
System Informatics (Системная информатика), No. 8 (2016) 1

УДК 004.052, 519.179.2

A Verification Method for a Family of Multi-agent

Systems of Ambiguity Resolution»

Natalia Garanina (A.P. Ershov Institute of Informatics Systems),

Elena Sidorova (A.P. Ershov Institute of Informatics Systems)

In the paper we describe a verification method for families of distributed systems gen-

erated by context-sensitive network grammar of a special kind. The method is based on

model checking technique and abstraction. A representative model depends on a specifi-

cation grammar for family of systems. This model simulates a behavior of the systems

in such a way that properties which hold for the representative model are satisfied for all

these systems. We show using this method for verification of some properties of multiagent

system for resolution of context-dependent ambiguities in ontology population.

Keywords: model checking, context-sensitive network grammar, multi-agent systems,

abstraction

1. Introduction

The motivation of our work is the ambiguity resolution problem in the frame of ontology

population from natural language texts. In [6] we describe text analysis algorithms producing

a system of information agents. But features of natural language cause ontology population

ambiguities, which these agents have to resolve. We proposed to evaluate the cardinality of

agents’ contexts, i.e. how much an agent is related with the other agents of the resulting system

via the information contained in it, and to mark the agents the most integrated in the text.

We developed an ambiguity resolution algorithm [5], removing the less integrated agents from

the system.

All agents in parallel perform rather complicate protocols with periodic local synchroniza-

tions. Hence, it is reasonable to use formal verification methods for proving correctness of the

algorithm. We choose model checking technique for a particular multi-agent system. We verify

rather specific multi-agent system of conflict resolution. The works on multi-agent systems

usually focus on the behavior of agents, methods of communication between agents, knowledge

and belief of an agent about environment and other agents, etc [4, 9]. Works about conflict

resolution process usually consider the process in terms of the behavior of the agent depending

2 Garanina N.O., Sidorova E.A. A Verification Method for a Family of Multi-agent Systems of Ambiguity Resolution

on its internal state, reasoning and argumentation methods etc. [8]. The dynamics of the agents

connections is not a subject of these researches. There are papers related to the dynamics of

weighted connections, but they are not the typed and their changes does not affect the internals

of the agent [7]. On the other hand there are works on the study of social networks, in which

the agents are connected by the typed connections, but their weight does not matter [1]. To the

best of our knowledge, there are no works on model checking for a conflict resolution algorithm

of the suggested type.

Model checking technique is widely used for verification of distributed and multiagent sys-

tems [2]. In our case we would like to verify not a particular agent network, but infinite family

of such systems. For verification of infinite network families the model checking method was

suggested in [3]. This method is based on using a context-free network grammar generating

families of distributed systems, and on abstraction by finite automata. The idea of the method

is to construct an invariant network based on a given grammar. This invariant simulates be-

havior of all systems in the family and is consistent with abstract functions associated with

properties to be verified which are expressed by branching time logic ∀CTL. Due to consistent

simulation, properties holding for the representative invariant also holds for all systems in the

family. But authors studied context-free grammars only, while our model of the multiagent

system is generated by a context-sensitive grammar of a special kind. In the paper we define

such network grammar by adding notions of a quasi-terminal and a merging operator to the

standard definition. We show that this verification method still can be used for network families

generated by the new grammar.

The rest of the paper is organized as follows. The next section 2 gives base definitions.

Section 3 presents results on a new merging operator, used in our context-sensitive network

grammar. Section 4 describes using our method for the multiagent system of ambiguity reso-

lution. We conclude in the last section 5 with a discussion of further research.

Acknowledgments. The research has been supported by Russian Foundation for Basic

Research (grant 15-07-04144) and Siberian Branch of Russian Academy of Science (Integra-

tion Grant n.15/10 “Mathematical and Methodological Aspects of Intellectual Information Sys-

tems”).

2. Base Definitions

System Informatics (Системная информатика), No. 8 (2016) 3

Let us give necessary definitions from [3] in a modified form. Modification concerns a merging

operator and quasi-terminals in a network grammar.

Definition 1.

A Labeled Transition System (LTS) is a structure M = (S,R,ACT, S0), where

• S is the set of states,

• S0 ⊆ S is the set of initial states,

• ACT is the set of actions, and

• R ⊆ S×ACT ×S is the total transition relation, such that for every s ∈ S there is action

a and state s′ for which (s, a, s′) ∈ R (denote as s a−→ s′).

Let LACT be the class of LTSs whose set of actions is a subset of ACT . Let L(S,ACT)

be the class of LTSs whose state set is a subset of S and whose action set is the subset of

ACT . Let ACT1, ACT2 ⊆ ACT . Let we are given two LTSs M1 = (S1, R1, ACT1, S
1
0) and

M2 = (S2, R2, ACT2, S
2
0) in the class LACT .

Definition 2.

A function ∥: LACT × LACT 7→ LACT is called a composition function iff M1 ∥M2 has the form

(S1 × S2, R
′, ACT1 ∪ ACT2, S1

0 × S2
0).

A function ∪ : LACT ×LACT 7→ LACT is called a merging function iff M1 ∪M2 has the form

(S1 ∪ S2, R
′, ACT1 ∪ ACT2, S1

0 ∪ S2
0).

The definition of R′ depends upon the exact semantics of the composition and merging function.

Let Si be words of length i with S as the alphabet.

Definition 3.

Given a state set S and a set of actions ACT , any subset of
∪∞

i=1 L(Si,ACT) is called a network

on the tuple (S,ACT).

We give a definition of a context-sensitive network grammar with quasi-terminals (CSNQ-

grammar) to describe networks, which is the modified definition of a context-free network

grammar from [3]. The set of all LTSs derived by a network grammar forms a network which

is an LTS also. Let S be a state set and ACT be a set of actions. CSNQ-grammar G =

(T,Qt, t, N, P, S) is a grammar, where

• T is a set of terminals, each of which is an LTS in L(S,ACT), these LTSs are sometimes

referred to as basic processes,

4 Garanina N.O., Sidorova E.A. A Verification Method for a Family of Multi-agent Systems of Ambiguity Resolution

• Qt is a set of quasi-terminals, each of which is an LTS in L(S,ACT), their merging gives an

LTS,

• a mapping t : Qt 7→ T associates quasi-terminals to terminals,

• N is a set of nonterminals, each nonterminal defines a network,

• P is a set of production rules of the following forms:

– A −→ B ∥i C, where A ∈ N , and B,C ∈ T ∪ Qt ∪ N , and ∥i is a composition

function.

– {A1, ...An} −→ t(A1) ∪i ... ∪i t(An), where Aj ∈ Qt, and ∪i is a merging function.

• S ∈ N represents the network generated by the grammar.

Note, that this grammar is context-free with respect to composition functions and context-

sensitive with respect to merging functions.

In order to express properties of a model composed from finite, but unspecified number of

LTSs, we define a finite automaton on alphabet S.

Definition 4.

D = (Q, q0, δ, F) is a deterministic automaton over S, where

• Q is the set of automaton states,

• q0 ∈ Q is the initial state,

• δ ⊆ Q× S ×Q is the transition relation,

• F ⊆ Q is the set of accepting states, and

• L(D) ⊆ S∗ is the set of words accepted by D.

We use finite automata over S for specification of atomic state properties. Let D be an automa-

ton over S. State s satisfies D (s |= D) iff s ∈ L(D). A specification language is a universal

branching temporal logic ∀CTL [3] with finite automata over S as the atomic formulas. Syn-

tax of ∀CTL consists of formulas that are composed of Boolean constants, atomic formulas,

connectives ¬, ∨, ∧, and branching time modalities AXφ, AGφ, and φAUψ with standard

semantics.

Recall definitions for abstract LTS from [3]. For the simplicity, here the specification lan-

guage contains a single atomic formula D. Given an automaton D = (Q, q0, δ, F) and a word

w ∈ S∗ the function induced by w on Q, fw : Q 7→ Q, is defined by fw(q) = q′ iff q w−→ q′. Note

that w ∈ L(D) if and only if fw(q0) ∈ F . Two states s and s′ are equivalent s ≡ s′ iff fs = f ′
s.

The function fs is called the abstraction of s and is denoted by h(s). Relation |= is extended

to abstract states: h(s) |= D iff fs(q0) ∈ F . Hence s |= D iff h(s) |= D.

System Informatics (Системная информатика), No. 8 (2016) 5

Let FD be the set of functions corresponding to the deterministic automaton D. The ab-

straction function h extended to FD is defined by h(f) = f for f ∈ FD and extension the

function h to (S ∪FD) is h((a1, a2, ..., an)) = h(a1) ◦ ... ◦ h(an). From now on we consider LTSs

in the network N on the tuple (S ∪ FD, ACT).

Definition 5. (of abstract LTS)

Given an LTS M = (Si, R,ACT, S0) in the network N , the corresponding abstract LTS is

defined by h(M) = (Sh, Rh, ACT, Sh
0), where

• Sh = {h(s)|s ∈ Si} is the set of abstract states,

• Sh
0 = {h(s)|s ∈ S0}, and

• the relation Rh is defined as follows. For any h1, h2 ∈ Sh, and a ∈ ACT :

(h1, a, h2) ∈ Rh ⇔ ∃s1, s2[h1 = h(s1) ∧ h2 = h(s2) ∧ (s1, a, s2) ∈ R].

M ′ simulates M (denoted M ≼M ′) iff there is a simulation preorder E ⊆ S×S ′ ((s, s′) ∈ E

denoted s ≼ s′) that satisfies the following conditions: for every s0 ∈ S0 there is s′0 ∈ S ′
0 such

that s0 ≼ s′0. For every s, s′, if s ≼ s′ then

• h(s) = h(s′), and

• for every s1 such that s a−→ s1 there is s′1 such that s′ a−→ s′1 and s1 ≼ s′1.

3. The Merging Operator in the Verification Framework

The first two propositions of the following lemma were proved in [3], the last is proved below:

Lemma 1.

1. M ≼ h(M), i.e., h(M) simulates M .

2. If M ≼M ′, then h(M) ≼ h(M ′).

3. M ∪M ′ ≼ h(M) ∪ h(M ′)

Proof of (3) is obvious: M ∪M ′ ≼ h(M ∪M ′) due to (1), and h(M ∪M ′) = h(M)∪ h(M ′).�

The following theorem about satisfiability of properties in an LTS and its simulator was

proved in [3] and holds for our new framework.

Theorem 1.

Let φ be a formula in ∀CTL over the atomic formula D. Let M and M ′ be two LTSs such that

M ≼M ′. Let s ≼ s′. Then s′ |= φ implies s |= φ.

6 Garanina N.O., Sidorova E.A. A Verification Method for a Family of Multi-agent Systems of Ambiguity Resolution

Definition 6.

A merging or composition operator • ∈ {∪, ∥} is called monotonic with respect to a simulation

preorder ≼ if and only if given LTSs such that M1 ≼M2 and M ′
1 ≼M ′

2, we have that M1•M ′
1 ≼

M2 •M ′
2. A network grammar G is called monotonic if and only if all rules in the grammar use

only monotonic composition and merging operators.

We modify a synchronous framework from [3] with results for the merging operator. Let

models be a form of LTSs, Moore machines M = (S,R, I, O, S0) such that inputs I and outputs

O must be disjoint. In addition, they have a special internal action denoted by τ . The set of

actions is ACT = {τ} ∪ 2I∪O, where each noninternal action is a set of inputs and outputs. A

transition s a−→ t from s in a machine M with a = i∪ o such that i ⊆ I and o ⊆ O occurs only

if the environment supplies inputs i and the machine M produces the outputs o.

Naturally, for the merging operator inputs and outputs of merging machines must be disjoint

also. Let I ∩O′ = ∅ and O ∩ I ′ = ∅. The merging of M and M ′, M ′′ =M ∪M ′ is defined by

• S ′′ = S ∪ S ′,

• S ′′
0 = S0 ∪ S ′

0,

• I ′′ = I ∪ I ′ and O′′ = O ∪O′, and

• s′′ a′′−→ s′′1 is a transition in R′′ iff the following holds: s′′ a−→ s′′1 is a transition in R and

s′′
a′−→ s′′1 is a transition in R′ for some a, a′ such that a′′ = a or a′′ = a′.

Lemma 2.

The merging ∪ is monotonic with respect to ≼.

Proof. Let M = (S,R, I, O, S0), M1 = (S1, R1, I1, O1, S1,0), M ′ = (S ′, R′, I ′, O′, S ′
0), M ′

1 =

(S ′
1, R

′
1, I

′
1, O

′
1, S

′
1,0) be four Moore machines. Assume that M ≼ M1 and M ′ ≼ M ′

1. Let

E ⊆ S × S1 and E ′ ⊆ S ′ × S ′
1 be the corresponding simulation relations. We prove that

M ∪M ′ ≼M1 ∪M ′
1.

