with 841 program tests. But they
didn’t determine the error reason without the requirement formalization and verification.

During verification we detected about 141 errors. Most of them were minor and could be
easily fixed, but 3 of them were critical. One of them were discussed above. Second one was
about an uncontrollable start of a power station. As result of third critical error hardware could
be under the electrical voltage in a PVSS protection mode.

To solve these critical problems it’s required to change controllers algorithms for some modes
and add few new modes more. This solution is time consuming, and takes about 80% of the
PVSS time design. So we get the well-known consequence that using formal verification methods
at first stages of a control program design could allow to avoid subtle, expensive errors at late

design stages.
5. Conclusion

We suggested scalable LTL formulas patterns which describe many practical temporal re-
quirements. We show that developing formal temporal requirements with them gives a well-
structured requirement specification. The development allows to avoid redundant repeating of
temporal requirements and to find out implicit requirements by organizing input-output events

and their temporal relations.

30

Shoshmina I. V. Developing formal temporal requirements to distributed program systems

Verifying the power vessel supply control system with developed requirements we found out

three critical errors. These errors were not found developers by testing. The result of one

critical error were observed by developers but they could not determine errors reasons correctly

without the requirement formalization and verification. Fixing such critical and subtle errors

at late stages of a control program design sometimes could be compared starting a program

development from the scratch.

10.

11.

12.

13.

Criucok aurepaTypbl

Dwyer M. B., Avrunin G. S., Corbett J. C. Patterns in property specifications for finite-state
verification // ICSE ’99: Proceedings of the 21st international conference on Software engineering.
ACM. 1999. P. 411-420

Konrad S., Cheng B. H. C. Real-time specification patterns // Proceedings of the 27th international
conference on Software engineering. ACM. 2005. P. 372-381

Grunske L. Specification patterns for probabilistic quality properties // Proceedings of the 30th
international conference on Software engineering. ACM. 2008. P. 31-40

Mondragon O. A., Gates A. Q., Roach, S. M. Composite Propositions: Toward Support for Formal
Specification of System Properties // Software Engineering Workshop. IEEE. 2002. P. 67-74
Mondragon O., Gates A. Q., Roach S. Prospec: Support for Elicitation and Formal Specification
of Software Properties // Runtime Verification Workshop. ENTCS. Elsevier. 2004. V. 89. P. 67-88
Salamah S., Gates A. Q., Kreinovich V. Validated templates for specification of complex LTL
formulas // Journal of Systems and Software. 2012. V. 85. P. 1915-1929

Smith R. L., Avrunin G. S., Clarke L. A., Osterweil L. J. Propel: an approach supporting property
elucidation // 24th Intl. Conf. on Software Engineering. ACM Press. 2002. P. 11-21

Ramezani E., Fahland D., van Dongen B. F., van der Aalst W. M. P. Diagnostic Information for
Compliance Checking of Temporal Compliance Requirements // CAiSE. 2013. P. 304-320

Post A., Menzel 1., Podelski A. Applying restricted english grammar on automotive requirements:
does it work? A case study // 17th international working conference on Requirements engineering:
foundation for software quality. Springer-Verlag. 2011. V. 6606. P. 166-180

Yu J., Manh T. P., Han J., Jin Y., Han Y., Wang J. Pattern Based Property Specification and
Verification for Service Composition // 7th International Conference on Web Information Systems
Engineering (WISE). Springer-Verlag. 2006. V. 4255. P. 156-168

Pnueli A. The temporal logic of programs // 18th Annyv. Symp. on Foundation of Computer
Science. IEEE Computer Society. 1977. P. 46-57

Karpov Yu.G. Model Checking. Parallel and distributed program systems verification // SPb:BHV-
Petersburg. 2010. 560 p. (in Russian)

Shoshmina I.V. A method eliciting context requirements to logical control program systems //

Information and Control Systems. 2014. Ne3, P. 68-77 (in Russian)

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 31

14. Jackson M. A. Problem Analysis Using Small Problem Frames // South African Computer Journal.
1999. V. 22. P. 47-60
15. Holzmann G. The Spin Model Checker // Primer and Reference Manual Addison Wesley. 2003

System Informatics (Cucremuas unpopmaruka), No. 8 (2016) 33

UDC 519.713

Using BALM-I1 for deriving parallel composition of timed
finite state machines with outputs delays and timeouts: work-

INn-progress

Shabaldina N. (Tomsk State University),
Gromov M.(Tomsk State University)

In this paper we consider a procedure of parallel composition construction of Timed Finite
State Machines (TFSMs) using BALM-II and suggest different ways of getting linear functions
that describe a set of output delays. Our research consists of three steps: at first step we consider
composition of TFSMs when an output delay may be a natural number or zero; at second — we
add transitions under timeouts; at third we consider composition of TFSMs in general case
(when output delays are described as sets of linear functions). This paper is devoted only to the
first step of the research.

Keywords: Timed finite state machines, parallel composition, BALM-I1.
1. Introduction

Most modern applications, such as web-services, telecommunication protocols, are oriented on
interaction with each other. The classical model for a discrete system is Finite State Machine
(FSM). If the behavior of each system is described by an FSM, then their common work can be
described by their composition (that also will be an FSM under appropriate assumptions) [1,2]. In
this work we are interested in so-called parallel composition [1], when the interacting systems work
asynchronously in as-sumption of slow environment, and for deriving such FSM composition there
is a tool named BALM-I11 (Berkeley Automata and Language Manipulation)[2].

Sometimes it is necessary to take into account time aspects of a discrete system. Probably the
most general way to describe such a system is Timed Automaton [3]. However, in this work we are
interested in input-output reactive systems, when every input action is necessary followed by output
action, probably after some time. The class of such systems has been already mentioned, it includes
telecommunication protocols, sequential circuits, web-services etc. In this case we can use Timed
Finite State Machine (TFSM) as a model. There exist different ways to introduce Timed FSM, for
example, with timed guards on transitions [4]. In this work we consider TFSM with output delays

and timeouts [5,6]. We got inspiration for our research from the work [5], in which authors describe

34 Shabaldina N., Gromov M. Using BALM-II for deriving parallel composition of timed finite state machines ...

how to build parallel binary composition of two timed FSMs with output delays and timeouts. In
order to derive the composition of timed FSMs the corresponding automaton should be built [5].
First we transform both TFSMs into automaton, then we compose them, and then we need to go
back to the TFSM model. In [5] it is shown that composition of two Timed FSMs can have infinite
number of output delays for a given transition and those delays can be de-scribed by a finite set of
linear functions { b+ k¢ | b,k € {0} UN }.

There are several tools dealing with timed automata, their composition and verification. One of
the most popular is UPPAAL [7]. It allows to describe timed system using Extended Timed
Automata, as well as composition of such systems. One of the key feature of UPPAAL is built-in
verifier. Unfortunately, UPPAAL does not build composition explicitly and one of the objectives
for this work is to get composition explicitly for further processing (for example, test generation).
For that reason in this work we decided to use BALM-II since it was designed to build parallel
binary com-position of two FSMs. To be able to use this tool for Timed FSMs we use well-known
transformation of TFSM into FSM and then into common automaton by introducing new (tick)
action. Also we suggest two approaches for extracting functions f(t) = b + k-t from the composition
of corresponding automata in order to derive TFSM. First approach is based on using BALM-II
once again. And the second one is to find corresponding loops in the transition graph of the
automaton composition.

This work is partially supported by the basic part of the State Assignment of the Ministry of
Education and Science of the Russian Federation (Project code No. 1975) and by the grant of
Russian Fund for Basic Research No. 15-58-46013 CT_a.

2. Preliminaries

An automaton S is a 5-tuple (S, X, so, F, 4s), where S is a finite nonempty set of states with so as
the initial state and FcS as a set of final (accepting) states; X is an alphabet of actions; and
Js < SxXxS is a transition relation. The transition relation defines all possible transitions of the
automaton. The language Ls of automaton S is the set of all sequences « in alphabet X, such that in
automaton S there is a sequence of transitions (marked by «) from the initial state to some final
state. An FSM S is a 5-tuple (S, I, O, so, 4s), where S is a finite nonempty set of states with so as the
initial state; 1 and O are input and output alphabets; and As < SxIxOxS is a transition relation. In
FSM all states are final.

Let N be the set of natural numbers. TFSM [5] is an FSM with timeouts and output delays
S=(S, 1, 0O, so, 4s, As, os), where 5-tuple (S, I, O, So, As,) is underlying FSM, As: S — S x (N (w{x})

System Informatics (Cucremuas unpopmaruka), No. 8 (2016) 35

is a timeout function that determine maximal time of waiting for input symbol, cs: As — ({0} U N)
is an output delay function that determine for each transition time delay for producing output
(output timeout).

Parallel composition describes a dialog between two components. The structure of the

composition is represented in Figure 1.

|1) OZ
— > > _—>
0, 1 ; 2 I
- D <

Fig. 1. Structure of binary parallel composition

We suppose that we have “slow environment” (it means that the next input can be applied to the
composition only after it produces external output to the previous input), the alphabets of different
channels don’t intersect and there are no infinite dialogs under internal inputs (it means no
livelocks). We also suppose that each component and the whole composition have timed variables.
The values of these variables are increasing synchronically, and they reset when the system gets an

input or when the state is changed.
3. Deriving an automata based on the given TFSMs

In order to derive the composition of timed FSMs we can use the corresponding automaton [5].
For deriving an automaton that corresponds to the classical FSM we need to do the following

steps [2]:

1. Derive the set of states that contains all FSM states (final, or accepting states) and a number of
intermediate (not-final) states (one new state for each transition in FSM). The initial state of the
automaton is the same as the initial state of the FSM.

2. Derive the set of actions X = 1UO.

3. Derive the set of transitions: for each FSM transition we add two transitions in automaton, i.e.
(s, i, o, s') generates {(s, i, s"), (s", 0, ")}, where s" is one of the intermediate states we added at

the first step which corresponds to the transition under consideration.

So, in order to construct an FSM from the given automaton, we need to split alphabet of actions
into input alphabet and output alphabet, merge transitions and delete intermediate states.
In order to derive an automaton for the timed FSM with timeouts and output delays we first apply
steps that are described above. Then we need to add into the set of actions a new special symbol
1¢100 that corresponds to tick count and represents an action “to wait for one time unit”’[5]. We

add in each final state a loop under 1 (in order to describe the situation that the current component is

36 Shabaldina N., Gromov M. Using BALM-II for deriving parallel composition of timed finite state machines ...

waiting for input and time variable of the other component is increasing). Then, we replace the
transition under timeouts by a chain of transitions under 1 (in order to model the time delay), the
length of the chain corresponds to the value of time delay. And we do almost the same by adding
the chain of transitions under 1 between an input and output symbols (if there is an output delay for
this transition in TFSM) [5].

In Figures 2 and 3 one can see TFSMs that describe the behavior of left and right components of
the composition, correspondingly. We take this example from work [5]. In Figures 4 and 5 we show
automata for these TFSMs. In this example the structure of the composition is simpler then in
Figure 1 (left component has external input Request and external output Deliver; right component
has no external inputs and external outputs) and also TFSMs are simpler: they have output delays,

however, they have no transitions under timeouts.

Request / check ({1,2}) __ no_product / ship (2) check / no_product (1)
A ol wl 1
wait P check ”| ship check / product (1
product / Deliver (1) get_product / check (1) ship / get_product (1)
Fig. 2. Left-part component (TFSM) Fig. 3. Right-part component (TFSM)
(PO 1

i no_product

ZoHd ship

no_product -
1 '® . 4 1 product 1
25 25 ship
- . 5 \, 17 \‘ get_product oy oy
Deliver |\\/u\“‘) check\v,p\-/ get_product I\\-»U\-/‘
1 1
Fig. 4. Left-part component (automaton) Fig. 5. Right-part component (automaton)

4. Deriving automata parallel composition using BALM-11

In this section we describe how to derive a binary parallel composition of two automata using
BALM-II, and we illustrate this procedure using our example from previous Section.

BALM-I1I supports AUT file format for describing automata [2]. This format is a restricted form
of BLIF Mv format. Due to the restriction of space we just mention the most important things.
First of all, we need to determine our channels, in AUT format it will be like this for the left

component:

System Informatics (Cucremuas unpopmaruka), No. 8 (2016) 37

.inputs x v uy t E

We underline that in addition to the channels of the left component that you can see in Figure 1,
we need to mention the special time channel (channel t) that correspond to the timed variable (or to
our special action 1). As for the channel E, this is also a special channel that determine which one
from the channels x, v, u, y and t is active now (while the other channels are inactive).

For the time channel t we need to introduce in addition to the input 1 one more input (due to the
fact that we need at least two values for the channel alphabet in BALM-11):

.mv t 2 1 none

When we have our automata in AUT format, the first thing we need to do is synchronizing
channels of the composing automata:
chan sync x|v]uly|t|E ul|v|t|E left timed.aut right timed.aut
left t sync.aut right t sync.aut

Then, according to the algorithm of deriving the composition of two automata [1,2], we need to
extend the alphabet of the right-component automaton to the channels X and Y:
expansion EO,E3 right t sync.aut right t exp aut
support x,v(3),u,y,t,E(5) right t exp.aut right t support.aut

The next step is deriving an intersection of two automata:
product left t sync.aut right t support.aut product timed.aut

Now we have an automaton that describes common behavior of left and right components, but its
behavior does not always correspond to our “slow environment” restriction, and in this case we
need to intersect derived automaton with the automaton that represent the language
X(UT*V)*T*Y)*. In our example we don’t need to do this. So the next step is to restrict the
automaton to external channels and special timed channel:
restriction EO,E3,E4 product timed.aut restriction timed.aut
support x,y,t,E(3) restriction timed.aut comp timed.aut

The result is shown in Figure 6 (a). One can see that after Request there can be output Deliver
after 3 + 5t or 4 + 5t tick counts, where t is arbitrary non-negative integer number. So in Figure 6

(b) you can see corresponding TFSM.

38 Shabaldina N., Gromov M. Using BALM-II for deriving parallel composition of timed finite state machines ...

Request / Deliver ({3+5t, 4+5t})

a b

Fig. 5. The composed automaton (a) and Timed FSM (b)

5. Deriving parallel composition of two TFSMs with output delays:

two approaches for extracting output delays functions

In this section we propose two approaches for extracting a set of linear functions from the

derived automaton.
5.1. Using BALM-II for extracting output delays functions

The idea of this approach is to intersect consequently the resulting automaton with the automata
that correspond to the languages X1°(1)*Y, i.e., the languages with the following property: they
contain sequences that start with any external input symbol, the end of the sequences is any external
output symbol, and between these input and output there is subsequence that corresponds to the
function{b +kt|b, k € {0,1,..,n}.