We say that (s′′, s′′1) ∈ E ′′ iff (s′′, s′′1) ∈ E or (s′′, s′′1) ∈ E ′. We show that E ′′ has the

required properties. It is clear from the definition that given state s0 ∈ S0 ∪ S ′
0, there exists

s0,1 ∈ S0,1 ∪ S ′
1,0 such that (s0, s0,1) ∈ E ∪ E ′.

Assume that (s, s1) ∈ E ∪ E ′.

(1) By assumption, we have that h(s) = h(s1).

(2) Let s a′′−→ t be a transition in M ∪M ′. This means that there exists transition s a−→ t in M

or transition s a′−→ t in M ′ such that a′′ = a or a′′ = a′. By definition there exists t1 ∈ S1 ∪ S ′
1

System Informatics (Системная информатика), No. 8 (2016) 7

such that s1
a−→ t1 or s1

a′−→ t1, where (t, t1) ∈ E or (t, t1) ∈ E ′. Therefore, s1
a′′−→ t1 and

(t, t1) ∈ E ′′. The proof is thus complete. �

The notion of a representative give us a way to construct a simulation invariant. Given a

CSNQ-grammar G, we associate with each symbol A of the grammar a representative process

rep(A). Let us adopt the definition of a monotonicity property for a set of representative

processes of CSNQ-grammar:

• for every terminal and quasi-terminal A: h(rep(A)) ≽ h(A), and

• for every rule A −→ B ∥ C: h(rep(A)) ≽ h(h(rep(B)) ∥ h(rep(C))).

We extend the proof of the following theorem on context-free network grammar from [3] to

CSNQ-grammars:

Theorem 2.

Let G be a monotonic grammar and suppose we can find representatives for the symbols of G

that satisfy the monotonicity property. Let A be a symbol of the grammar G, and let a be an

LTS derived from A using the rules of the grammar G. Then, h(rep(A)) ≽ a.

Proof. We prove that h(rep(A)) ≽ h(a). Since h(a) ≽ a, the result follows by transitivity. Let

A⇒k a, i.e., A derives a in k steps. Induction on k.

(k = 0) Proved in [3].

(k = 1) In the case A,B are quasi-terminals in a rule A,B −→ t(A)∪ t(B) and a = t(A)∪ t(B).

The result follows from the monotonicity property and Lemma 1.

(k ≥ 1) Proved in [3]. �

Verification method is exactly the same as in [3]. Assume that we are given monotonic

grammar G and ∀CTL formula φ with atomic formulas D1, ..., Dk. To check that every LTS

derived by the grammar G satisfies φ we perform the following steps:

1. For every symbol A in G choose representative process rep(A) and construct the abstract

LTS h(rep(A)) with respect to the formulas D1, ..., Dk.

2. Check that the set of representatives satisfies the monotonicity property. Theorem 2

implies that for every a derived by the grammar G, h(rep(S)) ≽ a.

3. Perform model checking on h(rep(S)) with specification φ. By Theorem 1, if h(rep(S)) |=

φ, then for all LTSs M derived by the grammar G, M |= φ.

For finding monotonic representatives we could use an algorithm from [3] setting {t(A)} as an

initial representative association set of every quasi-terminal A.

8 Garanina N.O., Sidorova E.A. A Verification Method for a Family of Multi-agent Systems of Ambiguity Resolution

4. Verification of Multiagent Ambiguity Resolution

A detailed description of the multiagent algorithm for ambiguity resolution in ontology pop-

ulation is given in [5]. In this paper we sketch a communication structure without considering

agents’ actions on message processing.

Let a set of information agents be given. Some of agents are in a conflict corresponding to

some ambiguity. An agent-master constructs a conflict-free set of information agents taking into

account integration of conflict agents in the system. This integration is evaluated by computing

weights and conflict weights of the agents. A conflict is resolved by removing a weak agent from

the system. The agent-master performs the main protocol of constructing the conflict-free set,

while the information agents perform protocols of computing their weights.

Every information agent is connected with the master by two-way channel. Information

agents are linked with others by labeled connections of two types corresponding their conflict

reaction: removing (rem-type) and updating (upd-type). Every labeled connection is acyclic.

Processing of every conflict reaction induced by specified connection is considered to be certain

base process. An information agent can be union of such processes. This fact specifies a

form of a grammar generating family of our multiagent systems for various number of agents

connected in various ways. Agents are connected by two-way channels corresponding to these

labeled connections. This structure of multiagent network is generated by the following context-

sensitive grammar with quasi-terminals G = (T,Qt, t, N, P, S). Let a set of connections be

C = {c1, ..., cn} and cki be a connection having conflict type k ∈ {rem, del}.

• terminals T = {master}∪
∪n

i=1{rooti, interi, leafi}∪vrtxsi, and vrtxsi = {vrtx | vrtx =

interj or vrtx = leafj, j ∈ [1..n]} and |vrtxsi| = i,

• quasi-terminals Qt =
∪n

i=1{INTERi, LEAFi},

• associate mapping t : Qt 7→ T is defined by t(INTERi) = interi, and t(LEAFi) = leafi

for every i ∈ [1..n],

• nonterminals N = {S}
∪n

i=1{ROOTi, SUBi};

• set of production rules P for every i ∈ [1..n]:

1. S −→ master ∥m ROOT1 ∥m . . . ∥m ROOTn

2. ROOTi −→ (ROOTi ∥cki SUBi)
∨
(rooti ∥cki SUBi)

3. SUBi −→ (SUBi ∥cki SUBi)
∨
(INTERi ∥cki SUBi)

∨
(SUBi ∥cki LEAFi)

∨
(INTERi ∥cki LEAFi)

∨
(interi ∥cki SUBi)

∨
(SUBi ∥cki leafi)

∨

System Informatics (Системная информатика), No. 8 (2016) 9

(interi ∥cki LEAFi)
∨
(INTERi ∥cki leafi)

∨
(interi ∥cki leafi)

4. {V1, ..., Vm} −→ t(V1) ∪ ... ∪ t(Vm) = vrtxm, where for every j ∈ [1..m] Vj ∈

{INTERi, LEAFi}, and if Vj = INTERi then for every l ∈ [1..m] holds Vl ̸= LEAFi

(i ∈ [1..n]).

Parallel composition of agent-processes is synchronous. Protocols for computing weights and

conflict weights are highly parallel. Hence it is very important to prove that they terminate

and are synchronized properly. Satisfiability of these properties is necessary for correctness of

weight computing. Launch of these computing could be modeled by sending tokens.

Every base process is defined by the following state variables:

• Name : int is a name of the process;

• Channel: set of {name : int; c_type : bool; dir : bool; agn : int; rmvd : bool}, where

name is a label of a connection, c_type is its type, dir is a direction: a child (dir = 0)

or a parent (dir = 1) named agn, and rmvd is an absence status;

• Rmvd : bool is an absence status;

• Active : bool is an activity status;

•WasActive : bool is a previous activity status.

In synchronous composition of base processes with different names the corresponding channels

of the same name must connect. In merging of processes with the same Name sets of channels

and sets of Channel join. Processes with different names cannot be merged and processes with

the same Name cannot be composed in parallel. Values of above variables define states of a base

process. Its input and output channels correspond to names, types and directions of Channel.

Transitions are defined by sending and receiving tokens through the channels. The initial state

is (Channel, 0, 0, 0), where Channel is a nonempty set of channels with Channel.rmvd = 0,

and a number of channels with dir = 1 does not exceed 1 and a number of channels with

dir = 0 can be equal to 0.

We would like to verify the following properties expressed by ∀CTL. For the protocol of

parallel weight computing: AF({wasActive}∗ ∧ AXAF{¬Active}∗) (every agent was active,

and then all computation will be terminated). For the protocol of conflict weight computing:

AF{¬Active}∗ (all computation will be terminated); AG{Not2Rmvd}∗ (Channels and agents

cannot be removed twice). For every atomic formula we construct a finite deterministic au-

tomaton. They are a base for abstract functions for states of our systems. Then we should

construct a set of consistent representatives for symbols of our grammar. This technique is not

10 Garanina N.O., Sidorova E.A. A Verification Method for a Family of Multi-agent Systems of Ambiguity Resolution

present here.

5. Conclusion

In the paper we present the verification method for families of distributed systems specified

by a context-sensitive grammar with quasi-terminals. This method can be used for verification

of the multi-agent system of ambiguity resolution in ontology population. Properties of the

system are expressed by ∀CTL-formulas.

In the near future we plan to implement the suggested method using model checking tool

SPIN and give formal proofs of correctness of the ambiguity resolution algorithm. But some

properties concerning agent interaction cannot be expressed easily in this framework. This fact

is a reason for trying other more expressive formalisms for properties. Other research direction

is to extend the method for other types of context-sensitive grammars.

Список литературы

1. Bergenti F., Franchi E., Poggi A. Selected models for agent-based simulation of social networks //

In: Procs. 3rd Symposium on Social Networks and Multiagent Systems (SNAMAS 2011) 2011, pp.

27-32.

2. Clarke E.M., Grumberg O., Peled D. Model Checking. MIT Press, 1999.

3. Clarke E.M., Grumberg O., Jha S. Verifying Parameterized Networks // In: ACM Transactions

on Programming Languages and Systems, Vol. 19, No. 5, September 1997. Pages 726-750.

4. Fagin R., Halpern J.Y., Moses Y., Vardi M.Y. Reasoning about Knowledge. MIT Press, 1995.

5. Garanina N., Sidorova E. An Approach to Ambiguity Resolution for Ontology Population // Proc.

of the 24th International Workshop on CS&P. Rzeszow, Poland, Sep. 28-30, 2015. – University of

Rzeszow, 2015, Vol. 1, pp 134-145.

6. Garanina N. O., Sidorova E. A. Ontology Population as Algebraic Information System Processing

Based on Multi-agent Natural Language Text Analysis Algorithms//Programming and Computer

Software, 2015, V. 41, n.3, pp. 140–148.

7. De Gennaro M.C., Jadbabaie, A. Decentralized Control of Connectivity for Multi-Agent Systems

// In: Proc. of 45th IEEE Conference on Decision and Control, pp. 3628 - 3633.

8. Huhns M. N., Stephens L. M. Multiagent Systems and Societies of Agents // In: Multiagent

Systems, MIT Press, 1999 pp. 79–120.

9. Wooldridge, M. An Introduction to Multiagent Systems. Willey&Sons Ltd, 2002.

System Informatics (Системная информатика), No. 8 (2016) 11

УДК 004.415.53

Верификация промышленных алгоритмов управления

методом Model checking в сочетании с концепцией

виртуальных объектов управления

Лях Т.В. (Институт автоматики и электрометрии СО РАН,

Новосибирский государственный университет),

Зюбин В.Е. (Институт автоматики и электрометрии СО РАН,

Новосибирский государственный университет)

На сегодняшний день текущая практика промышленной автоматизации такова, что

тестирование управляющих алгоритмов в подавляющем большинстве случаев начинается

только при запуске ПО на реальном объекте. В результате проверка алгоритма

откладывается до этапа пуско-наладочных работ на объекте автоматизации. В статье

предложен подход к тестированию алгоритмов управления на основе концепции

виртуальных объектов управления. Для гарантии, что алгоритм управления

удовлетворяет полностью накладываемым на него требованиями, используется метод

верификации Model checking.

Ключевые слова: Алгоритмы управления, промышленная автоматизация, процесс-

ориентированное программирование, язык Reflex, верификация, Model checking..

1. Введение

На сегодняшний день текущая практика промышленной автоматизации предполагает, что

автоматизированные системы управления создаются исключительно на базе цифровой

техники в виде программно-аппаратных комплексов. При этом на современном этапе

наблюдается четкая тенденция к усложнению программной составляющей таких систем,

повышению ее функциональности и общей трудоемкости ее реализации. Рост значимости

программного обеспечения в области промышленной автоматизации, высокая стоимость

логических ошибок в программах давно уже находятся в противоречии с текущей практикой

разработки управляющих программ, которая ведется в рамках водопадной модели.

Тестирование управляющих алгоритмов в подавляющем большинстве случаев начинается

только при запуске ПО на реальном объекте. В результате проверка алгоритма

12 Лях Т.В., Зюбин В.Е.. Верификация промышленных алгоритмов управления методом Model checking …

откладывается до этапа пуско-наладочных работ на объекте автоматизации. Такая практика

чревата высокими рисками, нештатными ситуациями или даже авариями на объекте.

Для решения проблемы тестирования управляющих алгоритмов в Институте автоматики и

электрометрии СО РАН была предложена концепция виртуальных объектов управления

(ВОУ) – программных имитаторов автоматизируемого технического процесса, со

свойствами, схожими со свойствами моделируемого объекта [1]. Код ВОУ (Рис. 1)

исполняется независимо от алгоритма управления (АУ), создаваемого разработчиком.

Унифицированный обмен данными между ВОУ и алгоритмом управления обеспечивает

сохранение связей при изменении алгоритма. Такой подход позволил использовать

итерационную модель разработки и отлаживать код алгоритма управления до этапа пуска-

наладки.

Рис. 1. Итерационная модель разработки алгоритма управления (АУ) с использованием

виртуального объекта управления (ВОУ)

Было создано ПО на базе среды LabVIEW, которое позволило запускать одновременно и

тестировать ВОУ и АУ, имитируя обмен данными и внешние события [2], и с помощью него

был отлажен алгоритм управления Большим солнечным вакуумным телескопом.

Однако в процессе работы был выявлен ряд недостатков такого подхода. Эти недостатки

связаны с тем, что тестирование не обеспечивает полноту покрытия тестами всей

функциональности алгоритма. Также при таком подходе множество операций приходилось

выполнять вручную оператору.

Это растягивало процесс тестирование и увеличивало возможность пропущенных ошибок

и неисследованных поведений алгоритма управления. Поэтому для автоматизации проверки

алгоритма управления было предложено воспользоваться подходом Model chescking. Этот

подход хорошо себя зарекомендовал при верификаии реаигирующих систем, т.е. систем,

взаимодействующих с окружением. На данный момент подход Model checking активно

развивается.

System Informatics (Системная информатика), No. 8 (2016) 13

В статье рассматриваются особенности разработки управляющих алгоритмов

промышленного уровня, исследуются проблемы тестирования алгоритмов управления в

приборостроении, описывается подход к тестированию алгоритмов управления на основе

концепции виртуальных объектов управления. Предложен способ автоматизации

тестирования АУ с использованием подхода Model checking [3].

2. Специфика разработки алгоритмов управления и

преимущества языка Reflex

Задачи автоматизации имеют ряд характерных особенностей, и потому на ПО и языки

программирования, которые используются в разработке АУ, накладывается ряд особых

требований. Поскольку система управления воздействует на объект управления через органы

управления и реагирует события на объекте так, как это определено в алгоритме управления,

от управляющего алгоритма требуется цикличность: он считывает входные сигналы,

обрабатывает и формирует выходные сигналы. От алгоритма также требуется адекватность

реакции по времени событиям на объекте, т.е. синхронизация исполнения алгоритма с

физическими процессами во внешней среде. Поскольку на объекте управления зачастую

множество процессов возникают и протекают одновременно, требуется, чтобы средства

разработки предоставляли возможность обеспечить логический параллелизм алгоритма.

Благодаря этим особенностям стратегии создания управляющих алгоритмов в

промышленной автоматизации и используемые языки программирования отличаются от

практики, применяемой при создании ПО, не взаимодействующего с реальными объектами.

Для создания промышленных алгоритмов управления используется множество подходов:

языки стандарта МЭК 61131-3, языки общего назначения (такие, как С, С++ или Delphi),

языково-ориентированное программирование с использованием предметно-

ориентированных языков и прочее [4]. Каждый из таких подходов имеет определенные

преимущества и недостатки, и, не вдаваясь глубоко в детали, следует упомянуть, что в

конечном счете выбор делается в пользу того решения, которое наилучшим образом

соответствует особенностям автоматизируемого объекта. Однако в последнее время в связи с

недостатками стандарта МЭК [5] наблюдаемая тенденция такова, что при разработке

промышленных алгоритмов управления все чаще отказываются от языков МЭК в пользу

либо языков общего назначения, либо новых, специализированных для узкого применения,

формализмов.

14 Лях Т.В., Зюбин В.Е.. Верификация промышленных алгоритмов управления методом Model checking …

Процесс-ориентированный язык Reflex был создан для описания алгоритмов управления

при решении задач промышленной автоматизации [6]. Язык Reflex отличается рядом

достоинств:

1) Адекватность задачам промышленной автоматизации;

2) Легкость в изучении;

3) Язык Reflex – высокоуровневый язык программирования, разработчику не требуется

работать в терминах низкоуровневых операций с оборудованием;

4) Алгоритмы, созданные на языке Reflex, не зависят от среды исполнения;

5) Язык Reflex допускает вызовы функций, написанных на других языках

программирования.

3. Концепция виртуальных объектов управления на базе

LabVIEW с использованием языка Reflex

Концепция ВОУ для итерационной разработки АУ была реализована с использованием

механизма DLL, пакета LabVIEW [7] и транслятора языка Reflex. Интерфейс был создан

средствами пакета прикладных программ технических вычислений LabVIEW, который

широко используется для имитационного моделирования. Алгоритм управления и описание

ВОУ создается на языке Reflex.

При итерационной разработке алгоритма управления на основе концепции ВОУ работа

происходит по схеме, изображенной на рис. 2:

1) На языке Рефлекс создается описание логически обособленной части АУ (например,

часть алгоритма, отвечающая за определенную функциональность);

2) На языке Рефлекс создается описание элемента ВОУ, соответствующего

функционированию этого АУ;

3) ВОУ и АУ транслируются в DLL, которые встраиваются в отладочное ПО.

Дополнительно транслятор создает конфигурационные файлы, которые автоматически

интегрируются в отладочное ПО;

4) Оператор за отладочным интерфейсом проводит тестирование блока АУ: запускает

одновременно и тестирует пошагово АУ и ВОУ, имитирует передачу данных от

оператора интерфейса управления для АУ, имитирует передачу данных с датчиков

объекта управления. Это позволяет имитировать нештатные ситуации на объекте

управления: аварии, поломки оборудования и отсутствие связи с оборудованием – и

оценивать реакцию АУ на них;

System Informatics (Системная информатика), No. 8 (2016) 15

5) Если было выявлено несоответствие поведения АУ требованиям спецификации, или же

найдены ошибки в описании АУ или ВОУ на языке Reflex, вносятся изменения в код

АУ или ВОУ, и трансляция и тестирование происходят заново;

6) Если тестирование прошло успешно, не было выявлено ошибок в описаниях ВОУ и

АУ, и было установлено, что АУ удовлетворяет накладываемым на него признакам,

описывается следующий логический модуль АУ и создается соответствующий блок

ВОУ.

Рис. 2. Итерационная схема разработки алгоритмов управления на основе концепции ВОУ

Рассмотренная выше схема разработки была опробована при разработке алгоритма

управления системы вакуумирования Большим солнечным вакуумный телескопом (БСВТ, г

Иркутск, поселок Листвянка).

3.1. Недостатки разработанного метода

проверки безопасности АУ

Однако при работе над системой вакуумирования БСВТ было обращено внимание на ряд

неудобств данного подхода к разработке АУ:

• Большое количество работы «вручную». Оператору приходится вручную запускать

ВОУ и АУ, тестировать их пошагово, имитировать передачу данных от оператора

интерфейса управления для АУ и передачу данных с датчиков объекта управления;

• Полнота покрытия алгоритма тестами неизвестна. Тестирование не способно дать

точный ответ, насколько полно тесты покрывают функциональность АУ, и насколько

16 Лях Т.В., Зюбин В.Е.. Верификация промышленных алгоритмов управления методом Model checking …

точно выполняются требования, накладываемые на АУ. К тому же, тестирование чаще

всего выявляет частые ошибки, в то время как редкие, но критические ошибки, могут

ускользнуть от внимания. С помощью тестирование методом «черного ящика»

невозможно доказать отсутствие ошибок в программе.

Для точного доказательства, что АУ удовлетворяет накладываемым на него требованиям,

необходим строгий и непротиворечивый математический аппарат.

4. Использование метода Model checking для тестирования АУ

Для проверки корректности АУ в идеале необходимо перебрать все возможные пути его

вычисления, однако для систем, взаимодействующих с окружающей средой, эта задача

невыполнима, так как таких путей может оказаться бесконечное множество. В настоящий

момент для того, чтобы показать, что алгоритм соответствует накладываемым на него

требованиям, используются методы верификации.

Среди существующих методов верификации для автоматизации тестирования АУ был

выбран метод Model Checking. При верификации алгоритма подходом Model Checking

проверяется, что некоторое свойство поведения алгоритма управления, выраженное

формулой темпоральной логики, выполняется для модели системы с конечным числом

состояний [3].

Так как язык Reflex базируется на модели конечного гиперавтомата, предоставляет

логический параллелизм, средства взаимодействия между процессами и дает возможность

контролировать время нахождения процесса в текущем состоянии, это делает Reflex

удобным для описания верифицируемой модели системы, которая при верификации методом

Model Checking представляется в виде модифицированного конечного автомата.

Итерационная схема разработки АУ была изменена (рис.3)

1) На языке Reflex создается описание части АУ, а также на формальном языке

темпоральной логики описываются требования к АУ. Требования, описываемые на

этом не этапе, не учитывают взаимодействие АУ с ВОУ – это те требования, которые

рассматривают внутреннюю логику функционирования АУ, не зависящую от обмена

данными с внешней средой.

2) Автоматическая верификация АУ (выполняется верифицирующим ПО). Если

верфикатор выносит решение, что требования не выполняются, происходит поиск

ошибок (или в описании АУ, или в формализации требований), после чего вносятся

необходимые исправления и верификация повторяется

System Informatics (Системная информатика), No. 8 (2016) 17

3) На языке Reflex создается описание части ВОУ, а также на формальном языке

темпоральной логики описываются требования к ВОУ. Требования к ВОУ,

описываемые на этом этапе, проверяют лишь то, что поведение ВОУ соответствует

поведению реального объекта управления.

4) Автоматическая верификация ВОУ (выполняется верифицирующим ПО). Если

верификатор выносит решение, что требования не выполняются, происходит поиск

ошибок (или в описании АУ, или в формализации требований), после чего вносятся

необходимые исправления и верификация повторяется

5) Формулировка требований на языке темпоральной логики, истинность которых зависит

от взаимодействия АУ и ВОУ

6) Автоматическое построение общей модели АУ и ВОУ (выполняется верифицирующим

ПО)

7) Автоматическая верификация общей модели АУ и ВОУ(выполняется

верифицирующим ПО)

8) Если по результатам верификации было вынесено решение, что накладываемые

требования не выполняются, происходит поиск ошибок (или в описании ВОУ, или в

описании ВОУ, или в описании требований), после чего повторяется верификация

общей модели. Если верификация прошла успешно, то АУ удовлетворяет накладываем

требованиям. Происходит возврат на п. 1. и описание следующего логического блока

алгоритма.

18 Лях Т.В., Зюбин В.Е.. Верификация промышленных алгоритмов управления методом Model checking …

Рис. 3. Схема тестирования АУ и ВОУметодом Model checking

4.1. Схема верификации кода, созданного на языке Reflex, методом

Model Checking с помощью верификатора SPIN

Для реализации описанной выше схемы требовалось создание верификатора кода на языке

Reflex. Однако создание верификатора для метода Model Checking с нуля – задача крайне

объемная, и требующая серьезных затрат. Поэтому было решено воспользоваться уже

существующим верификатором Spin.

Верификация кода на языке Reflex проходит по следующей схеме:

1) Создается описание алгоритмического блока на языке Reflex

2) Транслятор автоматически преобразует код на языке Reflex в код на языке Promela –

стандартном языке верификатора SPIN

3) Описание формальных требований методами верификатора SPIN

4) Трансляция требований в язык Promela с помощью верификатора SPIN

5) Автоматическая верификация верификатором SPIN

6) Требования выполняются – задача выполнена. Требования не выполняются – поиск

ошибок или в описании алгоритма на языке Reflex, или в описании требований.

System Informatics (Системная информатика), No. 8 (2016) 19

Таким образом, в предложенной схеме автоматически проходит верификация алгоритма, и

для реализации необходимо было только реализовать транслятор из языка Reflex в язык

Promela.

Такой подход позволяет избежать одного из самых значимых недостатков подхода Model

checking: необходимости дальнейшего тестирования результирующего кода. Это связано с

тем, что при верификации методом Model checking верифицируется не результирующий код,

а построенная модель алгоритма. Однако верифицируемая модель, созданная на языке

Reflex, транслируется в исполняемый код алгоритма на языке Си, который уже не требует

дополнительного тестирования.

5. Заключение

Таким образом, в работе был предложен вариант реализации концепции итерационной

разработки управляющих алгоритмов на основе виртуального объекта управления (ВОУ).