We need to mention that in this case we need to intersect not only the composition automaton,
but also its modifications that can be derived by making each accepting state as an initial state (one
by one). So we fix b and k and intersect automaton with the language X1°*%(1¥)*Y with the
composition, fixing in the composition automaton an initial state (we consider the automaton with
the language X1°*%(1¥)*Y instead of the language X1°(1%)*Y in order to avoid the case when in the
composition automaton there is a chain that corresponds to 1° and then no loop, i.e. the case when t
can only be equal to zero). Then we test the intersection using check nb BALM-II command.
This command allows answering the question: whether we can extract output delays function for the
fixed b and k or not. If in the composition automata between input and output there is a subsequence
that corresponds to the function b + - t, then the corresponding intersection will be nonblocking, it
means it has no deadlocks; otherwise, it will be blocking, so, the intersection will contain no
external output after some sequence under 1. For our example the intersection (product) of
composition automaton and the automaton with the language X13(1%)*Y will be nonblocking, the

intersection with the automaton with the language, for example, X12(1%)*Y will be blocking.

System Informatics (Cucremuas unpopmaruka), No. 8 (2016) 39

5.2. Getting output delays procedure based on analyzing cycles in automaton
Let us notice some properties of automata, derived from TFSMs:

1. Every transition, marked with input symbol, starts at final state and ends at non-final state.

2. Every transition, marked with output symbol, starts at non-final state and ends at final state.

3. Every transition, marked with 1 (a tick count), starts at non-final state and ends at non-final state.

4. If there are several non-final states si, ..., Sk, such that (si, 1,Si+1) € As, i=1, ..., k=1
(continuous non-final chain of transitions marked by 1), then s; = s;j, for every i and j, i # j (there

are no time loops, Figure 7 (a)).

However, as it was shown with the example in previous Sections, when we have parallel
composition of two TFSMs, the resulting automaton may have continuous non-final time chain with
a loop (Figure 7 (b)). Nevertheless, there cannot be intermediate time loops, i.e. loops with outgoing
edge that is marked by 1 (Figure 7(d)) or several (Figure 7(e)) time loops. We shall prove this by

the following proposition.

Fig. 7. Time chains. Here i — input symbol, o, u, a — output symbols, final states marked gray and
non-final are blank

Proposition 1. Given automaton A, describing parallel compositions of two TFSMs P and Q.
There are no states with more than one outgoing transition, marked by 1.

Proof. Indeed, suppose there is such a state (Figure 7(c)), reachable by sequence «. It means,
that by construction in automaton Ap there is state p reachable by « and automaton Aq there is

state g reachable by « as well, such that either p has two different outgoing transitions marked by

40 Shabaldina N., Gromov M. Using BALM-II for deriving parallel composition of timed finite state machines ...

1, or q has two different outgoing transitions marked by 1, or both of them have such transitions.

Neither of listed is possible. o

Corollary 1.1. There cannot be intermediate time loop in any continuous time chain of an
automaton, describing TFSM parallel composition.

Corollary 1.2. There cannot be more than one time loop in in any continuous time chain of an
automaton, describing TFSM parallel composition.

Corollary 1.3. There cannot be more than one state in continuous time chain with more than one
ingoing transitions, and the number of ingoing transitions is not more than two (Figure 7(b)).

Now we describe a procedure for counting output delays. In this procedure we shall use sets
Qsiop- Each set Qsiop contains functions (constant or linear) of output delays for transition (s, i, 0, p).
We notice that the estimation of the procedure is ~N, where N is the number of states in automaton

A, describing parallel composition of two TFSMs.

Procedure 1. Getting output delays.
Input. Automaton A, describing parallel composition of two TFSMs.

Output. Set of sets of output delays for every input-output pair possible in composition.

1.Get next final state s of automaton A. IF they are over, THEN
END.

2.Get next outgoing transitions of s. IF they are over, THEN
GOTO Step 1. Let outgoing transition be marked with input
symbol i, and the next state of the transition be sl.

3.scurr := sl; b := 0; k := 0.

4.IF scurr has more than one ingoing transition THEN
k := countLoopLength (A, scurr) (Procedure 2).

5.FOR every transition (scurr, o, p) € As, where As is
transition relation of A, o is output symbol, and p is final
state of A, DO put function b + k*t in QOsiop.

6.IF there is transition (scurr, 1, s’) € As, THEN scur := s’.

7.GOTO Step 2.

Procedure 2. countLoopLength
Input. Automaton A and non-final state s of A.
Output. Length of a loop, containing s, or N + 1, if there is no such loop, where N — number of

all states in A.

System Informatics (Cucremuas unpopmaruka), No. 8 (2016) 41

1. Scurr := s8; k := 0.
2.IF there exists transition (Scurr, 1, s’) € As, THEN Scurr := s’,
k = k + 1.

ELSE RETURN N + 1. END.
3.IF Scurr == s, THEN RETURN k, END.

6. Conclusion and Future Research Work

In this paper, we consider the procedure of parallel composition construction of TFSMs using
BALM-II and investigate different ways of extraction the set of linear functions (that describe an
infinite set of output delays) from the composition of corresponding automata. This is work in
progress, so we represent here just the first step of our investigation, considering only the case of
deriving the composition of TFSMs with output delays that are natural number or zero. We suggest
two approaches for getting output delays from the composition of corresponding automata: first
deals with BALM-II once again, and the second is based on analyzing time loops in automaton. In
our future work we’ll consider the composition of TFSMs with transitions under timeouts and the
composition of TFSMs when the output delays are infinite and represented by the set of linear

functions; this can happen in cascade composition.

References

1. N. Yevtushenko, T. Villa, R. Brayton, A. Petrenko, and A. Sangiovanni-Vincentelli. Solution of
parallel language equations for logic synthesis // In The Proceedings of the International Conference
on Computer-Aided Design. 2001. P. 103-110.

2. G. Castagnetti, M. Piccolo, T. Villa, N. Yevtushenko, A. Mishchenko, Robert K. Brayton. Solving
Parallel Equations with BALM-IlI // Technical Report No. UCB/EECS-2012-181, Electrical
Engineering and Computer Sciences University of California at Berkeley. 2012. [Electronic resource]
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-181.pdf (date of access: 21.04.2016).

3. R. Alurand D. L. Dill. A theory of timed automata // Theoretical computer science. 1994. VVol.126,
Iss. 2. P. 183-235.

4. K. El-Fakih, M. Gromov, N. Shabaldina, N. Yevtushenko. Distinguishing Experiments for Timed
Non-Deterministic Finite State Machines // Acta Cybernetica. 2013. Vol. 21, Ne 2. P. 205-222.

5. O. Kondratyeva, N. Yevtushenko, and A. Cavalli. Parallel composition of nondeterministic finite state
machines with timeouts // Journal of Control and Computer Science. Tomsk State University, Russia.
2014. Vol. 2(27). P. 73-81.

6. O. Kondratyeva, N. Yevtushenko, A. Cavalli. Solving parallel equations for Finite State Machines
with Timeouts // Trudy ISP RAN [The Proceedings of ISP RAS]. 2014. Vol. 26, Iss. 6. P. 85-98.

42 Shabaldina N., Gromov M. Using BALM-II for deriving parallel composition of timed finite state machines ...

7. http://www.uppaal.com/

System Informatics (Cucremuas unpopmaruka), No. 8 (2016) 43

UDC 004.423.4+004.415.5

The formalism for semantics specification of software

libraries

V. Itsykson (Peter the Great St. Petersburg Polytechnic University)

The paper is dedicated to the specification of the structure and the behavior of software
libraries. It describes the existing problems of libraries specifications. A brief overview of the
research field concerned with formalizing the specification of libraries and library functions is
presented. The requirements imposed on the formalism designed are established; the formalism
based on these requirements allows specifying all the properties of the libraries needed for
automating several classes of problems: detection of defects in the software, migration of
applications into a new environment, generation of software documentation. The conclusion

defines potential directions for further research.

Keywords: formal specification, software library, behavioral description, software defect.
1. Introduction

Software libraries have become the de facto standard for implementing the component-oriented
approach in which the software maker encapsulates specific functionality as a set of functions, data
types and an application user interface. Modern libraries are extremely complex objects whose
functionality is often considerably more sophisticated than that of the applications using them.

The key difference between libraries and standard applications is the manner in which they are
used. Applications are used by users who follow instructions, operating manuals and built-in help
systems, and have no need for formal specifications describing the applications. Libraries, on the
other hand, are mainly used by other programmers who, in order to integrate the functionality of
applications and libraries, need to clearly understand how a library works, how it can be used, how
it affects the application, which changes are introduced to it from version to version, etc.

How does the library developer typically specify the library? One or several of the following
methods are commonly used:

» headers with comments;

» verbal description of the library interface;

» verbal description of the behavior of individual functions;

44 V. Itsykson. The formalism for semantics specification of software libraries

« verbal description of some allowed sequences of function calls;

« examples provided by the developer.

However, none of these methods solves the problems of the formal specification of the library
semantics. The library semantics consists of two components: the semantics of individual functions
and of the allowed ways of joint use of library functions. The semantics of individual functions is
determined by the function call conditions, the obtained results, the side effects, and the impact on
the environment. Typically, the semantics of functions is described informally in the form of text
descriptions. The allowed ways of joint use of library functions are at best described by the authors
informally in the documentation accompanying the library,

In other words, the software engineering industry is currently lacking a set of tools for
formalized description of the semantics of software libraries.

Since there is no formal specification for the libraries, it is, at present, impossible to satisfactorily
solve several classes of problems:

» automatic verification of whether an application is correctly using a library. Here the term
‘correctly’ implies that the application accesses the library with satisfy a protocol specified
by the designer*

« detection of programming errors in multi-file projects using third-party libraries when the
source code is unavailable

« analysis of the compatibility between the applications and the new version of the library

« porting applications into a new library environment

Thus, the goal of this paper is to develop a formalism allowing to rigorously describe all the

necessary aspects of libraries.
2. State of the Art

The specification of libraries and services has been long studied; a sufficient number of
publications offer different approaches to describing the specifications. The first studies were
related primarily to providing interoperability, with the main goal of the specifications created in
designing the self-contained description of the interfaces of libraries and services that could be then
used in different programming languages and operating systems. Examples of such specifications
include the IDL language [1], as well as many of expansions, such as MIDL [2], and OMG IDL [3].

The main limitation of these languages for library specification is in the detailed API description

! Currently, this problem is typically solved dynamically at runtime by analyzing the return codes of library

functions, or by exception handling.

System Informatics (Cucremuas unpopmaruka), No. 8 (2016) 45

without focusing on valid options for using the libraries. This means that the emphasis is on
describing the signatures of functions and data types, while not enough attention is paid to the
semantics specification of the entire library.

One of the first studies in the field of component interface specification is the work by Allen and
Garlan [4], in which the authors reduce the problem of the interaction between the components of a
software system to the specification of interaction protocols similar to computer networking
protocols. The theory on communicating sequential processes (CSP), developed by Hoare [5], was
taken as the basis for the formalism, and then altered in an appropriate manner. The introduction of
special elements, such as ports, connectors and roles, into the formalism allowed separately
specifying various aspects of the potential interaction between the components. Using the
formalism can partially solve the problem of component compatibility with the help of the FDR
model checker [6].

Alfaro and Henzinger describe in [7] their own version of the formalism for describing the
interacting components, called the interface automata. The study uses an optimistic definition of
component compatibility, based on the use of the environment model. The authors propose formal
methods for verifying the optimistic compatibility of two interface automata.

Some studies are focused on the mechanisms of automated construction of specifications of
interfaces and libraries based on analyzing the existing software. For example, the authors of [8]
propose an approach to library specification inference based on static predicate mining. The authors
use data flow and control flow analyzes for collecting predicates characterizing the interface
functions. Another approach is described in [9], where the authors offer using dynamic output of
library specifications based on unit testing. For this purpose, library functions, interfaces, data types
and transactions are defined in terms of the Datalog formalism. Valid sequences of function calls
are specified through special predicates. Specifications inference is based on analyzing and
generalizing the results of random unit testing of the library’s functions.

One of the most interesting approaches to describing library APIs and their application rules is
the SLAM approach proposed by Microsoft Research for driver verification. SLAM uses the SLIC
language [10] for specifying the libraries and the rules of interaction between the programs and the
API. The SLIC specification is used for the instrumentation of the program and/or the library for
further dynamic or static compliance control. The lack of semantic descriptions for the library back-
ends prevents SLAM from being used for automated migration.

In his paper ‘The future of library specification’ [11], Leavens describes several indirect
approaches in addition to the known ones associated with informal documentation and formal

specification; these are specification through example uses, specification through library source

46 V. Itsykson. The formalism for semantics specification of software libraries

codes and specification through unit tests. The main conclusion reached by the author is that library
specification must combine all of these approaches.

In our previous studies [12, 13], we also proposed a formalism for library specification and a
language supporting the description of such specifications. However, the options for using the
libraries (i.e., the behavior) are described implicitly within this approach, and the language does not
allow defining function contracts and the influence of the functions on the environment to the full
extent.

Thus, at present, there is no universal approach to library specification that would allow to:
« describe the external interface of the library in detail;

» define the potential protocols for using the library;

» specify the side effects of the library, i.e., its influence on the environment;

« explicitly introduce semantic descriptions of library behavior.
3. Library Organization Specifics

The specifics of using libraries is that a library is not just a purely functional object; it can
possess an internal state and various side effects that significantly affect the opportunities for calling
individual functions.

Let us introduce a classification of function libraries in terms of their internal state.

1. Libraries without an internal state

2. Libraries with the internal state of the library

3. Library with the internal state of the object created

4

Combined libraries

The first class comprises libraries containing pure functions without side effects. These include,

for example, libraries of the mathematical functions of the standard C language library (math.h).

The second class includes libraries that preserve their state, that is to say, the behavior of
individual functions depends on the state of the library. An example of such a library is the part of
the stdlib library providing random number generation. Calling srand() sets the initial value of the
generator, while rand() returns the next random number in the sequence constructed on the basis of

the initial value.

The third class consists of libraries that preserve context within an object created by the library’s
functions. Such an object may be, for example, a newly created socket or a file descriptor. In the

first case, the context contains the parameters of the socket (IP-addresses, port numbers, state),

System Informatics (Cucremuas unpopmaruka), No. 8 (2016) 47

while in the second case, the context contains the file parameters, the opening mode and the next

read data pointer.

The fourth class is the most general, containing libraries that combine the features of the second

and the third classes.

4. Formal Specification of Libraries

A full formal specification of libraries should describe:

a signature of all functions making up the library;

a contract for each library function (preconditions, postconditions, the influence on the
environment, etc);

a behavioral model of the library taking into account all possible options for using the
library’s functions and specifying, in particular, the behavior of the library in case of invalid

use;

Based on the above, let us define the full specification of libraries as <F, L>, where

F = {Fi} is the set of library functions;

L is the behavioral description of the library.

An individual library function, Fi, is defined as <Name, Arg, Res, Pre, Post, A, CondA, D,

CondD>, where

Name is the name of the function;

Arg is the set of the formal arguments of the function;

Res is the result of the function;

Pre are the preconditions of the function expressed by the formula in the first-order logic of
the arguments Arg and Res;

Post are the postconditions of the function expressed by the formula in the first-order logic
of the arguments Arg and Res;

A is the set of semantic actions® performed by the function;

CondA is the set of conditions for semantic actions to be performed. An action Ai is
performed during the execution of a function if the expression CondA,; is true.