Была разработана схема автоматической верификации алгоритма управления с помощью

метода Model Checking. Так как описанный на языке Reflex алгоритм транслируется в

исполняемый код алгоритма, это значит, что использование предложенной схемы позволит

уйти от самого значительного недостатка верификации методом Model Checking:

необходимости повторного тестирования, так как в классическом подходе верифицируется

не сама конечная система, а только ее модель. Используя подход Model Checking можно

проверять как корректное функционирование АУ, так и поведение ВОУ.

Концепция итерационной разработки управляющих алгоритмов на основе ВОУ

эффективна для задач снижения рисков при вводе систем управления в эксплуатацию.

Использование метода в реальных проектах по автоматизации позволяет:

1. тестировать создаваемые алгоритмы, начиная с самых ранних стадий разработки,

внедрить итерационную модель разработки для случая промышленной автоматизации;

2. обеспечить контроль процесса создания управляющих алгоритмов и снизить

психологическую нагрузку на коллектив разработчиков;

3. сократить время выполнения проекта и имеющиеся риски этапа пуско-наладки;

4. гибко расширять круг лиц, участвующих в процессе разработки, в частности, чтобы

своевременно выявлять и устранять ошибки в техническом задании.

Разработанный подход был использован для отладки алгоритма управления вакуумной

системой БСВТ.

Список литературы

20 Лях Т.В., Зюбин В.Е.. Верификация промышленных алгоритмов управления методом Model checking …

1. Зюбин В. Е. Итерационная разработка управляющих алгоритмов на основе имитационного

моделирования объекта управления // Автоматизация в промышленности. 2010. № 11. С. 43-48

2. Лях Т. В., Зюбин В. Е. Применение концепции виртуальных объектов управления для решения

задач промышленной автоматизации // Материалы Девятой международной Ершовской

конференции PSI-2014 (г. Санкт-Петербург, Россия, июнь 2014г). С. 57-64.

3. C. Baier, J.P. Katoen, Principles of Model Checking. The MIT Press. Massachusetts Institute of

Technology, 2007.

4. Горячкин А. А., Зюбин В. Е., Лубков А. А. Разработка графического формализма для описания

алгоритмов в процесс-ориентированном стиле // Вестн. Новосиб. гос. ун-та. Серия:

Информационные технологии. 2013. Т. 11, вып. 2. С. 44–54.

5. Зюбин В. Е. К пятилетию стандарта IEC 1131-3. Итоги и прогнозы // Приборы и системы.

Управление, контроль, диагностика. 1999. № 1.

6. В. Е. Зюбин. «Си с процессами» - язык программирования логических контроллеров //

Мехатроника, автоматизация, управление. 2006. № 12 С. 31-35

7. Дж. Тревис. LabVIEW для всех. М.: ДМК Пресс, 2011. 912 с.

System Informatics (Системная информатика), No. 8 (2016) 21

УДК 004.414.38

Developing formal temporal requirements to distributed

program systems

Shoshmina I. V. (Peter the Great Saint-Petersburg Polytechnic University)

Developing temporal requirements to distributed program systems an engineer should

determine and systemize event sequences caused by system processes interleaving. A num-

ber of such sequences grow exponentially that makes the requirement development pro-

cedure nontrivial. This is why engineers prefer not to construct or construct elementary

formal requirements. As result powerful formal verification methods become unavailable

or some important properties of distributed systems leaved unexpressed. While it is well-

known, that development of formal requirement even without verification improves an

quality of a distributed system structure and functions.

In this paper we suggest a method for formal temporal systems development which is

easy-to-use. The method is based on scalable patterns of linear temporal logic formulas.

Using this method we developed formal temporal requirements to a practical program

control system (a vehicle power supply control system). Verifying the requirements with

the model checking method we found 3 critical errors that were missed by developers of

the vehicle power supply control system during design and testing.

Keywords: software requirement specification, requirement patterns, model checking,

linear temporal logic

1. Introduction

Developing temporal requirements to distributed asynchronous program system is compli-

cated in practice. Because an engineer should systemize an exponential number of system

behaviour sequences resulting as process interleaving.

The wide-spread approach to solve this problem is to use formulas patterns for requirements:

an engineer tries to find a requirement close to a pattern. Dwyer et al. in [1] developed the

specification pattern system (SPS). They analyzed 500 temporal requirements to systems from

different application fields and suggested patterns for the most typical ones. The main SPS

drawback it is too strict: patterns aren’t scalable to different events number.

De-facto SPS has become the standard [2], [8], [9], [10]. Later it was modified by different

way. In [2], [3] patterns were extended by real time and probabilistic requirements. In [4],

[5] there were suggested nested patterns for interval logic, in [6] — nested patterns for linear

22 Shoshmina I. V. Developing formal temporal requirements to distributed program systems

temporal logic. In [2], [7] authors described patterns in limited English.

In spite of these modifications the strict structure of SPS formulas has left unchanged. In

this research we develop patterns that, on one hand, could be scalable and, on another hand,

we give an easy way how to use these patterns to develop significant temporal requirements. As

a base for our patterns we use the temporal relation “leads-to” [11] where after an environment

stimulus somewhen in the future there should follow a system reaction. Our patterns are

formalised in the linear temporal logic (LTL).

Using our patterns we developed and verified formal temporal requirements to a power

vessel supply control system (PVSS). The PVSS were developed and provided to us by a

Russian ship control systems manufacturer. The original PVSS code was written on C++ and

contained 20000 code strings (not counting external libraries). One of the most complicated

PVSS characteristics was an asynchronous work of its modules. Verification allows us to find 3

critical errors that developers did not find neither during design nor during bench and program

testing.

2. Patterns of events sequences

Temporal requirements of program systems are often some event sequences. The most

suitable and concise temporal logic for describing event sequences is the linear temporal logic

(LTL). LTL–formulas consist of atomic propositions p ∈ AP , Boolean operations and temporal

operations: Until – U and the Next time – X (NextTime). This is grammar for a LTL–

formula φ:

φ ::= p | ¬φ | φ ∨ φ | Xφ | φU φ (1)

To short fomulas we will use some extra operations, Boolean (⇒, ∧, etc.) and temporal ones:

Future – F , Globally – G , Release – R , Weak Until –W , where F φ = ⊤Uφ; G φ = ¬F ¬φ,

φRψ = ¬(¬φU ¬ψ); φW ψ = G φ ∨ φU ψ, and the true constant: ⊤ = p ∨ ¬p. We use a

common formal semantics of LTL formulas defined on infinite sequences (i. e. [12]).

A lot of formulas decribing different temporal requirements could be constructed with LTL.

We consider one that has very practical application, when a system environment gives a stimulus

by an event s and then the system guarantees an event–reaction p somewhen in the future (p

is after s). We call the relation as the “unconditional response”. It’s a LTL formalization

Resp(s, p):

Resp(s, p) = s⇒ F p. (2)

System Informatics (Системная информатика), No. 8 (2016) 23

The requirement “If someone from a floor calls an elevator then in the future the elevator will

stop at that floor” is an example of a requirement with the unconditional response. The response

relation in the form (2) is well–known as “leads–to” [11].

Now we require that a system should remember receiving a stimulus s until emitting a

reaction p by setting a condition t. So we get a “conditional response” relation denoted it as

Resp(s, p, t):

Resp(s, p, t) = s⇒ tU p. (3)

Similarly we define a conditional precedence relation (before an event–reaction p should be

an event–stimulus s which sets a condition t), denoted as Prec(s, p, t) :

Prec(s, p, t) = ¬p⇒ (tU p⇒ ¬pU s). (4)

The requirement “If a fire fighting system switched on then before that a duty officer gave its a

corresponding command” is an example of a requirement with the precedence relation.

Formulas (3) and (4) describe local temporal relations between a stimulus and a reaction

in sense that a temporal relation is satisfied in a current state of a system behaviour. To

develop requirements we should consider temporal relations (3) or (4) in all states of a system

behaviour. Let’s consider 4 typical systems work phases: start, global, regular, final. In a global

phase a temporal relation should be satisfied in all system states. Other phases define a scope

where a temporal relation is satisfied. In a final phase a temporal relation should be true

after the final phase started; in a start phase — before the phase finished; in a regular phase a

temporal relation should be satisfied during the phase. Defining phases bounds by events we

get following LTL formulas for temporal requirements:

global(s, p, t;φ) = G φ(s, p, t),

fin(s, p, t; q;φ) = F G q ⇒ F global(s, p, t;φ),

start(s, p, t; r;φ) = ¬r ⇒ φ(s, p, t)W r,

reg(s, p, t; q, r;φ) = G (q ⇒ start(s, p, t; r;φ)), (5)

when φ is substituted by a formula Resp or Prec from (3)–(4), the formula global defines a

requirement in a global phase, formulas fin, start and reg — for final, start and regular phases

respectively. The variable q defines an event of starting a final phase in fin, r — an event

ending a start phase in start, and variables q and r – events starting and ending a regular

phase respectively.

24 Shoshmina I. V. Developing formal temporal requirements to distributed program systems

The suggested temporal relations (3)–(4) are so that they are easily scalable to stimuli

and reactions consisting from event sequences (not from one event): s⃗ = {s1, s2, . . . , sm},

p⃗ = {p1, p2, . . . , pn} with sequences of conditions v⃗ = {v1, v2, . . . , vm−1}, t⃗ = {t1, t2, . . . , tn},

restricting stimuli and reactions respectively:

µ(s⃗, v⃗) = s1 ∧ v2 U (. . . sm−1 ∧ (vm U sm) . . .),

χ(p⃗, t⃗) = t1 U (p1 ∧ . . . tn−1 U (pn−1 ∧ (tn U pn)) . . .),

Resp(s⃗, p⃗, v⃗, t⃗) = µ(s⃗, v⃗) ⇒ v2 U (s2 ∧ . . . (vm U (sm ∧ χ(p⃗, t⃗))) . . .),

P rec(s⃗, p⃗, v⃗, t⃗) = ¬p1 ⇒ (χ(p⃗, t⃗) ⇒ ¬p1 U µ(s⃗, v⃗)) (6)

In this case requirements expressed in LTL formulas (5) aren’t changed except substituting φ

by formulas Resp or Prec from (6) and adding v⃗.

If requirements depended on an infinite behaviour of environment we describe them by the

following LTL formula:

ψ ⇒ ξ, (7)

when ξ is a formula from (5), ψ — a formula defining an infinite environment behavior. Common

fairness requirements is a particular case of the formula (7).

Comparing patterns of [1] with ours ones by temporal relations structure we could resume

that 83 formulas from 217 LTL-formulas of [1] have a response relation Resp, 13 formulas —

a precedence relation Prec, while other 121 don’t contain relations between a stimulus and

a reaction. So our LTL–pattern coincide with existing practical requirements and even allow

scaling them to represent wider temporal dependencies.

3. Developing requirements to the power vessel supply control

system

The considered power vessel supply system (PVSS) consists of two power supply stations

(PS) while a power supply station contains a diesel, a generator, a generator cutout switch

(GCS). The power vessel supply control system coordinate the work of these PSs. Its structure

is shown at the fig. 1 inside the bold frame. We will use the abbreviation PVSS for the

power vessel supply system and for its control system. All PVSS controllers have independent

asynchronous behaviors coordinated by passing messages. Environment modules/devices the

PVSS works with are drawn outside the frame. The PVSS monitors and controls these devices

System Informatics (Системная информатика), No. 8 (2016) 25

Рис. 1. The PVSS Structure

by reading sensors values and setting signals. A diesel has the utmost number of sensors (12

pieces).

The PVSS provides electricity power to all vessel consumers. For that it dynamically switches

on/off power stations depending on loading. The PVSS activity could be quite complicated.

For example, to start a power station the PVSS starts a diesel at first. When the diesel rotation

becomes stable, PVSS starts a generator, after that it starts a generator cutout switch. And

only after that consumers get the electricity power. Moreover, procedures of switching power

stations on/off depend on PVSS modes and could be different.

“PSSV requirement specification” provided us by PVSS developers was written quite poor

and did not contain enough information about PVSS to develop formal temporal requirements.

So we used mainly “Bench testing program and technique”. The test from this manual is cited

at the fig. 2. To resolve ambiguity and uncertainty we used “Operating guide’, the PVSS code

too, and sometimes consulted with experts developed the PSSV.

At first we identified input/output events from tests in natural language (like at the fig. 2).

We will use some of them in requirements below.

To combine events into temporal requirements sequences we will use the patterns (5)–(6). If

someone would like to avoid the direct usage of formulas he/she could use the modified problem

frame approach and translate requirements to formulas from graphical problem frames [13]. In

general modified problem frames allow to construct temporal requirements unlike the original

one developed by M. Jackson [14].

The test at the fig. 2 describes the PVSS transition to a remote automated mode. Analysing

26 Shoshmina I. V. Developing formal temporal requirements to distributed program systems

D.1.2.1 Before start:

• DG1 and DG2 stopped (banners “DG1 is ready to start” and “DG2 is ready to start” lighten in the ACP

window “Power Supply Station”);

• the SCP switch “PS mode” is in the position AUT;

D.1.2.2 Testing transition to the PS remote automated control mode.

D.1.2.2.1 Switch on the test bench “Testing PS control algorithms” buttons “DG1: ready to start”, “DG2: ready

to start”, “DG1: remote control on”, “DG2: remote control on”, “SCP control”.

D.1.2.2.2 That should have the following effects:

• on the ACP display the message “PS control mode — remote” received and indicators “Control mode

— remote”, “DG1 is ready to start”, “DG2 is ready to start” changed to yellow;

• on SCP lamps “DG1: SCP control”, “DG2: SCP control”, “DG1: ready to start”, “DG2: ready to start”

lighted up.

D.1.2.3 Testing results are accepted when all effects described above happened.

Рис. 2. Testing transition to a PVSS remote automated mode. Abbreviations: DG – diesel generator, ACP – automated

control panel, SCP – skipper control post, AUT – automated.

other tests of “Bench testing program and technique” we found out that the PVSS could transfer

to the remote automated mode independently of diesels state. This is why the test at the fig. 2

splits to few temporal requirements, in particular: “Transition to a remote automated mode”,

“Diesel 1 activation in the remote automated mode”, “Absence of a diesel 1 misactivation in the

remote automated mode” and symmetrical for the diesel 2.

Transition to a remote automated mode. Always when the PVSS is not in the remote

automated mode and it would be in this mode in the future then before that an operator gives

commands “DG1: remote control on”, “DG2: remote control on” on the ACP and changes the

switch “PS mode” in the position AUT on the SCP.

The requirement is written in LTL so:

G (¬dist ∧ F dist⇒ ¬distU autosig), (8)

where autosig — the signal to set the remote automated mode (commands “DG1: remote

control on”, “DG2: remote control on” and the switch “PS mode” in the position AUT), dist —

the signal that the remote automated mode is set.

The other temporal requirement describes an absence of an unwanted diesel 1 activation.

Absence of a diesel 1 misactivation in the the remote automated mode. Always in

the remote automated mode the lamp “DG1: ready to start” wouldn’t light up until the diesel 1

is ready to start.

System Informatics (Системная информатика), No. 8 (2016) 27

The temporal relation in this requirement corresponds to the precedence pattern (6), so as

result we get:

G (dist ⇒ ((¬readylamp ∧ ¬handU readylamp) ⇒

¬readylampU ready)W hand), (9)

where ready — the signal from sensors that the diesel 1 is ready to start (simulated at the fig. 2

as the ACP banner “DG1 is ready to start”), readylamp — the lamp “DG1: ready to start”

lights, hand = ¬dist — manual or local modes is set, dist — as in (8).

The diesel 1 in the test at the fig. 2 activated (becomes ready to start) if the remote auto-

mated mode is set enough long. This is modelled in LTL as “somewhen forever”.

The diesel 1 activation in the the remote automated mode. If somewhen forever

the remote automated mode is set up then somewhen forever the lamp “DG1: ready to start”

would light up to the sensors signal that the diesel 1 is ready to start.

Formally:

F G dist⇒ F G (ready ⇒ ¬handU readylamp), (10)

where dist, hand, readylamp, ready — the same are in (9).

At the tab. 1 we compare our formal temporal requirements development to PVSS and

“Bench testing program and technique”. As result, we described more events explicitly than it

was in an events table of “Bench testing program and technique”. We found out requirements

that unnecessary repeated in different tests. We defined requirements that were formulated

implicitly, for example, the requirement (9) is implicit in the test at the fig. 2. So we resume

that developing formal temporal requirements with the patterns (5)–(6) gives a better structure

of requirement specification than informal procedures. But some requirements described by

quite complicated LTL formulas containing 10-15 events.

4. Verifying the power vessel supply control system

We claim that our patterns allow to describe important requirements to distributed pro-

grams. To approve that we verified the PVSS with respect to developed formal temporal

requirements using SPIN [15]. At first we constructed a PVSS model in Promela, the input

language of SPIN. A PVSS module algorithm was modeled as an independent asynchronous

process. Processes coordinated their work transferring messages by asynchronous channels.

28 Shoshmina I. V. Developing formal temporal requirements to distributed program systems

Table 1

Comparing formal requirement development method and bench testing program on the PVSS

Formal requirement develop-

ment method

Testing program

Number of explicitly enu-

merated events

71 20

Number of requirements or

tests

36 requirements 23 tests

Average size of a require-

ment or a test

10-15 subformulas (prece-

dence relation), 30-36 sub-

formulas (response relation)

2 pages (A4)

Development time 2 weeks unknown

Because the PVSS model was large we reduced it manually. To check our temporal require-

ments we used 4 reduced models of the PVSS model. Correctness of reduced models is proved

by correspondence of counterexamples traces in Promela with traces in the original C++ code.

Let’s consider one of the critical error found out in the PVSS verification. Because this error

obviously shows problems that developers of program systems meet with, and such errors are

quite difficult to analyze and understand without verification.

Starting a reserve diesel–generator while another one crashed If the power station 2

hardware failures infinitely often, and the power station 1 hardware works properly infinitely

long, and always in case of failure of the power station 1 hardware the protection would be reset

and the remote automated mode with the power station 2 priority is set, then somewhen in the

future for every reserve response the diesel–generator 1 would start.

Formally the requirement is so:

∧
i

G F b̃i ∧
∧

F G ¬bi ∧ F G ¬reset ∧
∧
j

G (bj ⇒ F reset) ∧ F G prior21 ⇒

F G (reserv ⇒ prior21U lampon), (11)

when b̃i – sensors data of the diesel–generator 2, bi – sensors data of the diesel–generator 1,

reset – reset a protection, prior21 – the remote automated mode with the power station 2

priority is set, reserv – the signal to starting a reserve diesel–generator, lampon – the lamp

System Informatics (Системная информатика), No. 8 (2016) 29

signalling the diesel–generator 1 started lights up. The requirement part “infinitely often” allow

to model cases when hardware failures happen regular, but messages about these failures come

with some delays.

SPIN found out a counterexample violated the formula (11) at the depth 29915. The re-

quirement violated because the message which the generator cutout switch 1 controller sent to

the power station 1 controller came with delay and blocked starting a reserve diesel–generator.

This error is impossible to detect while bench testing, because it’s impossible to produce

unknown quantity of hardware failures with unknown delay. And it’s difficult to detect while

program testing because it happens in a very seldom set of circumstances. But because of this

error a vessel loses the electrical power control at all.

Interesting that developers observed such a behaviour in vessel sea trials, but they were

sure that the error was caused by hardware (not by controllers coordination). So they tried

to solve it by adding checks of the generator cutout switch data. And this obviously didn’t

help. Developers were not beginners: they specialize in power vessel supply control systems

development. Except 23 bench tests they checked the PVSS with 841 program tests. But they

didn’t determine the error reason without the requirement formalization and verification.

During verification we detected about 141 errors. Most of them were minor and could be

easily fixed, but 3 of them were critical. One of them were discussed above. Second one was

about an uncontrollable start of a power station. As result of third critical error hardware could

be under the electrical voltage in a PVSS protection mode.

To solve these critical problems it’s required to change controllers algorithms for some modes

and add few new modes more. This solution is time consuming, and takes about 80% of the

PVSS time design. So we get the well-known consequence that using formal verification methods

at first stages of a control program design could allow to avoid subtle, expensive errors at late

design stages.

5. Conclusion

We suggested scalable LTL formulas patterns which describe many practical temporal re-

quirements. We show that developing formal temporal requirements with them gives a well-

structured requirement specification. The development allows to avoid redundant repeating of

temporal requirements and to find out implicit requirements by organizing input-output events

and their temporal relations.

30 Shoshmina I. V. Developing formal temporal requirements to distributed program systems

Verifying the power vessel supply control system with developed requirements we found out

three critical errors. These errors were not found developers by testing. The result of one

critical error were observed by developers but they could not determine errors reasons correctly

without the requirement formalization and verification. Fixing such critical and subtle errors

at late stages of a control program design sometimes could be compared starting a program

development from the scratch.

Список литературы

1. Dwyer M. B., Avrunin G. S., Corbett J. C. Patterns in property specifications for finite-state

verification // ICSE ’99: Proceedings of the 21st international conference on Software engineering.

ACM. 1999. P. 411-420

2. Konrad S., Cheng B. H. C. Real-time specification patterns // Proceedings of the 27th international

conference on Software engineering. ACM. 2005. P. 372-381

3. Grunske L. Specification patterns for probabilistic quality properties // Proceedings of the 30th

international conference on Software engineering. ACM. 2008. P. 31-40

4. Mondragon O. A., Gates A. Q., Roach, S. M. Composite Propositions: Toward Support for Formal

Specification of System Properties // Software Engineering Workshop. IEEE. 2002. P. 67-74

5. Mondragon O., Gates A. Q., Roach S. Prospec: Support for Elicitation and Formal Specification

of Software Properties // Runtime Verification Workshop. ENTCS. Elsevier. 2004. V. 89. P. 67-88

6. Salamah S., Gates A. Q., Kreinovich V. Validated templates for specification of complex LTL

formulas // Journal of Systems and Software. 2012. V. 85. P. 1915-1929

7. Smith R. L., Avrunin G. S., Clarke L. A., Osterweil L. J. Propel: an approach supporting property

elucidation // 24th Intl. Conf. on Software Engineering. ACM Press. 2002. P. 11-21

8. Ramezani E., Fahland D., van Dongen B. F., van der Aalst W. M. P. Diagnostic Information for

Compliance Checking of Temporal Compliance Requirements // CAiSE. 2013. P. 304-320

9. Post A., Menzel I., Podelski A. Applying restricted english grammar on automotive requirements:

does it work? A case study // 17th international working conference on Requirements engineering:

foundation for software quality. Springer-Verlag. 2011. V. 6606. P. 166-180

10. Yu J., Manh T. P., Han J., Jin Y., Han Y., Wang J. Pattern Based Property Specification and

Verification for Service Composition // 7th International Conference on Web Information Systems

Engineering (WISE). Springer-Verlag. 2006. V. 4255. P. 156-168

11. Pnueli A. The temporal logic of programs // 18th Annyv. Symp. on Foundation of Computer

Science. IEEE Computer Society. 1977. P. 46-57

12. Karpov Yu.G. Model Checking. Parallel and distributed program systems verification // SPb:BHV-

Petersburg. 2010. 560 p. (in Russian)

13. Shoshmina I.V. A method eliciting context requirements to logical control program systems //

Information and Control Systems. 2014. №3, P. 68–77 (in Russian)

System Informatics (Системная информатика), No. 8 (2016) 31

14. Jackson M. A. Problem Analysis Using Small Problem Frames // South African Computer Journal.

1999. V. 22. P. 47-60

15. Holzmann G. The Spin Model Checker // Primer and Reference Manual Addison Wesley. 2003

System Informatics (Системная информатика), No. 8 (2016) 33

UDC 519.713

Using BALM-II for deriving parallel composition of timed

finite state machines with outputs delays and timeouts: work-

in-progress

Shabaldina N. (Tomsk State University),

Gromov M.(Tomsk State University)

In this paper we consider a procedure of parallel composition construction of Timed Finite

State Machines (TFSMs) using BALM-II and suggest different ways of getting linear functions

that describe a set of output delays. Our research consists of three steps: at first step we consider

composition of TFSMs when an output delay may be a natural number or zero; at second – we

add transitions under timeouts; at third we consider composition of TFSMs in general case

(when output delays are described as sets of linear functions). This paper is devoted only to the

first step of the research.

Keywords: Timed finite state machines, parallel composition, BALM-II.

1. Introduction

Most modern applications, such as web-services, telecommunication protocols, are oriented on

interaction with each other. The classical model for a discrete system is Finite State Machine

(FSM). If the behavior of each system is described by an FSM, then their common work can be

described by their composition (that also will be an FSM under appropriate assumptions) [1,2]. In

this work we are interested in so-called parallel composition [1], when the interacting systems work

asynchronously in as-sumption of slow environment, and for deriving such FSM composition there

is a tool named BALM-II (Berkeley Automata and Language Manipulation)[2].

Sometimes it is necessary to take into account time aspects of a discrete system. Probably the

most general way to describe such a system is Timed Automaton [3]. However, in this work we are

interested in input-output reactive systems, when every input action is necessary followed by output

action, probably after some time. The class of such systems has been already mentioned, it includes

telecommunication protocols, sequential circuits, web-services etc. In this case we can use Timed

Finite State Machine (TFSM) as a model. There exist different ways to introduce Timed FSM, for

example, with timed guards on transitions [4]. In this work we consider TFSM with output delays

and timeouts [5,6]. We got inspiration for our research from the work [5], in which authors describe

34 Shabaldina N., Gromov M. Using BALM-II for deriving parallel composition of timed finite state machines …

how to build parallel binary composition of two timed FSMs with output delays and timeouts. In

order to derive the composition of timed FSMs the corresponding automaton should be built [5].