D is the set of launched child state machines;

CondD is the set of launch conditions for child state machines. A machine Di is launched

during the execution of a function if the expression CondD; s true.

2 Semantic actions are an abstraction for describing significant behavioral elements [16]

48 V. Itsykson. The formalism for semantics specification of software libraries

Let us represent the behavioral description of the library by a of set of parameterized extended
finite-state machines (EFSM): L = {L, S1(q,P), ..., Sn(q,P) ()}, where

« L is the main extended finite-state machine describing the behavior of the entire library;

« Siisani" child EFSM launched if certain conditions are fulfilled;

« the parameter q is the initial state of the child finite-state machine;

» P is the optional parameter of the child finite-state machine

The state of the main state machine corresponds to the state of the library, and the state of the
child ones corresponds to the state of the objects created. The stimuli forcing the machine to pass
from one state to another are the calls of library’s API functions.

An individual machine is defined as a modified EFSM <Q, Qqo, X, V, C, T>, where

» Qs the set of control states of the machine (the states of the library objects);

* Qo is the non-empty set of initial states of the machine. Several initial states can exist for
child state machines, since initial conditions may be different when an instance of the
machine is created;

« Xis the set of finish states. Child machines are destroyed after reaching these states;

» Vs the set of internal variables of the machine;

. Cis the set of function calls acting as stimuli, C; is the call of an i" function; C; € F ;

« C#is the set of semantic actions initiated by the function launch when C£°"44 is true;

« CP is the set of child state machines launched by the function when that C£°"4? is true;

« T is the transition relation.

Due to limitations of space, the formalism is presented without going into too much detail. Such
issues as the specification of invalid behavior, the default actions, the data types, etc., have been left
outside the scope of our investigation. These issues will be discussed in more depth in other studies.

Actually, from a developer’s perspective, the behavioral description of libraries is better
represented in graphical form rather than from the standpoint of set theory.

Fig. 1 shows an example of graphically describing the client side of the TCP-socket library. The
solid line indicates the transitions of the machine, and the dashed line indicates the launches of the
child machines; the finish states are highlighted in red. The machine “L” describes the overall
behavior of the bsd-socket library, which, in contrast to WinSock, does not require initialization. A
side effect of calling socket() is the creation of a new machine “P”, corresponding to the newly
created socket, with its own life cycle. It should be noted that several machines can be created,
differing only in the launch parameter of the child machine (an element corresponding to calling
socket()).

System Informatics (Cucremnas unpopmaruka), No. 8 (2016) 49

Fig. 2 presents a more complex example, showing a graphic model of the server side of the TCP
protocol of the bsd-socket library. In addition to the top-level machine corresponding to the library
(“L”), the figure shows two families of machines: the first (“P”) encapsulates the properties of the
listening sockets, and the second one (“S™) those of the server sockets created.

Both examples demonstrate only the behavioral description of libraries, without specifying a set

of functions.

) |
[I] socket E] close Rech

+ = Created

connect

Established

w

Bound

Initialized

shutdown

Puc. 1. An example of a simple machine corresponding to the client side of the TCP protocol of the
bsd-socket library

[I] socket E] close @ recv
S ¢ P bind 5 p
- —— = reate > oun :

Initialized il Established

c — ’
= I
E }' ﬁ ” | = nd
E o‘-bo o"b 3 I,
2| accept ¢ =
[3
‘ 5
Listening
shutdown

Puc. 2. 2. Example of a machine describing the server side of the TCP protocol of the bsd-socket

library

Obviously, a library developer requires convenient tools for defining the formalisms introduced.
We propose using special language for describing the sets of library functions, and an object-

oriented graphical editor for the behavioral description of the library.

5. Prospects of Using the Developed Formalism

50 V. Itsykson. The formalism for semantics specification of software libraries

5.1 Constructing Specifications

Formal specifications could be constructed in one of two ways: with the help of library designers
and of developer communities.

In the first case, the library specification is created by its developer. A language for describing
library specifications (similar to the previously developed PanLang language [13]) is formed for
this purpose; all the properties of the library expressed by the formalism developed can be defined
by means of that language.

In the second case, the extraction methods will be based on exploiting the international
programming experience (Empirical Software Engineering), with the structural and the behavioral
components of the specifications stemming from the analysis of software repositories (Mining
Software Repositories). In this case, only a skeleton of the specification is formed, with the
remaining part to be refined manually.

The language for describing specifications corresponding to the formalism presented, and the
methods for analyzing software repositories with the purpose of obtaining specification skeletons
are currently being developed by the author’s research team; describing them is beyond the scope of

this paper.
5.2 Using Formal Library Specifications

The formalism developed and described in this paper can be used in the future for solving a wide
range of research and engineering problems, including automated defect detection in complex
multi-component software projects, automated porting of applications to new libraries and
automated generation of software documentation.

Library specifications are used as part of the solution for the problem of detecting software
defects with the purpose of reducing the dimension of the detection problem. This is achieved by
approximating the behavior of libraries and library functions by integrated visible behavior set in
the specification. In this case, the library function is replaced by a system of predicates based on
contracts and error states defined in the specification. This approach is used for the BMC analyzer
Borealis, developed in the Program Analysis and Verification Laboratory of the Peter the Great St.
Petersburg Polytechnic University [14]. A similar approach is used for the Aegis tool based on
abstract interpretation, being developed in the same laboratory [15].

The task of automated migration of software to new libraries requires not only the external
specification of the library’s behavior, but also a partial description of the internal semantics of the

library. A semantic domain of the library is built based on the description of the internal semantics,

System Informatics (Cucremuas unpopmaruka), No. 8 (2016) 51

and can be then used for checking library compatibility and automatically constructing the

migration procedure. [16]
6. Conclusion

The study presented the results on creating formalism for software library specification. The
formalism was built taking into account the entire range of problems that could be solved through it.
The main idea was in using the same formal specification as a basis for several methods of software
engineering: detection of software defects, automated software migration and software
documentation generation. Due to limited space, the formalism was presented without going into
details.

A direction for the future research is developing language support for the proposed formalism
and implementing converters of language descriptions for the existing tools of error detection and

software migration.
References

1. D. Lamb. IDL: sharing intermediate representations. ACM Trans. Program. Lang. Syst. 9, 3 (July
1987), 297-318. DOI=http://dx.doi.org/10.1145/24039.24040

2. https://msdn.microsoft.com/en-us/library/aa367091

3. http://www.omg.org/gettingstarted/omg_idl.htm

4. R. Allen and D. Garlan. Formalizing architectural connection. In Proceedings of the 16th international
conference on Software engineering (ICSE '94). IEEE Computer Society Press, Los Alamitos, CA,
USA, 71-80.

5. Xoap Y. BzaumogeiicTByromue nocienoBaTenbHble mpoueccbl. — M.: Mup, 1989. — 264 c.

6. AW. Roscoe, Modelling and verifying key-exchange protocols using CSP and FDR, Proceedings of
1995 IEEE Computer Security Foundations Workshop, IEEE Computer Society Press, 1995.

7. L. de Alfaro and T. Henzinger. Interface automata. In Proceedings of the 8th European software
engineering conference held jointly with 9th ACM SIGSOFT international symposium on Foundations
of software engineering (ESEC/FSE-9). ACM, New York, NY, USA, 2001, 109-120.
DOI=http://dx.doi.org/10.1145/503209.503226

8. M. Ramanathan, A. Grama, and S. Jagannathan. Static specification inference using predicate mining.
In Proceedings of the 28th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI '07). ACM, New York, NY, USA, 123-134.
DOI=http://dx.doi.org/10.1145/1250734.1250749

9. S. Sankaranarayanan, F. Ivanci¢, and A. Gupta. Mining library specifications using inductive logic
programming. In Proceedings of the 30th international conference on Software engineering (ICSE
'08). ACM, New York, NY, USA, 131-140. DOI=http://dx.doi.org/10.1145/1368088.1368107

52

10.

11.

12.

13.

14.

15.

16.

V. Itsykson. The formalism for semantics specification of software libraries

Thomas Ball and Sriram K. Rajamani. SLIC: a Specication Language for Interface Checking (of C).
Microsoft Research, Technical Report, MSR-TR-2001-21. 2002

Gary T. Leavens. The future of library specification. In Proceedings of the FSE/SDP workshop on
Future of software engineering research (FOSER '10). ACM, New York, NY, USA, 211-216.
DOI=10.1145/1882362.1882407

Itsykson V. M., Zozulya A.V. The formalism for description of the partial specifications of program
envinroment components. St. Petersburg State Polytechnical University Journal. Computer Science.
Telecommunication and Control Systems. N 4, 2011. — SPb: Publishing of Polytechnic University -
pp. 81-90.

Itsykson V.M., Glukhikh M.I. A program component behavior specification language. St. Petersburg
State Polytechnical University Journal. Computer Science. Telecommunication and Control Systems.
N 3, 2010, SPb: Publishing of Polytechnic University cc. 63-71.

M.Kh. Akhin, M.A. Belyaev, V.M. Itsykson. Software defect detection by combining bounded model
checking and approximations of functions / Automatic Control and Computer Sciences, December
2014, Volume 48, Issue 7, pp 389-397

V. Itsykson, M. Moiseev ; V. Tsesko ; A. Zakharov. Automatic defects detection in industrial C/C++
software. In proceeding of Software Engineering Conference in Russia (CEE-SECR), 2009 5th Central
and Eastern European. IEEE, Moscow, 07 DOI=10.1109/CEE-SECR.2009.5501189, pp 50-55
Itsykson V.M., Zozulya A.V. Automated Program Transformation for Migration to New Libraries.
Software Engineering. 2012. N 6. pp. 8-14

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 53

VIIK 004.8
Formalisms for conceptual design of information systems*

Anureev I.S. (Institute of Informatics Systems)

A class of information systems considered in this paper is defined as follows: a system
belongs to the class if its change can be caused by both its environment and factors inside
the system, and there is an information transfer from it to its environment and from its
environment to it. Two formalisms (information transition systems and conceptual transi-
tion systems) for abstract unified modelling of the artifacts (concept sketches and models)
of the conceptual design of information systems of the class, early phase of information
systems design process, are proposed. Information transition defines the abstract unified
information model for the artifacts, based on such general concepts as state, information
query, answer and transition. Conceptual transition systems are a formalism for conceptual
modelling of information transition systems. They defines the abstract unified conceptual
model for the artifacts. The basic definitions of the theory of conceptual transition systems
are given. A language of conceptual transition systems is defined.

Keywords: information system, information transition system, conceptual structure, on-
tology, ontological element, conceptual, conceptual state, conceptual configuration, concep-

tual transition system, conceptual information transition model, transition system, CTSL
1. Introduction

The conceptual models play an important role in the overall system development life cycle
[1]. Numerous conceptual modelling techniques have been created, but all of them have a
limited number of kinds of ontological elements and therefore can only represent ontological
elements of fixed conceptual granularity. For example, entity-relationship modelling technique
[2] uses two kinds of ontological elements: entities and relationships.

The purpose of the paper is propose formalisms for abstract unified modelling of the artifacts
(concept sketches and models) of the conceptual design of information systems (IS for short)
by ontological elements of arbitrary conceptual granularity. In our two stage approach the
informational and conceptual aspects of the system that the conceptual model represents are
described by two separate formalisms. The first formalism describes the informational model

of the system, and the second formalism describes the conceptual model of the informational

Partially supported by RFBR under grants 15-01-05974 and 15-07-04144 and SB RAS interdisciplinary integration project
No.15/10.

54 Anureev I.S. Formalisms for conceptual design of information systems

model.

An information transition system (ITS for short) is an extension of an information query
system (IQS for short) characterized additionally by the exogenous and endogenous transition
relations specifying transitions on states. The exogenous transition relation models change of
an information system caused by its environment. It associates queries with binary relations
on states called transition relations and answers returning by state pairs from these transition
relations called transitions. The endogenous transition relation models change of an information
system caused by factors inside the system. It is defined as a transition relation with answers

returning by transitions of the transition relation.

A wide variety of information systems is modelled by ITSs in the information aspect, in-
cluding database management systems with transitions initiated by queries, expert systems
with transitions initiated by operations with facts and rules, social networks with transitions
initiated by actions of users in accordance with certain communications protocols, abstract
machines specifying operational semantics of programming languages with transitions initiated
by instructions of abstract machines, verification condition generators specifying axiomatic se-

mantics of programming languages with transitions initiated by inference rules and so on.

We consider that the second formalism used for for conceptual modelling of I'TSs must meet

the following general requirements (in relation to modelling of a ITS):

1. It must model the conceptual structure of states and state objects of the I'TS.

2. It must model the content of the conceptual structure.

3. It must model information queries, information query objects, answers and answer objects
of the 1QS.

4. It must model the interpretation function of the ITS.

5. It must be quite universal to model typical ontological elements (concepts, attributes,
concept instances, relations, relation instances, individuals, types, domains, and so on.).

6. It must provide a quite complete classification of ontological elements, including the
determination of their new kinds and subkinds with arbitrary conceptual granularity.

7. The model of the interpretation function must be extensible.

8. It must have language support. The language associated with the formalism must define
syntactic representations of models of states, state objects, queries, query objects, answers
and answer objects and includes the set of predefined basic query models.

9. It must model the change of the conceptual structure of states and state objects of the

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 55

ITS.

10. It must model the change of the content of the conceptual structure.

11. It must model the transition relations of the I'TS.

12. The model of the exogenous transition relation must be extensible.

As is shown in [3], conceptual configuration systems (CCSs for short) meet the seven re-
quirements in relation to IQSs. Comparison of CCSs with the abstract state machines [4, 5]
which partially meet these requirements was made in [3|. In this paper we present an extension
of CCSs, conceptual transition systems (CTSs for short) as the formalism satisfying the all
above requirements.

The paper has the following structure. The preliminary concepts and notation are given in
section 2. The basic definitions of the theory of CTSs are given in section 3. The language
CTSL of CTSs is described in section 4. Semantics of executable elements in CTSL is defined

in 5. We establish that CTSs meet the above requirements in section 6.

2. Preliminaries

2.1. Sets, sequences, multisets

Let O, be the set of objects considered in this paper. Let S; be a set of sets. Let I, Ny,
N, and B; be sets of integers, natural numbers, natural numbers with zero and boolean values
true and false, respectively.

Let the names of sets be represented by capital letters possibly with subscripts and the
elements of sets be represented by the corresponding small letters possibly with extended sub-
scripts. For example, i,; and 4,,, are elements of I,;.

Let S, be a set of sequences. Let s, (,), S;.{«}, and s;, denote sets of sequences of the forms

(Ob1s -3 Obnse)s 1015 -+ Obingg b5 AN Op1, - - ., Op.nyy from elements of s,. For example, I, () is a
set of sequences of the form (ins1, .- ., intn,), and iy is a sequence of the form i1, ..., It -
Let 0p1,. .., 0bny, denote op1,. .., 00,0 Let S¢(my)s Stfinw), and S¢sn,, denote sets of the

corresponding sequences of the length ng.

Let op1 <[s,] Ob2 denote the fact that there exist op..1, 0p+2 and op.3 such that s, =
Ob.x.1, Ob.1; Ob.x.2, 0b2, Opx3, OI Sqg = (Ob.*.h Opb.1, Ob.x.2, 0b.2, 0b.*.3)-

Let [op 0p1 <= 0p2] denote the result of replacement of all occurrences of oy in 0, by 0p2.
Let [sq 0p <=4 0p1] denote the result of replacement of each element oy in s, by [0p.1 05 <= 0p2].

For example, [(a,b) x <=, (f z)] denotes ((f a), (f b)).

516) Anureev I.S. Formalisms for conceptual design of information systems

Let [len s,] denote the length of s,. Let und denote the undefined value. Let [s, . n:] denote
the n;-th element of s,. If [len s,] < ny, then [s, . ny] = und. Let [s; + s41], [0p - + 4] and
[s; + . 0p) denote 0y, Op.s.1, Op, Op and oy, 0p, Where s, = op, and s, 1 = 0p.1.

Let [and s,] denote (cpq1 and ... and cpap,), where s, = a1, .- Cndn,, and [and] denote
true. In the case of n; = 1, the brackets can be omitted.

Let op1,0p2 € Sy US,. Then oy =4 o0p2 denote that the sets of elements of 0,1 and oy

coincide, and o0p1 =, 052 denote that the multisets of elements of 0,1 and o5 coincide.
2.2. Contexts

The terms used in the paper are context-dependent.

Let Ly be a set of objects called labels. Contexts have the form [op.], where the elements
of oy, called embedded contexts have the form: I:0p, lp: or 0.

The context in which some embedded contexts are omitted is called a partial context. All
omitted embedded contexts are considered bound by the existential quantifier, unless otherwise
specified.

Let opop.«] denote the object o, in the context [op.].

The object 'in oy, 0.+ can be reduced to ’in [op] in [op.] if this does not lead to ambiguity.
2.3. Functions

Let F), be a set of functions. Let A,, and V; be sets of objects called arguments and values.
Let [f arg.] denote the application of f,, to a,g..

Let [support f,] denote the support in [f,], i. e. [support f,] = {ary : [fn arg] # und}.
Let [image f, s denote the image in [f,, s], . e. [image f, si] = {[fn arg] : arg € si}. Let
[image f,] denote the image in [f,, [support f,]]. Let [narrow f, s;] denote the function f, ;
such that [support f,1] = [support f,1]Nse, and [fr1 arg] = [fn arg| for each a,, € [support f,1].
The function f,; is called a narrowing of f,, to s;. Let [support f,1] N [support fno] = 0. Let
fn1 U fno denote the union f, of f,; and f,o such that [f, a,y] = [fu1 @] for each a,, €
[support fn1], and [f, arg] = [fn2 arg] for each a., € [support fo]. Let fn1 C fn2 denote the
fact that [support f,1] C [support fns], and [fn1 arg] = [fn2 arg] for each a,, € [support f,1].

An object u, of the form a,, : v; is called an update. Let U, be a set of updates. The objects

arg and vy are called an argument and value in [u,].

Let [fn up| denote the function f,; such that [fn,1 ary] = [fn arg] if arg # argu,], and

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) Y

[fn1 arglup]] = viuy]. Let [fn wp, tpsn,] be a shorteut for [[f, up] wpan,]- Let [fr arg.Grga. - ..
rg.p, 2 01] be a shorteut for [fn arg < [[fn arg] arg1. ... Grgm, - vi]]. Let [up.] be a shortcut for
[f1 up], where [support f,] = 0.

Let C,,q be a set of objects called conditions. Let [if c,q then oy else 0p5] denote the object

op such that

e if ¢,,q = true, then o, = 0.1

o if ¢,,g = false, then o, = op5.

2.4. Attributes and multi-attributes

An object 0p e of the form (u,.) is called a multi-attribute object. Let O, be a set
of multi-attribute objects. The elements of [0y, W <. a,4[w]] are called multi-attributes
in [opma]. Let Opma be a set of multi-attributes. The elements of [0y w . yw]] are
called values in [opme]. The sequence w, . is called a sequence in [0p.q] and denoted by
[sequence in 0p.ma|. An object vy is a value in [au.m, Op.ma] If Ob.ma = (Ups1s Qttm * V1, Ups2) for

some Up .1 and up 2.

An object 0y, is an attribute object if the elements of [0y W = arg[w]] are pairwise
distinct. Let Oy, be a set of attribute objects. The multi-attributes in [o,] are called attributes
in [op.a]. Let Ay be a set of objects called attributes.

Let [function op4), [0p.q a1t), and [support o, 4] denote [[sequence in op4]], [[function opq) aul,
and [support [function op4)].

Let [seq—to—att—obj s,] denote (1 : [s, . 1],...,[len sy] : [sq . [len s4]]). Let opq =o (1 :

Ulgy ooy Mg & Upp,). Then [att—obj—to—seq op4] denote (vp1, ..., U,)-

3. Basic definitions of the theory of conceptual transition systems

Conceptual transition systems (CTSs) are transition systems in which states are conceptual
configurations, and transition relations are binary relations on conceptual configurations. In
this section the basic definitions of the theory of conceptual transition systems are presented.

The defined structures of CTSs are constructed from atoms and, thus, defined implicitly in

[[Atm]] :

3.1. Information transition systems

o8 Anureev I.S. Formalisms for conceptual design of information systems

Let Sy be a set of objects called states. An element ¢,, of the form (sy.1, i) is called a
transition. Let T}, be a set of transitions. The states s;1 and sy are called input and output
states in [[t,,].

Let S5, be a set of query systems. An object sy, of the form (Ss.q, trnrit.ex, trnriten) 1S an
information transition system if ¢, ,1t.c0 € Qr X Ans X Ste X Str = By, trnriten € Ans X Syt X Sy —
By, and for all ¢, € @, there exists s;; € Sy such that [value g, s;] # und, or there exist
Si1 € Sy, S € Sy and a,s € Aps such that [t iper @ Ans Sua Sue] = true. Let Sg,; be a
set of information transition systems.

The system s; , is called a query system in [ss;]. The function ¢,,, ... is called an exogenous
transition relation in [[ss,;]. The function t,, 4., is called an endogenous transition relation in
Sy be shorteuts for [t it.ex Gr Qns St Sw.o] = true

[[Ss.t.i]]- Let s4.1 —qr, S0 and Sy —

Ans ans

and [trnrit.en Gns St St = true, respectively.

The elements of Sy [ssq], Ob.slSs.qls QrlSsqll, Ovqlssqll, Anslssql and Opo[ssq] are called
states, state objects, queries, query objects, answers and answer objects in [s,], respectively.
The function value[s;,| is called a query interpretation in [s]

A query ¢, is an information query in [sg.] if [value g, sy # und for some sy. A query g,
is a change query in [ss4;] if [trnriter @ Qns Ste1 Siro] = true for some Sy1, Sy and ays.

A system s, executes tp, if Sy1[[trn] —gan. Ste2ftrn] for some ¢, and ans, or Siq[tin] —an,

Ans

Syr.o[trn] for some a,s. A system sg,,; transits from s;1 to sy0 if 44, executes (sy.1, Su.o)-
3.2. Substitutions, patterns, pattern specifications, instances

A function s, € E;, — Ej, is called a substitution. Let Sy be a set of substitutions. A
function subst € S, x E;. — FEj. is a substitution function if it is defined as follows (the first
proper rule is applied):

o if ¢, € [support sp], then [subst s, €] = [sp e;
o [subst sp Q| = Atm;
[]

subst sy Iy, : €] = [subst sy, ly] : [subst sy, e];

o [subst s,) :: nosubst| = ey

o [subst sy € :: Spy| = [subst sy €] i [subst sp Spel;

[
[
[
o [subst s, €; :: (nosubstexcept e;.)] = [subst [narrow s, {e;.}] el;
[
o [subst sp (€14)] = ([erx w <= [subst s, wl]);

[

o [subst sy €1..] = [e1. w <=, [subst s, w]].

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 59

The sort nosubst specifies the elements to which the substitution s, is not applied. The sort
(nosubstexcept e;..) specifies the elements to which the narrowing of the substitution s, to the
set e, is applied. An element p; is a pattern in [e;, sp] if [subst s, p] = €;. Let P, be a set of
patterns. An element i, is an instance in [p;, sp] if [subst sy p] = ins- Let I, be a set of
instances.

Let V,. and V,.; be sets of objects called element variables and sequence variables, respectively.
An element p, ; of the form (py, (vy4), (vr54)) 1 a pattern specification if {v, ;. }N{v,.} = 0, and
the elements of {v,.} U {v,s.} are pairwise distinct. Let P, ¢ be a set of pattern specifications.

The objects p;, (vr4), and (v,.5.) are called a pattern, element variable specification, and
sequence variable specification in [p;s]. The elements of v, , and v, s, are called element pattern
variables and sequence pattern variables in [p;], respectively.

An element i,y is an instance in [pys, sp] if [support sy = {v..}, [sp v.] € E; for v, €
{Vrs} \{vrss}, [s6 vr] € Epi for v, € {v, 5.}, and 4,4 is an instance in [py, sp]. An element 4,4
is an instance in [p; s] if there exists s, such that i, is an instance in [py.s,]

A function m; € E; X P,; — Sy is a match if the following property holds:

o if [my e; py.s] = sp, then e; is an instance in [p;s, sp].
An element i,y is an instance in [pss, my, Sp]) if [My inst Prs] = Sp. An element i, is an

instance in [p; s, m] if there exists s, such that i, is an instance in [py.s, my,).
3.3. The transition relation

Let Ss.. be a set of conceptual configuration systems. Let C,; be a set of conceptual
configurations. An element t,,, of the form (¢, 1, cnr2) is called a transition. Let T, be a set
of transitions. The configurations ¢,z and ¢, s are called input and output configurations in
[trn]-

The transition relations of a IQS is modelled by the transition relation t,,,.;; € T,, — B;
based on atomic exogenous transition relations, transition rules, atomic endogenous transition
relations, the exogenous transition order and the endogenous transition order. The exogenous
transition relation of the IQS is modelled by atomic exogenous transition relations and tran-
sition rules. The endogenous transition relation of the IQS is modelled by atomic endogenous
transition relations.

Transitions from a configuration ¢, in [t.,,1] are executed by a program in [c,s]. An

element sequence p,, is a program in [c,f] if [c,r (0 : () == state :: program] = (p,4). Let

60 Anureev I.S. Formalisms for conceptual design of information systems

P,, be a set of programs. Thus, programs in configurations are specified by the conceptual
(0 : () == state :: program from the substate program of the configurations. A program in
lens]l is empty if [e,r (0 : () == state :: program| = (). Atomic exogenous transition relations
and transition rules define transitions executed by the first element of the program. Atomic

endogenous transition relations define transitions executed in the case of the empty program.

Let ¢np1 — Cnp2 be a shortcut for [ty Cop1 Cnp2] = true. Transitions can return values.
An element v; is a value in [c,f] if vy = [cnp (0: () =2 state :: value]. An element v; is a value
in [tyn] if copaten] = cng2lten], and v, is a value in [e,p2[tn]]. Thus, the returned values
in transitions are specified by the conceptual (0 : ()) :: state :: value from the substate value
of output configurations of the transitions. A transition t,, returns a value v; if v; is a value
in [t,n]. A transition t,, returns (or generates) an exception e,. if e,. is a value in [t,,]. A
transition t,, is normally executed if ¢,,, returns no exception.

The special variables conf :: in and val :: in reference to the current configuration and the
value in the current configuration, respectively, in the definitions below.

An object t,p, rit.e. Of the form (py, (v,4), (Urs.4), fr) is an atomic exogenous transition relation
if (pr, (Urs), (Vr.54)) is @ pattern specification, conf ::in & {v..} U{v, 54}, val 2 in ¢ {v..} U
{Vrss}t, fn € Sy = (Ton — By), [support f,] = {sp : [support sp] = {v,s} U {54} U {conf
in,val : in},[sy v] € Ejforv, € {v..} and [sp v,| € Ep. for v, € {vesi}t}. Let Topriten
be a set of atomic exogenous transition relations. Let c,p1 —f, Cnr2 be a shortcut for
[[f Sb] Cnfa Cnfa) = true.

The objects p;, (vr4), (vrsx), and f, are called a pattern, element variable specification,
sequence variable specification, and value in [, .i.e:]. The elements of v,., and v, 4. are called

element pattern variables and sequence pattern variables in [[t,, 1it.c.], respectively.

A function t,, rit.exs € Ei — Trnriter 1S called an atomic exogenous transition specification
if [support tipirers) is finite. A relation t,, e, 1S an atomic exogenous transition relation
in [tenriters) if [Ernriters Mm] = trnrites for some n, € E;. An element n, is a name in
[[trn.rlt.ea:atrn.rlt.ew.s]] i [trn.rlt.eac.s nm] = trn.’rlt.em~ An element Ny, @ Nalne n Htrn.rlt.em.s]] if N

is & name in [tynriter, trnritess] for some top, ripes. Let cup1 —n,..s, Cnp2 be a shortcut for

Sb
Cnfl —>fnﬂ[trn.rlt4ez.s nm“]:'sb Cnf2

An element 7, of the form (pt, (vr4), (Ursx), (bg)) is a transition rule if by € Ej ., (pt, (Vr4),
(vrs.«)) is a pattern specification, conf ::in ¢ {v..} U{v.s4}, and val 2 in & {v,.} U {v,s.}

Let R; be a set of transition rules.

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 61

The objects p, (vrx), (vr54) and by are called a pattern, element variable specification,
sequence variable specification and body in [r;]. The elements of v,. and v, ;. are called
element pattern variables and sequence pattern variables in [[r;], respectively.

An attribute element 7, is called a transition rule specification if [support r;] C E;, and
limage r;5] C E;. A rule ry is a rule in [ry] if [r.s n,) = 7 for some n,, € E;. An element n,,
is a name in [ry, 7] if [ri.s 7] = r. An element n, a name in [r;s] if n,, is a name in [ry, 4]
for some r;.

A function t.,pit.en € {Cny : [cnp (0 :()) == state :: program] = ()} x Cpy — By is called an
atomic endogenous transition relation. Let T, ..., be a set of atomic endogenous transition
relations.

A function t,,,it.ens € Ep — Trpriren 18 called an atomic endogenous transition specifi-
cation if [support t.p.i.en.s| is finite. A relation t,,,y.e, is an atomic endogenous transition
relation in [t itens] if [Ernritens Mm] = trnriten for some n, € E;. An element n,, is a
name in [trn rit.ens trnrit.en.s] if [Ernritens Mm) = trniren. An element n,, a name in [t rir.en.s]
if n,, is a name in [ty riten, trnritens) fOr some top, pipen. Let ¢pp —n,. cnp be a shortcut for
[trnritens Tnl Cup Cupa] = true.

Let [support o rit.ex.s), [SUpport tr isen.s] and [support r;s] be pairwise disjoint.

An element 0,44y Of the form (n,,.) is called an exogenous transition order in [,y it.cx.ss
Tis] i {nma} C [support typ, ip.ee.s|U[support r 5|, and the elements of n,, , are pairwise distinct.
It specifies the order of application of atomic exogenous transition relations and transition rules.