First we transform both TFSMs into automaton, then we compose them, and then we need to go

back to the TFSM model. In [5] it is shown that composition of two Timed FSMs can have infinite

number of output delays for a given transition and those delays can be de-scribed by a finite set of

linear functions { b + k·t | b, k {0} ℕ }.

There are several tools dealing with timed automata, their composition and verification. One of

the most popular is UPPAAL [7]. It allows to describe timed system using Extended Timed

Automata, as well as composition of such systems. One of the key feature of UPPAAL is built-in

verifier. Unfortunately, UPPAAL does not build composition explicitly and one of the objectives

for this work is to get composition explicitly for further processing (for example, test generation).

For that reason in this work we decided to use BALM-II since it was designed to build parallel

binary com-position of two FSMs. To be able to use this tool for Timed FSMs we use well-known

transformation of TFSM into FSM and then into common automaton by introducing new (tick)

action. Also we suggest two approaches for extracting functions f(t) = b + k·t from the composition

of corresponding automata in order to derive TFSM. First approach is based on using BALM-II

once again. And the second one is to find corresponding loops in the transition graph of the

automaton composition.

This work is partially supported by the basic part of the State Assignment of the Ministry of

Education and Science of the Russian Federation (Project code No. 1975) and by the grant of

Russian Fund for Basic Research No. 15-58-46013 CT_a.

2. Preliminaries

An automaton S is a 5-tuple (S, X, s0, F, λS), where S is a finite nonempty set of states with s0 as

the initial state and FS as a set of final (accepting) states; X is an alphabet of actions; and

λS  SXS is a transition relation. The transition relation defines all possible transitions of the

automaton. The language LS of automaton S is the set of all sequences  in alphabet X, such that in

automaton S there is a sequence of transitions (marked by ) from the initial state to some final

state. An FSM S is a 5-tuple (S, I, O, s0, λS), where S is a finite nonempty set of states with s0 as the

initial state; I and O are input and output alphabets; and λS  SIOS is a transition relation. In

FSM all states are final.

Let ℕ be the set of natural numbers. TFSM [5] is an FSM with timeouts and output delays

S = (S, I, O, s0, λS, ΔS, S), where 5-tuple (S, I, O, s0, λS,) is underlying FSM, ΔS: S  S  (ℕ {})

System Informatics (Системная информатика), No. 8 (2016) 35

is a timeout function that determine maximal time of waiting for input symbol, S: λS  ({0}  ℕ)

is an output delay function that determine for each transition time delay for producing output

(output timeout).

Parallel composition describes a dialog between two components. The structure of the

composition is represented in Figure 1.

1

I1

2O1

U

V I2

O2

Fig. 1. Structure of binary parallel composition

We suppose that we have “slow environment” (it means that the next input can be applied to the

composition only after it produces external output to the previous input), the alphabets of different

channels don’t intersect and there are no infinite dialogs under internal inputs (it means no

livelocks). We also suppose that each component and the whole composition have timed variables.

The values of these variables are increasing synchronically, and they reset when the system gets an

input or when the state is changed.

3. Deriving an automata based on the given TFSMs

In order to derive the composition of timed FSMs we can use the corresponding automaton [5].

For deriving an automaton that corresponds to the classical FSM we need to do the following

steps [2]:

1. Derive the set of states that contains all FSM states (final, or accepting states) and a number of

intermediate (not-final) states (one new state for each transition in FSM). The initial state of the

automaton is the same as the initial state of the FSM.

2. Derive the set of actions X = IO.

3. Derive the set of transitions: for each FSM transition we add two transitions in automaton, i.e.

(s, i, o, s') generates {(s, i, s''), (s'', o, s')}, where s'' is one of the intermediate states we added at

the first step which corresponds to the transition under consideration.

So, in order to construct an FSM from the given automaton, we need to split alphabet of actions

into input alphabet and output alphabet, merge transitions and delete intermediate states.

In order to derive an automaton for the timed FSM with timeouts and output delays we first apply

steps that are described above. Then we need to add into the set of actions a new special symbol

1IO that corresponds to tick count and represents an action “to wait for one time unit”[5]. We

add in each final state a loop under 1 (in order to describe the situation that the current component is

36 Shabaldina N., Gromov M. Using BALM-II for deriving parallel composition of timed finite state machines …

waiting for input and time variable of the other component is increasing). Then, we replace the

transition under timeouts by a chain of transitions under 1 (in order to model the time delay), the

length of the chain corresponds to the value of time delay. And we do almost the same by adding

the chain of transitions under 1 between an input and output symbols (if there is an output delay for

this transition in TFSM) [5].

In Figures 2 and 3 one can see TFSMs that describe the behavior of left and right components of

the composition, correspondingly. We take this example from work [5]. In Figures 4 and 5 we show

automata for these TFSMs. In this example the structure of the composition is simpler then in

Figure 1 (left component has external input Request and external output Deliver; right component

has no external inputs and external outputs) and also TFSMs are simpler: they have output delays,

however, they have no transitions under timeouts.

Fig. 2. Left-part component (TFSM)

Fig. 3. Right-part component (TFSM)

Fig. 4. Left-part component (automaton)

Fig. 5. Right-part component (automaton)

4. Deriving automata parallel composition using BALM-II

In this section we describe how to derive a binary parallel composition of two automata using

BALM-II, and we illustrate this procedure using our example from previous Section.

 BALM-II supports AUT file format for describing automata [2]. This format is a restricted form

of BLIF_MV format. Due to the restriction of space we just mention the most important things.

First of all, we need to determine our channels, in AUT format it will be like this for the left

component:

System Informatics (Системная информатика), No. 8 (2016) 37

.inputs x v u y t E

We underline that in addition to the channels of the left component that you can see in Figure 1,

we need to mention the special time channel (channel t) that correspond to the timed variable (or to

our special action 1). As for the channel E, this is also a special channel that determine which one

from the channels x, v, u, y and t is active now (while the other channels are inactive).

For the time channel t we need to introduce in addition to the input 1 one more input (due to the

fact that we need at least two values for the channel alphabet in BALM-II):

.mv t 2 1 none

When we have our automata in AUT format, the first thing we need to do is synchronizing

channels of the composing automata:

chan_sync x|v|u|y|t|E u|v|t|E left_timed.aut right_timed.aut

left_t_sync.aut right_t_sync.aut

Then, according to the algorithm of deriving the composition of two automata [1,2], we need to

extend the alphabet of the right-component automaton to the channels X and Y:

expansion E0,E3 right_t_sync.aut right_t_exp_aut

support x,v(3),u,y,t,E(5) right_t_exp.aut right_t_support.aut

The next step is deriving an intersection of two automata:

product left_t_sync.aut right_t_support.aut product_timed.aut

Now we have an automaton that describes common behavior of left and right components, but its

behavior does not always correspond to our “slow environment” restriction, and in this case we

need to intersect derived automaton with the automaton that represent the language

(X(UT*V)*T*Y)*. In our example we don’t need to do this. So the next step is to restrict the

automaton to external channels and special timed channel:

restriction E0,E3,E4 product_timed.aut restriction_timed.aut

support x,y,t,E(3) restriction_timed.aut comp_timed.aut

The result is shown in Figure 6 (a). One can see that after Request there can be output Deliver

after 3 + 5t or 4 + 5t tick counts, where t is arbitrary non-negative integer number. So in Figure 6

(b) you can see corresponding TFSM.

38 Shabaldina N., Gromov M. Using BALM-II for deriving parallel composition of timed finite state machines …

a

b

Fig. 5. The composed automaton (a) and Timed FSM (b)

5. Deriving parallel composition of two TFSMs with output delays:

two approaches for extracting output delays functions

In this section we propose two approaches for extracting a set of linear functions from the

derived automaton.

5.1. Using BALM-II for extracting output delays functions

The idea of this approach is to intersect consequently the resulting automaton with the automata

that correspond to the languages X1b(1k)*Y, i.e., the languages with the following property: they

contain sequences that start with any external input symbol, the end of the sequences is any external

output symbol, and between these input and output there is subsequence that corresponds to the

function {b + k t | b, k {0,1,..,n}.

We need to mention that in this case we need to intersect not only the composition automaton,

but also its modifications that can be derived by making each accepting state as an initial state (one

by one). So we fix b and k and intersect automaton with the language X1b+k(1k)*Y with the

composition, fixing in the composition automaton an initial state (we consider the automaton with

the language X1b+k(1k)*Y instead of the language X1b(1k)*Y in order to avoid the case when in the

composition automaton there is a chain that corresponds to 1b and then no loop, i.e. the case when t

can only be equal to zero). Then we test the intersection using check_nb BALM-II command.

This command allows answering the question: whether we can extract output delays function for the

fixed b and k or not. If in the composition automata between input and output there is a subsequence

that corresponds to the function b + k· t, then the corresponding intersection will be nonblocking, it

means it has no deadlocks; otherwise, it will be blocking, so, the intersection will contain no

external output after some sequence under 1. For our example the intersection (product) of

composition automaton and the automaton with the language X13(15)*Y will be nonblocking, the

intersection with the automaton with the language, for example, X12(15)*Y will be blocking.

System Informatics (Системная информатика), No. 8 (2016) 39

5.2. Getting output delays procedure based on analyzing cycles in automaton

Let us notice some properties of automata, derived from TFSMs:

1. Every transition, marked with input symbol, starts at final state and ends at non-final state.

2. Every transition, marked with output symbol, starts at non-final state and ends at final state.

3. Every transition, marked with 1 (a tick count), starts at non-final state and ends at non-final state.

4. If there are several non-final states s1, …, sk, such that (si, 1, si + 1)  S, i = 1, …, k – 1

(continuous non-final chain of transitions marked by 1), then si  sj, for every i and j, i  j (there

are no time loops, Figure 7 (a)).

However, as it was shown with the example in previous Sections, when we have parallel

composition of two TFSMs, the resulting automaton may have continuous non-final time chain with

a loop (Figure 7 (b)). Nevertheless, there cannot be intermediate time loops, i.e. loops with outgoing

edge that is marked by 1 (Figure 7(d)) or several (Figure 7(e)) time loops. We shall prove this by

the following proposition.

1 1

1

i o
1

u

1

1
a

a b c

d e

Fig. 7. Time chains. Here i – input symbol, o, u, a – output symbols, final states marked gray and

non-final are blank

Proposition 1. Given automaton A, describing parallel compositions of two TFSMs P and Q.

There are no states with more than one outgoing transition, marked by 1.

Proof. Indeed, suppose there is such a state (Figure 7(c)), reachable by sequence . It means,

that by construction in automaton AP there is state p reachable by  and automaton AQ there is

state q reachable by  as well, such that either p has two different outgoing transitions marked by

40 Shabaldina N., Gromov M. Using BALM-II for deriving parallel composition of timed finite state machines …

1, or q has two different outgoing transitions marked by 1, or both of them have such transitions.

Neither of listed is possible. □

Corollary 1.1. There cannot be intermediate time loop in any continuous time chain of an

automaton, describing TFSM parallel composition.

Corollary 1.2. There cannot be more than one time loop in in any continuous time chain of an

automaton, describing TFSM parallel composition.

Corollary 1.3. There cannot be more than one state in continuous time chain with more than one

ingoing transitions, and the number of ingoing transitions is not more than two (Figure 7(b)).

Now we describe a procedure for counting output delays. In this procedure we shall use sets

Qsiop. Each set Qsiop contains functions (constant or linear) of output delays for transition (s, i, o, p).

We notice that the estimation of the procedure is N, where N is the number of states in automaton

A, describing parallel composition of two TFSMs.

Procedure 1. Getting output delays.

Input. Automaton A, describing parallel composition of two TFSMs.

Output. Set of sets of output delays for every input-output pair possible in composition.

1. Get next final state s of automaton A. IF they are over, THEN

END.

2. Get next outgoing transitions of s. IF they are over, THEN

GOTO Step 1. Let outgoing transition be marked with input

symbol i, and the next state of the transition be s1.

3. scurr := s1; b := 0; k := 0.

4. IF scurr has more than one ingoing transition THEN

k := countLoopLength(A, scurr)(Procedure 2).

5. FOR every transition (scurr, o, p)  S, where S is

transition relation of A, o is output symbol, and p is final

state of A, DO put function b + k*t in Qsiop.