An element 0,4 ¢ en Of the form (n,,) is called an endogenous transition order in [t,,, i.en.s]
if {nm«} C [support tpritens), and the elements of n,, . are pairwise distinct. It specifies the
order of application of atomic endogenous transition relations.

The information about the transition rule specification and the transition orders is stored in
the substate transition of the configurations. The conceptuals (0 : rules) :: state :: transition,
(=1 : exogenous,0 : order) :: state :: transition and (—1 : endogenous,0 : order) :: state ::
transition define the transition rule specification, exogenous transition order and endogenous
transition order. The conceptual (0 : history) :: state :: transition defines the substates that
store the information about transitions preceding the transition to the current configuration.

An element ¢, is consistent With (£,y,.rit.cx.s, s trn.rit.en.ss Ordtrn.cxs Ord.trn.en) i the following
properties hold:

o if [support trpn ritex.s] N [support [cap (0 : rules) :: state :: transition]] = 0;

62

Anureev I.S. Formalisms for conceptual design of information systems

o if [support oq.trn.en] N [support [cnr (0 : rules) :: state :: transition]] = 0;

o if r; s Ccnr (0:rules) :: state :: transition];

o if N1 <[oruimen] Mm2s ANd N1, Mo € [cnp (=1 @ ewogenous,0 : order) :: state ::
transition|, then 1,1 <[, ; (~Liezogenous,0:order):state:transition]] Mm.2}

o if Nyt <[o,uimen] Mm2s A0A N1, Mo € [cnp (=1 @ endogenous,0 : order) :: state ::

transition], then Nma <[[[cnf (—1:endogenous,0:order)::state::transition]] Tm.2-

Let e, # cny be a shortcut for [c,r program.(0 : () : (er.)]. Let e . # v # cnp be a

shortcut for [c, s program.(0: () : (e4), value.(0: ()) : vy].

Let [add—history c,f1 to c,r2]| denote [narrow c,r1 [support cupi] \ {[cnp1 (0 : history) :

state :: transition|}] U [narrow cpp1 {[cap1 (0 : history) :: state :: transition|}]. A function

trn.rlt € Cnflc X Onf — Bl is a transition relation in Htrn.rlt.e:c.57 Tl.ss trn.rlt.en.57 Ord.trn.exs Ord.trn.en]]

if it is defined by the following definition rules (the first proper rule is applied):

o if ¢, is not consistent with (t,y.1t.ca.s, s, trnrit.en.ss Ord.trn.exs Ordtrnen)s then [t coy
Cnpa) = false;

oif trnrites = [trnritens Mml, € is an instance in [pes[trnriteal], M, spl, €1« # cny
~FrmsyU(con finien pvalzinlens]) €lx1 FE U # Cop1, and vy # und, then (execute—
exogenous—transition, ey, (M Nms)), €lx F Cnf = €1x1 F U F Cofpa;

oif trnrites = [trnaitess M), € s an instance in [prs[trnrites]: M, 58], €1s # Cng
i spU(con frzinzcn p alzsinzv fens]) Elx.1 # Upa # Cny1, then (ezecute—exogenous—transition,
er, (Mm Nmx))s s # Cnp — (execute—exogenous—transition, e, (Nm.)), €1« # |add—
history cpp1 to cnyl;

o if tryriter = [trnarites.s Mm), and e; is not an instance in [py s[trn.rit.e2], M), then (execute—
exogenous—transition, e€;, (Nm, Nmx)), €1« F# Cnp — (execute—exrogenous—transition,
€, (nm*)), elx 7 Cnfs

o if 1, = [[cnf (0 : rules) :: state :: transition| n,,], and e is an instance in [p; s[r1], M, so],
then (execute—exogenous—transition, e, (N Nmx)), €1x F Cnp — ([Subst s, U (conf ::
in: cpp,val in ufenr]) balri]], (execute—exogenous—transition, e, (N M), (€1.4),
Cnf); e« 7 Cnfs

o if v; # und, then (execute—exogenous—transition, €;, (N Nm.x), (€141), Cnf1)s €1x F U
Cnf — €1 F UL H Cop;

o (execute—exogenous—transition, (N, M), €, (€1x1), Cnf1), €x # und # cpy —

(execute—ezogenous—transition, e;, (Nm.)), €1 # [add—history c,s to cpfal;

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 63

o if r; = [[cnf (0 : rules) :: state :: transition] ny,|, and e; is not an instance in [py 5[], m.],
then (execute—exogenous—transition, e;, (N Nms)), € # Cnp — (execute—
exogenous—transition, e;, (Mm+)), €s # Cnf;

o (execute—exogenous—transition, e, (), €. # oy — €. # und # cyy;

oif toyriten = [trnritens Mml, Cnf —nn, €Ls F U # Cnp1, and v # und, then (execute—
endogenous—transition, (N, Num..)) # Cof = €1x F# VI # Cof1;

oif tipriten = [trnritens Nml, and ¢,y —n,, € €. F# Ung # Cnp1, then (execute—
endogenous—transition, (Npy Nm.)) # Cnp — €1 €1« F Und F Cnf1s

oif toriten = [trnritens Nm), and Cof —>p, F# Una # Cny1, then (execute—endogenous—
transition, (N, Nm.)) # oy — (execute—endogenous—transition, (Npy,.)) # |add—
history cpf1 to cnfl;

e ¢, e F# Cnp — (execute—exogenous—transition, e, [c,r (—1 : exogenous,0 : order) ::
state :: transition]), e, # cay;

o # ¢,y — (execute—endogenous—transition, [c,s (—1 : endogenous,0 : order) :: state ::

transition]), # cuy.
3.4. Conceptual transition systems

An ObjeCt Ss.t.c of the form (Ss.c.catrn.rlt.ez.sa Tlss brn.rit.en.s, Ord.trn.ex Ord.trn.en) is a conceptual
transition system if s, .. is a conceptual configuration system, t,, rit.cx.ss Tl.ss trnrit.en.ss Ord.trn.cz
and 0,q4m.en are an atomic exogenous transition specification, transition rule specification,
atomic endogenous transition specification, exogenous transition order and endogenous transi-
tion order in [Ayy,[$s.cc]], and the sets [support t,, is.ce.s|, [Support tipn vis.en.s| and [support ;]
are pairwise disjoint. It specifies the transition system (C, ¢[Ss.c.c]s trnrit[Ernritex.s, Tis, trnriten.ss
Ord.trn.cxs Ordtrn.en, Mi[Ss.cc]]). Let Ssiec be a set of conceptual transition systems.

The elements of Atm [[Ss.c.c]]a El [[ss.c.c]]a Cncpl [[Ss.c.c]]a Stt [[Ss.c.c]]a Onf [[Ss.c.c]] and Trn [[Atm [[ss.c.c]]]]
are called atoms, elements, conceptuals, states, configurations and transitions in [ss.]-

The ObjeCtS Lrn.rit.ez.ss Tl.ss brnrlt.en.sy Ordtrn.exs Ordtrn.en, intr.a.s[[ss.c.c]]a df.s[[ss.c.c]]; Ord.intr [[Ss.c.c]]
and my[ss..] are called an atomic exogenous transition specification, transition rule speci-
fication, atomic endogenous transition specification, exogenous transition order, endogenous
transition order, atomic element interpretation specification, element definition specification,

element intepretation order and match in [ss¢.].

The function Lrn.rit [[trn.rlt.e:v.sa Tlss rn.rit.en.s) Ord.trn.exs Ord.trn.en, mt]] is called a transition rela-

64 Anureev I.S. Formalisms for conceptual design of information systems

tion in [[Sgrc]. A system sg,. executes t,, if sy1[tin] = Su2[trn]- A system sg; . transits from
Sit.1 t0 Sie2 if 540 executes (sp1, Su.2).

An element ¢; is interpretable in [ss;.] if ¢ is interpretable in [sscc[ss..c]]-

An element e¢; is executable in [ss.] if there exist n,, such that e; is an instance in

[[pt.s[[[trn.rlt.ex.s nm]]]a mt]]a or ¢ Is an instance in [[pt.s[[[rl.s nm]]]a mt]]'
3.5. Conceptual information transition models

An object mgiiq. of the form (Sstc, Tprs, Tprg, Tpra) 1S @ conceptual information transi-
tion model in [ss.4;] if (Ss.c.c[Ss.tcls Tprss Tprgs Tpra) 18 @ conceptual query model in [s; 4[ss.c4]],
[trn.rlt.ea:[[ss.t.i]] Gr Qns Stt.1 5tt.2] = [trn.rlt[[ss.t.c]] [[Tpr.s Stt.l] (0 : ()) i state i program : ([Tpr.q C]r])]
[7pr.s si2] (0:()) = state :: value : [rprq ansl]], and [tensiren[Ss.ei] ns sua suzl = trnrulssicl
[rpr.s Stea] (0:()) =z state = program : ()] [[rprs Sta) (0: () == state 2 value : [1prq ansl]]. Let
Mg +.4.. be a set of conceptual query transition models.

The objects sscc[sst.c] and ss ¢ are called a conceptual configuration system and conceptual
transition system in [mg.rq.], respectively. The functions 7, s, 7prq and 7., are called a state
representation, query representation and answer representation in [mg.¢.q.c]-

A system sg;; is conceptually modelled in [s,..] if there exists mg.¢q4. such that ss¢. =
Ss.telMait.qe], and ma 4. is a conceptual query model in [ss.;]. The set [image 1, ;] is called

an ontology in [Ss.¢s, Mait.q.c]-

3.6. Extensions

A system sg;;1 is an extension of Sgy;0 if Ss4[ssei1] i an extension of sg4[[sst.i2], and
Stﬂss't'i'l]] < St[[ss't'ij]] for each st € {tTn.Tlt.e;mtrn.’rlt.en}-
A system sg;.1 is an extension of Sgyeo if Sgcc[Ssici] 18 an extension of sg.c[Ss.ic2],
5¢[Sst.c1l] C 5¢[Sst.c2] for each s; € {trnrit.e.s: Ti.s, Lrnriten.s), and the following property hold:
o if M. _<|I07'd.t7'n.ez'ﬂs.s‘t.cAl]”] Nm.2, and Nm.1, Nm.2 € O’r’d.t’r’n.ew[[ss.t.c.Z]]7 then
Nm.1 <[[Ord4trn.ez[[ss.t.c.2]]ﬂ Nm.2;5
oif Ny =[ord.trn.enlss.t.c.1]l N2, and N1, Mo € Ord.trn.en[[ss.t.cQ]], then

Mim.1 —<[[01"d.t7‘nAen[[ss.tAc42]]]] Nm.2-

A CCS [, is a language of CTSs if the conceptual structures (atoms, elements, conceptuals

and so on) of [, is syntactically defined.

3.7. Programs

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 65

A program p,, is executed in [t.,] if py is a program in [cnr1[tm]], and cppatin] —
Cnf2ltn]. A program p,, executes (initiates) t,, if p,, is executed in [t,,].

An element v; is a value in [p,g, t,,] if pry executes [t,,], and v; is a value in [¢,,]. A program
Drg Teturns vy in [t,.,] if v is a value in [p.g, t,]. A program p,, returns v; in [c,s] if there
exists t,,, such that p,, returns v in [t,,,], and ¢,p = cpp1[trn]-

A program p,, returns (or generates) an exception e, in [[t,,] if e, is a value in [p,g, t,n].
A program p,, is normally executed in [t,,] if p,, is executed in [¢,,], and ¢,, is normally
executed.

An element ¢; is executed in [t,,,] if there exist p,, such that p,, is executed in [t,,], and
e; = [prg - 1]. An element e; executes (initiates) t,, if e; is executed in [t,,].

An element v; is a value in [e;, t,,,] if ¢ is executed in [t,,], and v; is a value in [t,,]. An
element v; returns v; in [[t,,,] if v; is a value in v, t,,,]. An element v; returns v; in [c,f] if there
exists t,,, such that v, returns v in [t,,,], and ¢,f = cpp1[trn]-

An element e; returns (or generates) an exception e, in [t,,,] if e, is a value in [e;, ¢,,]. An

element e; is normally executed in [¢,,] if ¢; is executed in [¢,,], and t,, is normally executed.
3.8. Safe configurations, transitions, programs and elements

A configuration ¢,y is locally safe if v;[c,] # und.

A transition t,, is safe if ¢, ;1[t;n] and ¢, r2[t,] are locally safe.

A configuration ¢, is safe if there is no ¢, s such that ¢,y —* ¢,51 and ¢,z is not locally
safe.

A program p,, is safe in [c,f] if p,4 is a program in [c,¢], and ¢, is safe. A program p,, is
safe if p,4 is safe in [c,f] for each c,;.

An element ¢; is safe in [¢,f] if €, = [prgllcns] - 1], and p,4 is safe in [c,f]. An element e; is

safe if ¢; is safe in [[c,] for each ¢, .
4. The CTSL language

The CTSL language (Conceptual Transition System Language) is a basic language of CTSs.
The CCSL language is a sublanguage of CTSL. Interpretable and executable elements of CTSL
are called basic elements of CT'Ss.

D Xpy0, CcONf oan

Let Sp - (I X, Y Yo, 220, UlUg, VIV, W:Wy, T1:T1.0y vy Lyy

Cnf, val :an s yens]).

66 Anureev I.S. Formalisms for conceptual design of information systems

4.1. Syntax of CCSL

CTSL is an extension of CCSL. Therefore, atoms, elements, conceptual states, conceptual
configurations, pattern specifications and element definitions are represented in CTSL as in
CCSL.

The element (rule p; var (v..) seq (v.s.) then bg) :: name :: ny, in CCSL represents the
transition rule (py, (Vr4), (Urs.s), bg) With the name n,,.

For simplicity, we omit the names of atomic transition relations and transition rules.

4.2. The special forms for atomic exogenous transition relations,

transition rules and atomic endogenous transition relations

In this section we define the special forms for atomic exogenous transition relations, transi-
tion rules and atomic endogenous transition relations used below.

The form (transition p, var (v..) seq (v.s.) then f,) :: name :: n,, denotes the atomic
exogenous transition relation (pg, (Vy4), (Vrsx), fn) With the name n,,.

The objects var (v,.) and seq (v,s.) in the form (transition ...) can be omitted. The
omitted objects correspond to var () and seq (), respectively.

The form (endogenous—transition f,) :: name :: n,, denotes the atomic endogenous tran-
sition relation f,, with the name n,,.

Let {v..}, {Vrsst, {vrs1} and {v, .2} are pairwise disjoint, {v, 43} C {v,« fU{vp w1 JU{vy 42},
and (e;.) € {(),und,abn}. The form (rule p; var (v,.) seq (Vys.) abn (vy.1) und (v,.2) val
(Urx3) €14 where cnq then by) called a rule form is defined as follows:

o (rule p; var (v,.) seq (Vps) und (V1) abn (v,.2) val (Vy.3) €. where c,q then by) is a
shortcut for (rule p; var (v,..) seq (Urs.) abn (Vp.1) und (Vy.2) val (Vy.3) €. then (if cuq
then by else und));

o (rule py var (v,.) seq (Vy.sx) und (Vy41) abn (Vp.0) val (Vy. 3, V) €14 then by) is a shortcut
for (rule py var (v.4) seq (Vy.s.x) und (V1) abn (V,40) val (V.43) €. then (let w be v, in
[subst (v, 2 % :w) by])), where w is a new element that does not occur in this definition;

o (rule p; var (v.) seq (Vys4) und (Vy.1) abn (v,.2) val () e, then by) is a shortcut for
rule py var (v,) seq (Vrsx) und (V1) abn (v,..2) €. then by);

o (rule py var (v,.) seq (Vpsi) und (Vyu1, vy) abn (v.2) €. then by) is a shortcut for

(
(
(
(rule py var (vy.) seq (Urs.) und (Vp.1) abn (Vp.2) €4 then (if (v, is undefined) then

und else by));

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 67

o (rule p; var (v.) seq (Vs4) und () abn (v,.2) €. then by) is a shortcut for (rule p; var
(Vrs) 5€q (Vrsx) abn (Vrs2) €rs then bg);
o (rule p; var (v,.) seq (Vy.s.x) abn (Vy.2, V) €14 then by) is a shortcut for (rule p, var (v,.)
seq (Uyss) abn (Vp42) €14 then (if (v, is abnormal) then v, else by));
o (rule p; var (v..) seq (vrs.4) abn () e, then by) is a shortcut for (rule p; var (v,..) seq
(Ur.s.x) €1x then bg);
o (rule p; var (v,.) seq (vy.s.) und then by) is a shortcut for (rule p, var (v,.) seq (Vy.s.4)
then (if (val ::in is undefined) then skip else by);
o (rule py var (v,..) seq (Vrsx) abn then by) is a shortcut for (rule p; var (v,.) seq (Vy.s.4)
then (if (val ::in is abnormal) then skip else by).
The element c¢,, specifies the restriction on the values of the pattern variables. The undefined
value is propagated through the variables of v,, 1. Abnormal values are propagated through
the variables of v, 2. The sequence ¢, specifies propagation of abnormal values depending on
the value of val :: in. The undefined value is propagated when e;, = und. Abnormal values
are propagated when e;, = abn. The special element v, :: x references to the value of element
associated with the pattern variable v,. A pattern variable is evaluated if the element associated
with it is evaluated. Thus, the sequence v, , 3 contains evaluated pattern variables. A pattern
variable is quoted if the element associated with it is not evaluated. Let F,,,, be a set of rule
forms.
The objects var (v,.), seq (Urs«), und (vVy.1), abn (vVy.2), val (v,.3) and where ¢,q in the
form (rule ...) can be omitted. The omitted objects correspond to var (), seq (), und (), abn (),

val () and where true, respectively.

5. Semantics of executable elements in CTSL

5.1. Element interpretation

The element z :: value returning the interpretation of x is defined by the rule
(rule x ::value var (x) abn then z ::wvalue :: atm);
(transition x :: value :: atm var (z) then f,),

where xg :: value :: atm e # Cnp =>4, .5, €1 F# [Value To Cop] F# Cpf
5.2. Abnormal elements operations

The element und is defined by the rule

68 Anureev I.S. Formalisms for conceptual design of information systems

(rule und abn then und : q).
The element e, is defined by the rule
(rule = var (x) abn where (x is exception) then x ::q) :: name :: ("Q” exception).
The rule satisfies the property: 7, <[o,ym..] (@, exception) for each n,, such that n,, is
a name of an atomic exogenous transition relation or transition rule with the pattern distinct
from v,, where v, is a variable of this pattern.
The element ¢; :: ¢ is defined by the rule
(rule x::q var (z) abn then x :: q :: value).
The element ¢; of the form (catch :: u z y) called an undefined value handler is defined as
follows:
(transition (catch ::u x y) var (x) seq (y) then f,),
where (catch = w xg Yo), €1« # U # Cof =5, [SUbSt (zo V) Yo, e« # true # cnp. The
elements x and y are called a variable and body in [e;]. The element e; replaces all occurences
of x in y by the current value, resets the current value to true and executes the modified body.
The element ¢; of the form (catch = y) called an exception handler is defined as follows:
(rule (catch z y) var (z) seq (y) und then (catch :u x y)).
The elements z and y are called a variable and body in [e].
The element ¢; of the form (throw x) is defined by the rule
(rule (throw z) var (x) wval (x) abn then (throw x :: *): atm);
(transition (throw x) :: atm var (x) then f,),
where (throw xo) :: atm, €.« # Cnf —f,.5, €1x F To F# Cnp. The element z is called a body in
led-
The deletion (delete—exception x) of the exception of the type x is defined by the rule
(rule (delete—exception x) var (x) und then (catch w
(if ((w is exception) and (((element in w) .. type) = x:q))
then (throw true) else (throw w :: q)))).

5.3. Statements

The element skip is defined as follows:
(rule skip abn then skip :: atm);
(transition skip :: atm then f,),

where skip :: atm, ep # Cnf — 4,5 €l FF Cnf-

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 69

The sequential composition e; of the form (seq e;.) is defined by the rule
(rule (seq x) var (x) seq (x) then x)
The elements of e, are called elements in [e;] and e, is called a body in [e;]. The element ¢
executes its elements sequentially from left to right.
The conditional element (if x then y else z) is defined as follows:
(rule (if = then y else z) var (x) seq (y, z) val (x) abn
then (if x:: % then y else z):: atm);
(transition (if x then y else z):: atm var (x) seq (y, z) then f,),
where (if xo then yo else zy) :: atm, e # cnf =>4, .5, [1f [To # und] then yo else 2], €. # Cny.
The element (if = then y) is a shortcut for (if = then y else skip).
The conditional element (if x then y elseif z then u ... else v) is defined as follows:
(definition (if x then y elseif z) var (z) seq (y, z) abn
then (if x then y else (if 2))).
The element ¢; of the form (let x be y in z) is defined as follows:
(rule (let = be y in z) var (x) seq (y, z) abn then (let x be y in z):: atm);
(transition (let x be y in z) ::atm var (x) seq (y, z) then f,),
where (let xg be yo in 2p) == atm, e # oy —>..5, Yo, (let zo be—val—in zy), e, # cnp. The
elements x, y and z are called a substitution variable, substitution value and substitution body
in Je].
The auxiliary element (let © be—val—in y) is defined as follows:
(transition (let x be—val—in y) var (x) seq (y) abn then f,),
where (let xg be—val—in o), €1« # Vi F# Cnf —> 1.5, [SUbSE (To V1) Yo, €14 F Cnf-
The element e; of the form (let :: seq x be y in z), where x € E), y € L, and
[len x| = [len y], is defined by the rule
(rule (let :: seq x, y be (2), u in v) var (x) seq (y, z, u, v) abn
then (let x be z in (let :: seq y be u in v)));
(rule (let :: seq be in v) seq (v) abn then v).
The elements z, y and z are called a substitution variables specification, substitution values
specification and substitution body in [e;]. The elements of x and y are called substitution
variables and substitution values in [e;].
The iterator e; of the form (while x do y) is defined by the rule
(if (while © do y) var (x) seq (y) abn then (if xz then y (while z do vy))).

70 Anureev I.S. Formalisms for conceptual design of information systems

The elements x and y are called a condition and body in [e].
The iterator e; of the form (foreach x in y do z) is defined as follows:
(rule (foreach x in y do z) var (z, y) seq (z) val (y) abn where (y :: *x is sequence)
then (foreachl z in y::x do z)).
The objects x, y and z are called an iteration variable, iteration structure specifier and body
in [e;]. The element e; executes sequentially z for values of x from e;;, where ¢;; is the value
of y.
The element (foreachl x in y do z) is defined by the rules
(rule (foreachl x in () do y) var (z) seq (y) abn then);
(rule (foreachl x in (y z) do v) var (x, y) seq (z, v) abn
then (let x be y in v), (foreachl x in (z) do v)).

5.4. Characteristic functions for defined concepts

An object df. is a concept definition if dy. is an atomic transition relation of the form
(transition n, if (e11 is era) var (v,..) seq (v.s.) then f,), or dy. is a transition rule of the
form (rule ny, if (e is ep2) var (v..) seq (vy.s.) then bg). Concept definitions specify concepts
and their instances. Concepts specified by them are called defined concepts. The elements ¢ 1
and e o are called an instance pattern and concept pattern in [ds.]. The element (e, is e;)
is called a characteristic function in [dy.]. Let Dy, be a set of concept definitions.

An element ¢, q is a defined concept in [dy., sp]] if ¢pep is an instance in [(e;2, var (v,..) seq
(Ursx)), My, Sp]). An element ¢, 4 is a defined concept in [[dy.] if there exists s, such that ¢,ep.q
is a concept in [dy., sp]. An element ¢, 4 is a defined concept in [c,f] if there exists dy.[cns]
such that ¢,ep.q is a concept in [dyf.]. Let Cyepa be a set of defined concepts.

An element i,y is an instance in [dy., sp] if instn 1S an instance in [(e;.1, var (v,..) seq (vrs.)),
my, sp]]. An element 4,4, is an instance in [dy] if there exists s, such that c,,.4 is an instance
in [df.c, sp].

An element iy, is an instance in [cyep.d, Cof, df.c]l if insm is an instance in [dy.], cpepd is @
defined concept in [dy.], and there exist ¢, and v; such that (execute—exogenous—transition,
(instn 1S Cnep.d)s (Mm)) F# Cnp =" # U # Cunpa, and v; # und. An element i,4,, is an instance
in [enep.ds cny] if there exists dy. such that i,4, is an instance in [chepa, Cng, drc]. An element
Cnep.d 18 an instance in [c,s] if there exists cpepq such that iy, is an instance in [cyep.a, Cns]-

Let 1,4, be a set of instances.

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 71

A set s; is called a content in [Cpep.d, Cnr] if st is a set of all 4,4, such that 4,4, is an instance
in [cnepd, cngl. Let [content cpepa cng] denote the content in [chep.d, Cng]-

The notion of defined concepts is extended to the rules of the form (rule (e;1 is €;2) var (v,.)
seq (Upsx) und (vy.1) val (v..3) where cpq then by). Let r; have this form. An element ¢,y
is a defined concept in [ry, sp] if Cpep.q is @ defined concept in 1, sp], where ;5 is a rule of the
form (rule (e;1 is e12) var (v..) seq (v,.s4) then bgy) such that r; is reduced to ;1.

The element (z is atom) specifying that x is an atom is defined by the rule
(rule (z is atom) var (x) abn then (x is atom) :: value).

The element (z is update) specifying that x is an element update is defined by the rule
(rule (z is update) var (x) abn then (x is update) :: value).

The element (x is multi—attribute) specifying that z is a multi-attribute element is defined
by the rule
(rule (x is multi—attribute) var (x) abn then (z is multi—attribute) :: value).

The element (z is attribute) specifying that = is an attribute element is defined by the rule
(rule (x is attribute) var (x) abn then (x is attribute) :: value).

The element (z is sorted) specifying that z is a sorted element is defined by the rule
(rule (z is sorted) var (x) abn then (x is sorted) :: value).

The element (z is undefined) specifying that = equals und is defined by the rule
(rule (z is undefined) var (x) abn then (z is undefined) :: value).

The element (z is defined) specifying that = does not equal und is defined by the rule
(rule (z is defined) var (z) abn then (z is defined) :: value).

The element (x is exception) specifying that x is an exception is defined by the rule
(rule (z is exception) var (x) abn then (x is exception) :: value).

The element (x is normal) specifying that x is a normal element is defined by the rule
(rule (x is normal) var (x) abn then (x is normal) :: value.

The element (x is normal) specifying that x is an abnormal element is defined by the rule
(rule (z is abnormal) var (x) abn then (x is abnormal) :: value.

The element (z is sequence) specifying that x is a sequence element is defined by the rule
(rule (z is sequence) var (x) abn then (x is sequence) :: value).

The element (x is set) specifying that the elements of the sequence element x are pairwise
distinct is defined as follows:

(rule (z is set) var (x) abn then (z is set) :: value).

72 Anureev I.S. Formalisms for conceptual design of information systems

The element (x is empty) specifying that = is an empty element is defined by the rule
(rule (z is empty) var (z) abn then (x is empty) :: value).
The element (z is nonempty) specifying that x is not an empty element is defined by the
rule
(rule (x is nonempty) var (x) abn then (x is nonempty) :: value).
The element (z is conceptual) specifying that is a conceptual is defined by the rule
(rule (z is conceptual) var (x) abn then (x is conceptual) :: value).
The element (z is (conceptual in y)) specifying that x is a conceptual in the context of the
state y is defined by the rule
(rule (z is (conceptual in y)) var (z, y) abn then (x is (conceptual in y)) :: value.
The element (z is state) specifying that z is a conceptual state is defined by the rule
(rule (z is state) var (x) abn then (x is state) :: value).
The element (z is configuration) specifying that x is a conceptual configuration is defined
by the rule
(rule (z is configuration) var (x) abn then (x is configuration) :: value).
The element (z is nat) specifying that z is a natural number is defined by the rule
(rule (x is nat) var (x) abn then (x is nat) :: value).
The element (x is nat0) specifying that z is either a natural number, or a zero is defined by
the rule
(rule (x is nat0) var (x) abn then (x is nat0) :: value).
The element (x is int) specifying that = is an integer is defined by the rule
(rule (z is int) var (x) abn then (z is int) :: value).
The element (z is (satis fiable in y)) specifying that x is satisfiable in the context of variables
y is defined by the rule
(rule (x is (satisfiable in y)) var (x) seq (y) abn
then (z is (satisfiable in (y))) :: value).
The element (z is (valid in y)) specifying that z is valid in the context of variables y is
defined by the rule
(rule (x is (valid in y)) var (z) seq (y) abn then (z is (valid in (y))) :: value).
The element (z is (sequence y)) specifying that = is a sequence element such that the value
in [(e; is y)] does not equal und for each element ¢; of = is defined by the rule

(rule ((z y) is (sequence z)) var (z, z) seq (y) abn

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 73

then ((z is z) and ((y) is (sequence z)));

)
(rule (() is (sequence x)) wvar (x) abn then true).
The element (z is rule) specifying that x is a rule is defined as follows:
(rule (z is rule) var (z) abn then (x is rule) :: value);
(interpretation (x is rule) var (x) then f,),
where [f,, sp] = [if [0 € R)] then true else und).
The element (z is (rule in y)) specifying that z is a rule in the context of the state y is
defined as follows:
(rule (z is (rule in y)) var (z, y) abn then (x is (rule in y)) :: value);
(definition (x is (rule in y)) var (x, y) where ((x is rule) and (y is state))
then (x is conceptual in y) :: atm);
(interpretation (x is (conceptual in y)) :: atm var (x, y) then f,),
where [f,, sp] = [if [0 € Ri[yo]] then true else und].
The element (x is transition) specifying that x is a transition is defined as follows:
(rule (z is transition) var (x) abn then (x is transition) :: value);

(interpretation (x is transition) var (z) then f,),

where [f,, sp] = [if [xo € T)y] then true else und).
5.5. Elements operations

The element () is defined by the rule
(rule () abn then () ::q).

The element (len x) specifying the length of the element x is defined by the rule
(rule (len x) var (z) val (z) abn then (len x :: % ::q) :: value).