6. IF there is transition (scurr, 1, s’)  S, THEN scur := s’.

7. GOTO Step 2.

Procedure 2. countLoopLength

Input. Automaton A and non-final state s of A.

Output. Length of a loop, containing s, or N + 1, if there is no such loop, where N – number of

all states in A.

System Informatics (Системная информатика), No. 8 (2016) 41

1. scurr := s; k := 0.

2. IF there exists transition (scurr, 1, s’)  S, THEN scurr := s’,

k := k + 1.

ELSE RETURN N + 1. END.

3. IF scurr == s, THEN RETURN k, END.

6. Conclusion and Future Research Work

In this paper, we consider the procedure of parallel composition construction of TFSMs using

BALM-II and investigate different ways of extraction the set of linear functions (that describe an

infinite set of output delays) from the composition of corresponding automata. This is work in

progress, so we represent here just the first step of our investigation, considering only the case of

deriving the composition of TFSMs with output delays that are natural number or zero. We suggest

two approaches for getting output delays from the composition of corresponding automata: first

deals with BALM-II once again, and the second is based on analyzing time loops in automaton. In

our future work we’ll consider the composition of TFSMs with transitions under timeouts and the

composition of TFSMs when the output delays are infinite and represented by the set of linear

functions; this can happen in cascade composition.

References

1. N. Yevtushenko, T. Villa, R. Brayton, A. Petrenko, and A. Sangiovanni-Vincentelli. Solution of

parallel language equations for logic synthesis // In The Proceedings of the International Conference

on Computer-Aided Design. 2001. P. 103–110.

2. G. Castagnetti, M. Piccolo, T. Villa, N. Yevtushenko, A. Mishchenko, Robert K. Brayton. Solving

Parallel Equations with BALM-II // Technical Report No. UCB/EECS-2012-181, Electrical

Engineering and Computer Sciences University of California at Berkeley. 2012. [Electronic resource]

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-181.pdf (date of access: 21.04.2016).

3. R. Alur and D. L. Dill. A theory of timed automata // Theoretical computer science. 1994. Vol.126,

Iss. 2. P. 183–235.

4. K. El-Fakih, M. Gromov, N. Shabaldina, N. Yevtushenko. Distinguishing Experiments for Timed

Non-Deterministic Finite State Machines // Acta Cybernetica. 2013. Vol. 21, № 2. P. 205–222.

5. O. Kondratyeva, N. Yevtushenko, and A. Cavalli. Parallel composition of nondeterministic finite state

machines with timeouts // Journal of Control and Computer Science. Tomsk State University, Russia.

2014. Vol. 2(27). P. 73–81.

6. O. Kondratyeva, N. Yevtushenko, A. Cavalli. Solving parallel equations for Finite State Machines

with Timeouts // Trudy ISP RАN [The Proceedings of ISP RAS]. 2014. Vol. 26, Iss. 6. P. 85–98.

42 Shabaldina N., Gromov M. Using BALM-II for deriving parallel composition of timed finite state machines …

7. http://www.uppaal.com/

System Informatics (Системная информатика), No. 8 (2016) 43

UDC 004.423.4+004.415.5

The formalism for semantics specification of software

libraries

V. Itsykson (Peter the Great St. Petersburg Polytechnic University)

The paper is dedicated to the specification of the structure and the behavior of software

libraries. It describes the existing problems of libraries specifications. A brief overview of the

research field concerned with formalizing the specification of libraries and library functions is

presented. The requirements imposed on the formalism designed are established; the formalism

based on these requirements allows specifying all the properties of the libraries needed for

automating several classes of problems: detection of defects in the software, migration of

applications into a new environment, generation of software documentation. The conclusion

defines potential directions for further research.

Keywords: formal specification, software library, behavioral description, software defect.

1. Introduction

Software libraries have become the de facto standard for implementing the component-oriented

approach in which the software maker encapsulates specific functionality as a set of functions, data

types and an application user interface. Modern libraries are extremely complex objects whose

functionality is often considerably more sophisticated than that of the applications using them.

The key difference between libraries and standard applications is the manner in which they are

used. Applications are used by users who follow instructions, operating manuals and built-in help

systems, and have no need for formal specifications describing the applications. Libraries, on the

other hand, are mainly used by other programmers who, in order to integrate the functionality of

applications and libraries, need to clearly understand how a library works, how it can be used, how

it affects the application, which changes are introduced to it from version to version, etc.

How does the library developer typically specify the library? One or several of the following

methods are commonly used:

• headers with comments;

• verbal description of the library interface;

• verbal description of the behavior of individual functions;

44 V. Itsykson. The formalism for semantics specification of software libraries

• verbal description of some allowed sequences of function calls;

• examples provided by the developer.

However, none of these methods solves the problems of the formal specification of the library

semantics. The library semantics consists of two components: the semantics of individual functions

and of the allowed ways of joint use of library functions. The semantics of individual functions is

determined by the function call conditions, the obtained results, the side effects, and the impact on

the environment. Typically, the semantics of functions is described informally in the form of text

descriptions. The allowed ways of joint use of library functions are at best described by the authors

informally in the documentation accompanying the library,

In other words, the software engineering industry is currently lacking a set of tools for

formalized description of the semantics of software libraries.

Since there is no formal specification for the libraries, it is, at present, impossible to satisfactorily

solve several classes of problems:

• automatic verification of whether an application is correctly using a library. Here the term

‘correctly’ implies that the application accesses the library with satisfy a protocol specified

by the designer
1

• detection of programming errors in multi-file projects using third-party libraries when the

source code is unavailable

• analysis of the compatibility between the applications and the new version of the library

• porting applications into a new library environment

Thus, the goal of this paper is to develop a formalism allowing to rigorously describe all the

necessary aspects of libraries.

2. State of the Art

The specification of libraries and services has been long studied; a sufficient number of

publications offer different approaches to describing the specifications. The first studies were

related primarily to providing interoperability, with the main goal of the specifications created in

designing the self-contained description of the interfaces of libraries and services that could be then

used in different programming languages and operating systems. Examples of such specifications

include the IDL language [1], as well as many of expansions, such as MIDL [2], and OMG IDL [3].

The main limitation of these languages for library specification is in the detailed API description

1
 Currently, this problem is typically solved dynamically at runtime by analyzing the return codes of library

functions, or by exception handling.

System Informatics (Системная информатика), No. 8 (2016) 45

without focusing on valid options for using the libraries. This means that the emphasis is on

describing the signatures of functions and data types, while not enough attention is paid to the

semantics specification of the entire library.

One of the first studies in the field of component interface specification is the work by Allen and

Garlan [4], in which the authors reduce the problem of the interaction between the components of a

software system to the specification of interaction protocols similar to computer networking

protocols. The theory on communicating sequential processes (CSP), developed by Hoare [5], was

taken as the basis for the formalism, and then altered in an appropriate manner. The introduction of

special elements, such as ports, connectors and roles, into the formalism allowed separately

specifying various aspects of the potential interaction between the components. Using the

formalism can partially solve the problem of component compatibility with the help of the FDR

model checker [6].

Alfaro and Henzinger describe in [7] their own version of the formalism for describing the

interacting components, called the interface automata. The study uses an optimistic definition of

component compatibility, based on the use of the environment model. The authors propose formal

methods for verifying the optimistic compatibility of two interface automata.

Some studies are focused on the mechanisms of automated construction of specifications of

interfaces and libraries based on analyzing the existing software. For example, the authors of [8]

propose an approach to library specification inference based on static predicate mining. The authors

use data flow and control flow analyzes for collecting predicates characterizing the interface

functions. Another approach is described in [9], where the authors offer using dynamic output of

library specifications based on unit testing. For this purpose, library functions, interfaces, data types

and transactions are defined in terms of the Datalog formalism. Valid sequences of function calls

are specified through special predicates. Specifications inference is based on analyzing and

generalizing the results of random unit testing of the library’s functions.

One of the most interesting approaches to describing library APIs and their application rules is

the SLAM approach proposed by Microsoft Research for driver verification. SLAM uses the SLIC

language [10] for specifying the libraries and the rules of interaction between the programs and the

API. The SLIC specification is used for the instrumentation of the program and/or the library for

further dynamic or static compliance control. The lack of semantic descriptions for the library back-

ends prevents SLAM from being used for automated migration.

In his paper ‘The future of library specification’ [11], Leavens describes several indirect

approaches in addition to the known ones associated with informal documentation and formal

specification; these are specification through example uses, specification through library source

46 V. Itsykson. The formalism for semantics specification of software libraries

codes and specification through unit tests. The main conclusion reached by the author is that library

specification must combine all of these approaches.

In our previous studies [12, 13], we also proposed a formalism for library specification and a

language supporting the description of such specifications. However, the options for using the

libraries (i.e., the behavior) are described implicitly within this approach, and the language does not

allow defining function contracts and the influence of the functions on the environment to the full

extent.

Thus, at present, there is no universal approach to library specification that would allow to:

• describe the external interface of the library in detail;

• define the potential protocols for using the library;

• specify the side effects of the library, i.e., its influence on the environment;

• explicitly introduce semantic descriptions of library behavior.

3. Library Organization Specifics

The specifics of using libraries is that a library is not just a purely functional object; it can

possess an internal state and various side effects that significantly affect the opportunities for calling

individual functions.

Let us introduce a classification of function libraries in terms of their internal state.

1. Libraries without an internal state

2. Libraries with the internal state of the library

3. Library with the internal state of the object created

4. Combined libraries

The first class comprises libraries containing pure functions without side effects. These include,

for example, libraries of the mathematical functions of the standard C language library (math.h).

The second class includes libraries that preserve their state, that is to say, the behavior of

individual functions depends on the state of the library. An example of such a library is the part of

the stdlib library providing random number generation. Calling srand() sets the initial value of the

generator, while rand() returns the next random number in the sequence constructed on the basis of

the initial value.

The third class consists of libraries that preserve context within an object created by the library’s

functions. Such an object may be, for example, a newly created socket or a file descriptor. In the

first case, the context contains the parameters of the socket (IP-addresses, port numbers, state),

System Informatics (Системная информатика), No. 8 (2016) 47

while in the second case, the context contains the file parameters, the opening mode and the next

read data pointer.

The fourth class is the most general, containing libraries that combine the features of the second

and the third classes.

4. Formal Specification of Libraries

A full formal specification of libraries should describe:

• a signature of all functions making up the library;

• a contract for each library function (preconditions, postconditions, the influence on the

environment, etc);

• a behavioral model of the library taking into account all possible options for using the

library’s functions and specifying, in particular, the behavior of the library in case of invalid

use;

Based on the above, let us define the full specification of libraries as <F, L>, where

• F = {Fi} is the set of library functions;

• L is the behavioral description of the library.

An individual library function, Fi, is defined as <Name, Arg, Res, Pre, Post, A, CondA, D,

CondD>, where

• Name is the name of the function;

• Arg is the set of the formal arguments of the function;

• Res is the result of the function;

• Pre are the preconditions of the function expressed by the formula in the first-order logic of

the arguments Arg and Res;

• Post are the postconditions of the function expressed by the formula in the first-order logic

of the arguments Arg and Res;

• A is the set of semantic actions
2
 performed by the function;

• CondA is the set of conditions for semantic actions to be performed. An action Ai is

performed during the execution of a function if the expression CondAi is true.

• D is the set of launched child state machines;

• CondD is the set of launch conditions for child state machines. A machine Di is launched

during the execution of a function if the expression CondDi is true.

2
 Semantic actions are an abstraction for describing significant behavioral elements [16]

48 V. Itsykson. The formalism for semantics specification of software libraries

Let us represent the behavioral description of the library by a of set of parameterized extended

finite-state machines (EFSM): L = {L, S1(q,P), …, Sn(q,P) ()}, where

• L is the main extended finite-state machine describing the behavior of the entire library;

• Si is an i
th

 child EFSM launched if certain conditions are fulfilled;

• the parameter q is the initial state of the child finite-state machine;

• P is the optional parameter of the child finite-state machine

The state of the main state machine corresponds to the state of the library, and the state of the

child ones corresponds to the state of the objects created. The stimuli forcing the machine to pass

from one state to another are the calls of library’s API functions.

An individual machine is defined as a modified EFSM <Q, Q0, X, V, C, T>, where

• Q is the set of control states of the machine (the states of the library objects);

• Q0 is the non-empty set of initial states of the machine. Several initial states can exist for

child state machines, since initial conditions may be different when an instance of the

machine is created;

• X is the set of finish states. Child machines are destroyed after reaching these states;

• V is the set of internal variables of the machine;

• C is the set of function calls acting as stimuli, Сi is the call of an i
th

 function; 𝐶𝑖 ∈ 𝐹 ;

• 𝐶𝑖
𝐴 is the set of semantic actions initiated by the function launch when 𝐶𝑖

𝐶𝑜𝑛𝑑𝐴 is true;

• 𝐶𝑖
𝐷 is the set of child state machines launched by the function when that 𝐶𝑖

𝐶𝑜𝑛𝑑𝐷 is true;

• T is the transition relation.