The element (z = y) specifying the equality of the elements = and y is defined by the rule
(rule (x = y) var (x, y) val (x, y) abn then (x:*:q = y:*:q):value).

The element (x ! = y) specifying the inequality of the elements = and y is defined in the
similar way.

The element (x . y) specifying the y-th element of the sequence element x is defined by the
rule
(rule (z . y) var (x, y) val (x, y) abn then (z::%:q . y:*::q) :value).

The element (x .. y) specifying the value of the attribute element x for the attribute y is
defined by the rule

74 Anureev I.S. Formalisms for conceptual design of information systems

(rule (z .. y) var (z, y) val (z) abn then (x :*:q .. y): value).
The element (xr + y) specifying the concatenation of the sequence elements x and y is
defined by the rule
(rule (xr + y) var (z, y) val (z, y) abn then (x ::*x:q + y:*:q):: value).
The element (x . + y) specifying the addition of the element x to the head of the sequence
element y is defined by the rule
(rule (z .+ y) var (z, y) val (z, y) abn then (x:x:q .+ y:*:q): value).
The element (x .+ :: set y) specifying the addition of the element x to the head of the
sequence element y representing a set is defined as follows:
(rule (x .+ :set y) var (x, y) val (x, y) abn where (y::* is set)
then (z:%:q 4 set y:x:q)::value).
The element (z + . y) specifying the addition of the element y to the tail of the sequence
element x is defined by the rule
(rule (x +. y) var (z, y) val (z, y) abn then (x:x:q +. y:*:q):value).
The element (x + . :: set y) specifying the addition of the element y to the tail of the
sequence element = representing a set is defined by the rule
(rule (x +.: set y) var (z, y) val (x, y) abn where (z :: % is set)
then (z:x:q +.:set y:*:q):abn).
The element (z — . :: set y) specifying the deletion of the element y from the sequence
element x representing a set is defined by the rule
(rule (x —.: set y) var (x, y) val (x, y) abn where (x:: % is set)
then (x::%:q —.:set y:*:q): value).
The element (upd = yy : 21, ..., Yn, : 2n,) specifying the sequential updates of the attribute
element x at the points yq, ..., Yn, by 21, ..., 25, is defined by the rules
(rule (upd x y) var (x) seq (y) val (z) abn
where ((z :: * is attribute) and ((y) is (sequence update))) then (upd : att x :: % y));
(rule (upd ::att x y z) var (y) seq (z) und (x) abn
then (upd :: att (updl ::att x y) 2));
(rule (upd ::att x) var (z) then x);
(rule (updl ::att x y:z) var (z, y, z) val (2) abn
then (updl ::att x y:z:%::q)::value).

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 75

The element (upd x y : z) specifying the update of the sequence element x at the index y
by z is defined by the rule
(rule (upd x y z) var (z, y, z) val (z, y, z) abn

then (upd::seq x:x:q y:x:q z:%:q):value).

The element (z in :: set y) specifying that = is an element of the sequence element y is
defined as follows:
(rule (x in :: set y) var (x, y) val (x, y) abn then (x in :: set y) :: value).

The element (z includes :: set y) specifying that the sequence element z includes the ele-
ments of the sequence element y is defined as follows:
(rule (z includes :: set y) var (x, y) val (x, y) abn then (z includes :: set y) :: value).

The element (attributes in x) specifying the sequence of attributes of the attribute element
x is defined by the rule
(rule (attributes in x) var (x) abn then (attributes in x) :: value).

The element (values in x) specifying the sequence of attribute values of the attribute element
x is defined by the rule
(rule (values in x) var (x) abn then (values in x) :: value).

The element (element in x) specifying the element of the sorted element x is defined by the
rule
(rule (element in z) var (x) abn then (element in x) :: value).

The element (sort in x) specifying the sort of the sorted element x is defined by the rule
(rule (sort in x) var (z) abn then (sort in x) :: value).

The element (attribute in x) specifying the attribute of the element update z is defined by
the rule
(rule (attribute in x) var (x) abn then (attribute in x) :: value).

The element (value in x) specifying the value of the element update x is defined by the rule
(rule (value in x) var (x) abn then (value in x) :: value).

The element (unbracket (z)) is defined by the rule

(rule (unbracket (z)) seq (x) abn then x).

5.6. Boolean operations

The element true is defined by the rule:

(rule true abn then true :: value).

76 Anureev I.S. Formalisms for conceptual design of information systems

The element (x and y) specifying the conjunction of x and y is defined by the rule:
(rule (z and y) var (z, y) abn then (if x then y else und)).

The elements (z o, y), where o, € {or,=>, <=>} specifying the disjunction, implication
and equivalence of x and y are defined in the similar way.

The element (1 and x5 and ... and z,,) specifying the conjunction of x1, xs, ..., ,, is defined
by the rule
(rule (z and y and z) var (x, y) seq (z) abn then ((x and y) and z).

The element (zq or x5 or ... or x,,) specifying the disjunction of x1, 3, ..., z,, is defined in

t
the similar way.
The element (not) specifying the negation of z is defined by the rule

(rule (not z) var (x) abn then (if x then und else true)).
5.7. Integers

The element i,,; is defined by the rule
(rule © var (x) abn where (x is int) then x ::q) :: name :: ("Q”, int).
The rule satisfies the property: ("Q”, exception) <o, . mm..] ("Q”,int).
The element (z + y) specifying the sum of z and y is defined by the rule
(rule (x + y) var (z, y) val (z, y) abn then (x:x:q + y:*:q):: value).
The elements (x o, y), where o, € {—, %, div, mod}, specifying the integer operations —, x,
div and mod, are defined in the similar way.
The element (x < y) specifying that x is less than y is defined by the rule
(rule (x < y) var (x, y) val (x, y) abn then (x:x:q < y:*:q):value).
The elements (x o, y), where o, € {<=, >, >=}, specifying the integer relations <, > and

>, are defined in the similar way.
5.8. Conceptuals operations

The element (z in y) specifying the value of the conceptual = in the state y is defined by
the rule
(rule (z in y) var (z, y) abn then (x in y) :: value).

The element z :: state :: y specifying the value of the conceptual z in the substate with the
name y of the current configuration is defined by the rule

(rule x :: state ::y var (x, y) abn then (x :: state :y) :: value).

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 7

The element ¢, is a shortcut for ¢,y :: ().

The assignment (cpep 2 State = ny, = €;) of €; t0 Cyep :: state :: ny, is defined as follows:
(rule (z:: state :: z == y) var (x, y, z) val (y) abn where (z is conceptual)
then (x :: state::z == y:x):atm);
(transition (x :: state :: z == y):atm var (z, y, z) then f,),
where (zg :: state :: zg == Yyo) == atm, e F# Cop =15 €x F [[Cns 20] o : Yol
The element (¢ ::= €;) is a shortcut for (cpep 2 () == ;). The elements (¢, = State ::
N =) and (Cpep ::=) are shortcuts for (¢, 2 state :: n,, = und) and (chep = und).

5.9. Countable concepts operations

A normal element ¢, is a countable concept in [c,f] if [[c,f countable—concept] (0 :
Cnep.c)] € Ny Thus, the substate countable—concept specifies countable concepts. Let Cyep.. be
a set of countable concepts. The element [[c,, s countable—concept] (0 : ¢pepc)] is called an order
in [chep.cs Cnrll- Let Orgenep.c be a set of orders of countable concepts. An element ny :: cc 2 Cpep.e
is called an instance in [cpepc]. An element n; 2 cc 0 Cpepe 1S an instance in [cpepe, Cng] if
Nt < Ord.encp.e[Cep.cs Cngl-

The element (x is countable—concept) specifying that = is a countable concept is defined as
follows:

(rule (x is countable—concept) var (x) abn then (x is countable—concept) :: value).

The element 7 :: cc :: ¢pep.c is defined by the rule:

(rule x::cc::y var (x, y) abn then x :: cc::y :: value).

Let cpep denote (0 :) = countable—concept. The element (new z) called an instance
generator generates a new instance of the countable concept x and adds this concept if it was
not. It is defined as follows:

(rule (new x) var (z) abn then (new x):: atm);
(transition (new z):: atm var (x) then f,),
where (new o) :: atm, e # Cnp =5 (let W be ey in (if (w is int) then (seq (Cpept =

(w+1)), (let wl be (w+1)in wl :: x::ce)) else (seq (Cpep == 1), 117 cC))), €1x # Cny.
5.10. Matching operations

The conditional pattern matching element e; of the form (if x matches y var z seq u then v

else w), where (y, z,u) is a pattern specification, is defined as follows:

78 Anureev I.S. Formalisms for conceptual design of information systems

(rule (if x matches y var z seq u then v else w) var (z, y, z, u) seq (v, w) abn
where ((z is sequence) and (u is sequence) and (z includes :: set u))

then (if x matches y var z seq u then v else w) :: atm);

(transition (if x matches y var z seq u then v else w) :: atm

var (x, y, z, u, v, w) then f,),

where (if xo matches yo var zy seq ug then vy else wy) = atm, €. # oy =y, [0f [To is an
instance in [(yo, 20, o), M, Sp.1] for some sp1] then [subst sp1 U (conf ::in : cyp,val = in :
vilens]) vo] else [subst (conf ::in : chp,val = in : vfeas]) wol, €« # cnp. The objects z, vy,
z, u, v and w are called a matched element, pattern, variable specification, sequence variable
specification, then-branch and else-branch in [e;]. The elements of z are called pattern variables
in [e;]. The element e; executes the instance of the then-branch v in [s;1] if = is an instance

in [y, sp.1]. Otherwise, the element e; executes the else-branch w.

Let {vrs}, {vrs}, {vrs1} and {v,. 2} are pairwise disjoint, and {v, .3} C {v,.} U{v,.1} U
{vy.«2}. The form (if e; matches p, var (v,..) seq (Vrsx) abn (Vy1) und (vy.2) val (v,.3) where

Cna then e else e;3) is defined as follows:

o (if e, matches py var (vy.) seq (Vys.) und (Vy.1) abn (Vy.2) val (Vy.3) where cyq then ey
else e;5) is a shortcut for (if e; matches p, var (v,..) seq (Vrs.) abn (Vy41) und (v, 2) val
(Urx3) then (if c,q then epq else ey :: (nosubstexcept conf ::in,val :: in)) else e;5);

o (if e, matches py var (v..) seq (Vrs.s) und (V1) abn (Vy.2) val (V..3, V) then e else
er2) is a shortcut for (if e; matches p; var (v,.) seq (Vps.) und (vy.1) abn (vy.2) val
(Urx3) then (let w be v, in [subst (v, :: % : w) e;1]) else e2), where w is a new element
that does not occur in this definition;

o (if e, matches py var (v..) seq (Vpsi) und (Vy.1) abn (vy.2) val () then ey else e;2) is
a shortcut for (if e, matches p, var (v,..) seq (Urs.) und (Vy.1) abn (v..2) then e, else
€12);

o (if e, matches p; var (v.) seq (Vy.s4) und (Vy41, v.) abn (v,.2) then by) is a shortcut for
(if e matches py var (v..) seq (Vy.s) und (Vp.1) abn (V.2) then (if (v, is undefined)
then und else e;1) else e;5);

o (if e matches p; var (v.) seq (V.sx) und () abn (v,.2) then e else e;5) is a shortcut
for (if e; matches py var (v,.) seq (Vr.sx) abn (vy.2) then e else e;2);

o (if e, matches p; var (v,.) seq (Vy.s+) abn (vy.2, v.) then e, else e;3) is a shortcut for

(if e matches py var (vy..) seq (Uyss) abn (vy.2) then (if (v, is abnormal) then v, else

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 79

e11) else ers);
o (if e matches py var (v,..) seq (vrsx) abn () then ey else es) is a shortcut for

(if e matches py var (v..) seq (Vrs) then e else e;3).
The element c¢,,4 specifies the restriction on the values of the pattern variables. The undefined
value is propagated through the variables of v,,;. Abnormal values are propagated through
the variables of v, .. The special element v, :: * references to the value of element associated
with the pattern variable v,. A pattern variable is evaluated if the element associated with it
is evaluated. Thus, the sequence v, , 3 contains evaluated pattern variables. A pattern variable
is quoted if the element associated with it is not evaluated.

The objects var (v,.), seq (Vr.sx), und (V41), abn (vVy.2), val (v..3), where c,q and else €5
in this form can be omitted. The omitted objects correspond to var (), seq (), und (), abn (),
val (), where true and else skip, respectively.

The form (e, matches py var (v..) seq (Vys.) und (Vp.1) abn (Vy.2) val (V..3) where c,q) is
a shortcut for (if e; matches p; var (v,..) seq (Vy.s.s) und (Vy.1) abn (Vy.2) val (V..3) where cpq
then true else und). The objects var (v,..), seq (Urs.+), und (Vy.1), abn (Vy42), val (v,.3) and
where ¢, in this form can be omitted. The omitted objects correspond to var (), seq (), und (),

abn (), val () and where true, respectively.
5.11. Interpretations operations

The element (x is definition— form) specifying that x is a definition form is defined as
follows:
(rule (z is definition—form) var (z) abn then (x is definition— form) :: value);
(transition (x is definition—form) var (x) then f,),
where [f,, sp] = [if [v0 € Frm.a) then true else und).

The element f,.,,q4 :: name :: n,, specifying a definition with the name n,, is defined as
follows:
(rule x ::name ::y var (x, y) abn where (x is definition— form)
then x ::name ::y :: atm :: definition);
(transition x :: name :: y = atm :: definition var (x, y) then f,),
where

o if yo € [support [c,s (0 : definitions) :: state :: interpretation]] U [support ipn.q.s), then

xo 1 name Yo i atm o definition, epy # Cnf — 4,5 €lx T UNA F Chf;

80 Anureev I.S. Formalisms for conceptual design of information systems

oif yo & [support [c,y (0 : definitions) :: state :: interpretation]] U [support inirq.s],
and z¢ is reduced to dy, then xy :: name :: yo : atm == definition, €. # Cof —4,.5,
er« # [cny interpretation.(0 : de finitions).yo : dy.

The element (add—interpretation x) adding the interpretation with the name x is defined
as follows:
(rule (add—interpretation x) var (z) abn then (add—interpretation x) :: atm);
(transition (add—interpretation x) :: atm var (x) then f,),
where

o if z € [support [c,s (0 : definitions) :: state :: interpretation]] U [support int.q.s), then
(add—interpretation xg) :: atm, €. # Cnf —fo.s, €lx F |[Cnf interpretation.(0 : order)
[value [[c,r (0 : order) :: state :: interpretation] :: ¢ + . :: set zg :: q] cuyll;

o if xg ¢ [support [c,s (0 : definitions) :: state :: interpretation]] U [support ini.q.s), then
(add—interpretation xg) :: atm, €p. # Cnf —>f,.s, €1 F und F# cuy.

The element (add—interpretation x after y) adding the interpretation with the name x
after the interpretation with the name y is defined as follows:
(rule (add—interpretation x after y) var (x, y) abn
then (add—interpretation x after y):: atm);
(transition (add—interpretation x after y):: atm var (z, y) then f,),
where

o if xy € [support [c,s (0 : definitions) :: state :: interpretation]] U [support in.q.s), and
Yo ¢ [cng (0 : order) :: state :: interpretation] :: ¢ —. = set xo)], then (add—interpretation
Tg) atm, €. F Cnf —fo.s, ELx F UNd F# Cpyp;

o if vy € [support [c,s (0 : definitions) :: state :: interpretation]] U [support ini.q.s), and
[value [cpy (0 : order) :: state :: interpretation] :: ¢ — . :: set To| = Nyys1 Yo Nmos.2, then
(add—interpretation xg) :: atm, €. # Cnf —f..5, €lx # [Cnf interpretation.(0 : order) :
Nm.x.1 Yo Lo nm.*.Q];

o if 2y ¢ [support [c,y (0 : definitions) :: state :: interpretation]| U [support ini.q.s), then
(add—interpretation xg) :: atm, €. # Cnf —> 1,5, €1 F# und # cuy.

The element (delete—interpretation) deleting the interpretation with the name z is defined
as follows:
(rule (delete—interpretation x) var (x) abn then (delete—interpretation x) :: atm);

(transition (delete—interpretation x) :: atm var (x) then f,),

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 81

where
oif vy € [support [c,r (0 : definitions) :: state :: interpretation]] U [support ipir.a.s)
then (delete—interpretation xg) :: atm, €. # Coy —>f..5, €ls F [Coy interpretation.(0 :
order) : [value [c,p (0 : order) :: state :: transition] :: ¢ — . 2 set g q cufl];
o if xy & [support [c,s (0 : definitions) :: state :: interpretation]] U [support ing.q.s), then

(delete—interpretation xg) :: atm, €. # Cof —>f,.5, €1 F Und # Cpy.
5.12. Configurations operations

The element conf :: cur specifying the current configuration is defined as follows:
(rule conf :: cur abn then conf :: cur :: value).

The element val :: cur specifying the value in the current configuration is defined as follows:
(rule wal :: cur abn then wval :: cur :: value);
(definition wval :: cur then wval :: cur :: value);

(interpretation wval :: cur then f,),

where [f,, sp] = vi[car].
5.13. Transitions operations

The element (x is rule— form) specifying that z is a rule form is defined as follows:
(rule (z is rule—form) var (x) abn then (x is rule—form) :: value);
(transition (x is rule—form) var (z) then f,),
where [f, sp] = [if [x0 € Frm.| then true else und.
The element f,,, . :: name :: n,, specifying a rule with the name n,, is defined as follows:
(rule x ::name ::y var (x, y) abn where (x is rule—form)
then x ::name :y:: atm :: rule);
(transition x :: name ::y = atm :: rule var (z, y) then f,),
where
o if yo € [support [c,s (0 : rules) :: state :: transition]] U [support ty, it.es.s| U [support
trnriten.s], then xg it name :: yo == atm = rule, e # Conf — 4,5, €ls F Und # Cny;
o if yo & [support [c,r (0 : rules) :: state :: transition]] U [support t., it.exs) U [support
trnrit.en.s), and zg is reduced to 7, then zg :: name :: yo == atm :: rule, e« # Cnf —>4,.5,
er« # [cny transition.(0 : rules).yo : 7).

The element (add—transition x) adding the transition with the name z is defined as follows:

82 Anureev I.S. Formalisms for conceptual design of information systems

(rule (add—transition x) var (x) abn then (add—transition x):: atm);
(transition (add—transition x) :: atm var (x) then f,),

where

oif 7y € [support [c,y (0 : rules) :: state :: transition]] U [support tipritess), then
(add—transition xg) :: atm, e . # Cof —>f,.5, €lx F [Cny transition.(—1 : exogenous, 0 :
order) : [value [[c,y (—1 : exogenous,0 : order) :: state :: transition] :: ¢ + . :: set xg =
q] engll;

o if xy € [support trp rit.en.s], then (add—transition xo) = atm, €. # Cnf =5, €1 F# [Cns
transition.(—1 : endogenous,0 : order) : [value [[c,y (—1 : endogenous,0 : order) :
state :: transition] :: ¢ + . :: set xg 2 q] curl];

oif o & [support [c,p (0 : rules) :: state :: transition]] U [support te, sit.es.s| U [support
trnritens|, then (add—transition xg) :: atm, €. # Cnf —> 4,5, €16 F und # cuf.

The element (add—transition x after y) adding the transition with the name x after the
transition with the name y is defined as follows:
(rule (add—transition x after y) var (x, y) abn
then (add—transition x after y) ::atm);
(transition (add—transition x after y):: atm var (z, y) then f,),

where

o if xy € [support [c,r (0 : rules) :: state :: transition|] U [support tipritess|, and yo ¢
lcny (=1 : exogenous,0 : order) :: state :: transition] :: ¢ — . = set x|, then (add—
transition o) :: atm, ey, # Cop =15, €x F und F# cuf;

o if xy € [support [c,s (0 : rules) :: state :: transition||U [support typ rit.ex.s), and [value [c,f
(=1 : exogenous, 0 : order) :: state :: transition] :: ¢ — . :: set To] = Nps1 Yo Nm.s.2, then
(add—transition xo) :: atm, e, F# Cnf =5, €x F [Cny transition.(—1 : exogenous, 0 :
order) : N1 Yo To Mns2];

oif xy € [support tpritens), and yo ¢ [cny (—1 : endogenous,0 : order) :: state ::
transition] :: ¢ — . set x|, then (add—transition zo) :: atm, e« # oy —>fo.s,
e« # und # Cnf;

oif zq € [support trn itens), and [value [c,f (—1 : endogenous,0 : order) :: state :
transition] :: q¢ —. 12 set To] = Ny x1 Yo Nim.x.2, then (add—transition xo) = atm, e, # cuf
— fosp €l F [Cny transition.(—1 : endogenous, 0 : order) : Ny, .1 Yo To Nm.x2];

oif o & [support [c,p (0 : rules) :: state :: transition]] U [support te, sit.es.s| U [support

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 83

trnriten.s], then (add—transition xo) :: atm, €. # Cof —fo.5, €x F und # cpf.

The element (delete—transition x) deleting the transition with the name z is defined as

follows:

(rule (delete—transition x) var (x) abn then (delete—transition x):: atm);

(transition (delete—transition z) :: atm var (x) then f,),
where

oif 2y € [support [c,y (0 : rules) :: state :: transition]] U [support t,priiess), then
(delete—transition xo) :: atm, ej. # Cnf —>f,.5, €ls # [Cnf transition.(—1 : ezogenous, 0 :
order) : [value [c,f (—1 : exogenous, 0 : order) :: state :: transition] :: ¢ — . :: set xg =
q nyl];

o if 2y € [support typ rit.en.s|, then (delete—transition xg) = atm, €. # Cng —>f,.5, €1x F [Cns
transition.(—1 : endogenous,0 : order) : [value [c,y (—1 : endogenous,0 : order) :
state :: transition] :: ¢ — . set xg 1 q cuf]:

oif o & [support [c,p (0 : rules) :: state :: transition]] U [support ty, sit.es.s| U [support
trnriten.s|, then (delete—transition xo) :: atm, e . # Cof —fo.s, €x F und # Cpf.

The element ¢; of the form (modify x) or (modify :: n x) is defined as follows:
(rule (modify x) var (z) then (modify x):: atm);
(rule (modify ::n x) var (x) abn then (modify x) :: atm);
(transition (modify x) :: atm var (x) then f,),
where (modify o) 2 atm, e # v # Cop =45, € # [if [there exists ¢, r1 such that [value
[subst (conf :in : cup,val = in @ vyfcay], conf :: out : cppa,val : out = vifcnpa]) xo] enfl #
und] then v; # cng1 else und # cnf]. The element z is called a transition condition in [e;]. It
specifies the set of configurations reachable from ¢, s for one transition. The elements conf :: in
and conf :: out reference to the input state and the output state, and the elements val :: in

and val :: out reference to values in these states.

@ The execution of the element (modify (((—1 : value, 0 : z, 1 : variable) inconf :: out) =

0)) initiates the transition to a state in which the value of the variable = equals to 0.

@D The execution of the element (modify (((—1 : value, 0 : x, 1 : variable) = ”green”) and
(((—1 : value, 0 : z, 1 : variable) in conf :: out) = "red”))) initiates the transition
from a state in which the value of the variable x equals to "green" to a state in which the

variable x equals to "red".

84 Anureev I.S. Formalisms for conceptual design of information systems

The element ¢; of the form (modify—exist (x) y) or (modify—exist :: n (x) y) is defined as
follows:
(rule (modify—exist (x) y) var (y) seq (x) then (modify—exist (z) y) :: atm);
(rule (modify—exist ::n (z) y) var (y) seq (x) abn then (modify—exist (x) y) :: atm);
(transition (modify—exist (x) y) :: atm var (y) seq (z) then f,),
where (modify—exist (xo) yo) = atm, e . # v # Cof — 1.5, €1 F# [0 [there exists ¢,f1 such
that [[subst (conf ::in : cyp,val o in @ vfe,y], conf o out : cppq,val 2 out = vfcnpa]) Yol is
satisfiable in ((x¢), ¢uf)] then v # cnp1 else und # cnf]. The element y is called a transition

condition in [e;]. The elements of = are called existential variables in [e,].
5.14. Safety operations

The element ¢; of the form (assert x) or (assert :: n z) is defined as follows:
(rule (assert x) var (z) then (assert x):: atm);
(rule (assert x::n) var (x) abn then (assert x):: atm);
(transition (assert x) ::atm var (x) then f,),
where (assert xo) :: atm, e, # Vi # Cof — 15 € F [0f [[value [subst (conf ::incyp,val ::in

V) xo] cnf] # und] then vy else und] # c,¢. The element z is called a safety condition in [e;].
5.15. Branching operations

The element ¢; of the form (branching x) is defined as follows:
(rule (branching x) seq (x) abn then (branching x):: atm);
(transition (branching x) :: atm var (x) then f,),
where (branching xo) :: atm, e, # vi # Cop —>1,.5, # (type : assume) :: exc # [,y branching.
(0 :0) : [((z0), cnf, (e14)) -+ lleng branching] (0 : ())]]]. The elements of = are called
branches in [e;]. The element e; generates the branchpoint with the branches z. The exception
(type : assume) :: exc specifies the failure of the execution of the current branch. The substate
branching contains information about branching. The conceptual (0 : ()) :: state :: branching
specifies the current sequence of branchpoints.

The endogenous transition relation specifying branching is defined as follows:
(endogenous—transition f,) :: name :: branching

where

o if [[c,r branching] (0 : ()] = (((e1x1, €, €1x2), Cnf1, (€143)),€1x), then # (type :

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 85

assume) :: exc # Cnf —branching €3 F# [Cnp1 branching.(0 : () : (((e141, €142)s Cnf1,
(€143)), €1.4)];
o if [[c,y branching] (0 : ()] = (((), cnr1, (erx3)),es), then # (type : assume) :
exc # Cnf —branching # (type : assume) :: exc # [cnp1 branching.(0: () : (e1.4)].
The element ¢; of the form (assume z) or (assume :: n) is defined as follows:
(rule (assume x) var (x) then (assume x):: atm);
(rule (assume ::n x) var (x) abn then (assume x):: atm);
(transition (assume x) :: atm var (x) then f,),
where (assume xg) = atm, e # v # Cof =105, [0f [[value [subst (conf ::in : cpp,val = in
vilensl) wo] cng] # und] then e . # v else # (type : assume) :: exc| # c¢,y. The element x
is called a continuation condition in [e;]. The violation of this condition initiates the failure of
the execution of the current branch.
The element ¢; of the form (assume—exist (x) y) or (assume—exist :: n (x) y) is defined as

follows:
(rule (assume—exist (x) y) var (y) seq (x) then (assume—ezist x):: atm);
(rule (assume—ezist ::n (x) y) var (y) seq (x) abn then (assume—exist x):: atm);
(transition (assume—exist (x) y) :: atm var (y) seq (x) then f,),
where (assume (xg) yo) = atm, e # vy # oy =15, [0f [[subst (conf ::in : c,p,val i in :
vilens]) yo] is satisfiable in [(xg), cnr]] then e, # v else # (type : assume) :: exc|] # c,p. The
element y is called a continuation condition in [e;]. The elements of x are called existential

variables in [e;].
6. Justification of requirements for conceptual transition systems

In this section, we establish that CTSs meet the additional requirements stated in section 1:

8. The formalism must have language support. The language associated with the formalism
must define syntactic representations of models of states, state objects, queries, query
objects, answers and answer objects and includes the set of predefined basic query models.
The CTSL language associated with CTSs defines syntactic representations of models of
states, state objects, queries, query objects, answers and answer objects and includes the
set of predefined basic query models.

9. It must model the change of the conceptual structure of states and state objects of the ITS.

The change of the conceptual structure of the I'TS is described by the transition relation

86

10.

11.

12.

Anureev I.S. Formalisms for conceptual design of information systems

on conceptual configurations specifying conceptual structures of the I'TS with different
sets of ontological elements.

It must model the change of the content of the conceptual structure. The change of the
content of the conceptual structure of the ITS is described by the transition relation
on conceptual states specifying the same conceptual structure of the ITS. In fact, the
distinction between requirements 9 and 10 is relative, for conceptuals allow to define
classifications of ontological elements with different granularity.

It must model the transition relations of the ITS. The transition relations of the ITS are
modelled by the transition relation t,.,,.,;; of the CTS.

The model of the exogenous transition relation must be extensible. The model of the

exogenous transition relation of the IQS is extended by addition of trnasition rules.

Thus, the additional requirements are met for CTSs.

7. Conclusion

In the paper two formalisms (IT'Ss and CTSs) for abstract unified modelling of the artifacts

of the conceptual design of information systems have been proposed by ontological elements

with arbitrary conceptual granularity. The basic definitions of the theory of CTSs have been

given. The language of CTSs has been defined.

We plan to use CTSs to design and prototype software systems as well as to specify opera-

tional and axiomatic semantics of programming languages. In the case of operational semantics

of a programming language, CTSs model an abstract machine of the language. In the case of ax-

iomatic semantics of a programming language, CTSs model a verification conditions generator

for programs in the language.

References

Sokolowski J., Banks C. Modeling and Simulation Fundamentals: Theoretical Underpinnings and

Practical Domains. Wiley, 2010.

Chen P. Entity-relationship modeling: historical events, future trends, and lessons learned //

Software pioneers. Springer-Verlag New York, 2002. P. 296-310.

Anureev I.S. Formalisms for conceptual design of closed information systems // System Informatics.
2016. N 7. P. 69-148.
Gurevich Y. Abstract state machines: An Overview of the Project // Foundations of Information

and Knowledge Systems. Lect. Notes Comput. Sci. 2004. Vol. 2942. P. 6-13.

System Informatics (Cucremuas nudopmaruka), No. 8 (2016) 87

5. Gurevich Y. Evolving Algebras. Lipari Guide // Specification and Validation Methods. Oxford
University Press, 1995. P. 9-36.

38

Anureev I.S. Formalisms for conceptual design of information systems