Due to limitations of space, the formalism is presented without going into too much detail. Such

issues as the specification of invalid behavior, the default actions, the data types, etc., have been left

outside the scope of our investigation. These issues will be discussed in more depth in other studies.

Actually, from a developer’s perspective, the behavioral description of libraries is better

represented in graphical form rather than from the standpoint of set theory.

Fig. 1 shows an example of graphically describing the client side of the TCP-socket library. The

solid line indicates the transitions of the machine, and the dashed line indicates the launches of the

child machines; the finish states are highlighted in red. The machine “L” describes the overall

behavior of the bsd-socket library, which, in contrast to WinSock, does not require initialization. A

side effect of calling socket() is the creation of a new machine “P”, corresponding to the newly

created socket, with its own life cycle. It should be noted that several machines can be created,

differing only in the launch parameter of the child machine (an element corresponding to calling

socket()).

System Informatics (Системная информатика), No. 8 (2016) 49

Fig. 2 presents a more complex example, showing a graphic model of the server side of the TCP

protocol of the bsd-socket library. In addition to the top-level machine corresponding to the library

(“L”), the figure shows two families of machines: the first (“P”) encapsulates the properties of the

listening sockets, and the second one (“S”) those of the server sockets created.

Both examples demonstrate only the behavioral description of libraries, without specifying a set

of functions.

Рис. 1. An example of a simple machine corresponding to the client side of the TCP protocol of the

bsd-socket library

Рис. 2. 2. Example of a machine describing the server side of the TCP protocol of the bsd-socket

library

Obviously, a library developer requires convenient tools for defining the formalisms introduced.

We propose using special language for describing the sets of library functions, and an object-

oriented graphical editor for the behavioral description of the library.

5. Prospects of Using the Developed Formalism

50 V. Itsykson. The formalism for semantics specification of software libraries

5.1 Constructing Specifications

Formal specifications could be constructed in one of two ways: with the help of library designers

and of developer communities.

In the first case, the library specification is created by its developer. A language for describing

library specifications (similar to the previously developed PanLang language [13]) is formed for

this purpose; all the properties of the library expressed by the formalism developed can be defined

by means of that language.

In the second case, the extraction methods will be based on exploiting the international

programming experience (Empirical Software Engineering), with the structural and the behavioral

components of the specifications stemming from the analysis of software repositories (Mining

Software Repositories). In this case, only a skeleton of the specification is formed, with the

remaining part to be refined manually.

The language for describing specifications corresponding to the formalism presented, and the

methods for analyzing software repositories with the purpose of obtaining specification skeletons

are currently being developed by the author’s research team; describing them is beyond the scope of

this paper.

5.2 Using Formal Library Specifications

The formalism developed and described in this paper can be used in the future for solving a wide

range of research and engineering problems, including automated defect detection in complex

multi-component software projects, automated porting of applications to new libraries and

automated generation of software documentation.

Library specifications are used as part of the solution for the problem of detecting software

defects with the purpose of reducing the dimension of the detection problem. This is achieved by

approximating the behavior of libraries and library functions by integrated visible behavior set in

the specification. In this case, the library function is replaced by a system of predicates based on

contracts and error states defined in the specification. This approach is used for the BMC analyzer

Borealis, developed in the Program Analysis and Verification Laboratory of the Peter the Great St.

Petersburg Polytechnic University [14]. A similar approach is used for the Aegis tool based on

abstract interpretation, being developed in the same laboratory [15].

The task of automated migration of software to new libraries requires not only the external

specification of the library’s behavior, but also a partial description of the internal semantics of the

library. A semantic domain of the library is built based on the description of the internal semantics,

System Informatics (Системная информатика), No. 8 (2016) 51

and can be then used for checking library compatibility and automatically constructing the

migration procedure. [16]

6. Conclusion

The study presented the results on creating formalism for software library specification. The

formalism was built taking into account the entire range of problems that could be solved through it.

The main idea was in using the same formal specification as a basis for several methods of software

engineering: detection of software defects, automated software migration and software

documentation generation. Due to limited space, the formalism was presented without going into

details.

A direction for the future research is developing language support for the proposed formalism

and implementing converters of language descriptions for the existing tools of error detection and

software migration.

References

1. D. Lamb. IDL: sharing intermediate representations. ACM Trans. Program. Lang. Syst. 9, 3 (July

1987), 297-318. DOI=http://dx.doi.org/10.1145/24039.24040

2. https://msdn.microsoft.com/en-us/library/aa367091

3. http://www.omg.org/gettingstarted/omg_idl.htm

4. R. Allen and D. Garlan. Formalizing architectural connection. In Proceedings of the 16th international

conference on Software engineering (ICSE '94). IEEE Computer Society Press, Los Alamitos, CA,

USA, 71-80.

5. Хоар Ч. Взаимодействующие последовательные процессы. — М.: Мир, 1989. — 264 с.

6. A.W. Roscoe, Modelling and verifying key-exchange protocols using CSP and FDR, Proceedings of

1995 IEEE Computer Security Foundations Workshop, IEEE Computer Society Press, 1995.

7. L. de Alfaro and T. Henzinger. Interface automata. In Proceedings of the 8th European software

engineering conference held jointly with 9th ACM SIGSOFT international symposium on Foundations

of software engineering (ESEC/FSE-9). ACM, New York, NY, USA, 2001, 109-120.

DOI=http://dx.doi.org/10.1145/503209.503226

8. M. Ramanathan, A. Grama, and S. Jagannathan. Static specification inference using predicate mining.

In Proceedings of the 28th ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI '07). ACM, New York, NY, USA, 123-134.

DOI=http://dx.doi.org/10.1145/1250734.1250749

9. S. Sankaranarayanan, F. Ivančić, and A. Gupta. Mining library specifications using inductive logic

programming. In Proceedings of the 30th international conference on Software engineering (ICSE

'08). ACM, New York, NY, USA, 131-140. DOI=http://dx.doi.org/10.1145/1368088.1368107

52 V. Itsykson. The formalism for semantics specification of software libraries

10. Thomas Ball and Sriram K. Rajamani. SLIC: a Specication Language for Interface Checking (of C).

Microsoft Research, Technical Report, MSR-TR-2001-21. 2002

11. Gary T. Leavens. The future of library specification. In Proceedings of the FSE/SDP workshop on

Future of software engineering research (FoSER '10). ACM, New York, NY, USA, 211-216.

DOI=10.1145/1882362.1882407

12. Itsykson V. M., Zozulya A.V. The formalism for description of the partial specifications of program

envinroment components. St. Petersburg State Polytechnical University Journal. Computer Science.

Telecommunication and Control Systems. N 4, 2011. – SPb: Publishing of Polytechnic University -

pp. 81-90.

13. Itsykson V.M., Glukhikh M.I. A program component behavior specification language. St. Petersburg

State Polytechnical University Journal. Computer Science. Telecommunication and Control Systems.

N 3, 2010, SPb: Publishing of Polytechnic University сс. 63-71.

14. M.Kh. Akhin, M.A. Belyaev, V.M. Itsykson. Software defect detection by combining bounded model

checking and approximations of functions / Automatic Control and Computer Sciences, December

2014, Volume 48, Issue 7, pp 389-397

15. V. Itsykson, M. Moiseev ; V. Tsesko ; A. Zakharov. Automatic defects detection in industrial C/C++

software. In proceeding of Software Engineering Conference in Russia (CEE-SECR), 2009 5th Central

and Eastern European. IEEE, Moscow, 07 DOI=10.1109/CEE-SECR.2009.5501189, pp 50-55

16. Itsykson V.M., Zozulya A.V. Automated Program Transformation for Migration to New Libraries.

Software Engineering. 2012. N 6. pp. 8-14

System Informatics (Системная информатика), No. 8 (2016) 53

УДК 004.8

Formalisms for conceptual design of information systems∗

Anureev I.S. (Institute of Informatics Systems)

A class of information systems considered in this paper is defined as follows: a system

belongs to the class if its change can be caused by both its environment and factors inside

the system, and there is an information transfer from it to its environment and from its

environment to it. Two formalisms (information transition systems and conceptual transi-

tion systems) for abstract unified modelling of the artifacts (concept sketches and models)

of the conceptual design of information systems of the class, early phase of information

systems design process, are proposed. Information transition defines the abstract unified

information model for the artifacts, based on such general concepts as state, information

query, answer and transition. Conceptual transition systems are a formalism for conceptual

modelling of information transition systems. They defines the abstract unified conceptual

model for the artifacts. The basic definitions of the theory of conceptual transition systems

are given. A language of conceptual transition systems is defined.

Keywords: information system, information transition system, conceptual structure, on-

tology, ontological element, conceptual, conceptual state, conceptual configuration, concep-

tual transition system, conceptual information transition model, transition system, CTSL

1. Introduction

The conceptual models play an important role in the overall system development life cycle

[1]. Numerous conceptual modelling techniques have been created, but all of them have a

limited number of kinds of ontological elements and therefore can only represent ontological

elements of fixed conceptual granularity. For example, entity-relationship modelling technique

[2] uses two kinds of ontological elements: entities and relationships.

The purpose of the paper is propose formalisms for abstract unified modelling of the artifacts

(concept sketches and models) of the conceptual design of information systems (IS for short)

by ontological elements of arbitrary conceptual granularity. In our two stage approach the

informational and conceptual aspects of the system that the conceptual model represents are

described by two separate formalisms. The first formalism describes the informational model

of the system, and the second formalism describes the conceptual model of the informational

∗Partially supported by RFBR under grants 15-01-05974 and 15-07-04144 and SB RAS interdisciplinary integration project

No.15/10.

54 Anureev I.S. Formalisms for conceptual design of information systems

model.

An information transition system (ITS for short) is an extension of an information query

system (IQS for short) characterized additionally by the exogenous and endogenous transition

relations specifying transitions on states. The exogenous transition relation models change of

an information system caused by its environment. It associates queries with binary relations

on states called transition relations and answers returning by state pairs from these transition

relations called transitions. The endogenous transition relation models change of an information

system caused by factors inside the system. It is defined as a transition relation with answers

returning by transitions of the transition relation.

A wide variety of information systems is modelled by ITSs in the information aspect, in-

cluding database management systems with transitions initiated by queries, expert systems

with transitions initiated by operations with facts and rules, social networks with transitions

initiated by actions of users in accordance with certain communications protocols, abstract

machines specifying operational semantics of programming languages with transitions initiated

by instructions of abstract machines, verification condition generators specifying axiomatic se-

mantics of programming languages with transitions initiated by inference rules and so on.

We consider that the second formalism used for for conceptual modelling of ITSs must meet

the following general requirements (in relation to modelling of a ITS):

1. It must model the conceptual structure of states and state objects of the ITS.

2. It must model the content of the conceptual structure.

3. It must model information queries, information query objects, answers and answer objects

of the IQS.

4. It must model the interpretation function of the ITS.

5. It must be quite universal to model typical ontological elements (concepts, attributes,

concept instances, relations, relation instances, individuals, types, domains, and so on.).

6. It must provide a quite complete classification of ontological elements, including the

determination of their new kinds and subkinds with arbitrary conceptual granularity.

7. The model of the interpretation function must be extensible.

8. It must have language support. The language associated with the formalism must define

syntactic representations of models of states, state objects, queries, query objects, answers

and answer objects and includes the set of predefined basic query models.

9. It must model the change of the conceptual structure of states and state objects of the

System Informatics (Системная информатика), No. 8 (2016) 55

ITS.

10. It must model the change of the content of the conceptual structure.

11. It must model the transition relations of the ITS.

12. The model of the exogenous transition relation must be extensible.

As is shown in [3], conceptual configuration systems (CCSs for short) meet the seven re-

quirements in relation to IQSs. Comparison of CCSs with the abstract state machines [4, 5]

which partially meet these requirements was made in [3]. In this paper we present an extension

of CCSs, conceptual transition systems (CTSs for short) as the formalism satisfying the all

above requirements.

The paper has the following structure. The preliminary concepts and notation are given in

section 2. The basic definitions of the theory of CTSs are given in section 3. The language

CTSL of CTSs is described in section 4. Semantics of executable elements in CTSL is defined

in 5. We establish that CTSs meet the above requirements in section 6.

2. Preliminaries

2.1. Sets, sequences, multisets

Let Ob be the set of objects considered in this paper. Let St be a set of sets. Let Int, Nt,

Nt0 and Bl be sets of integers, natural numbers, natural numbers with zero and boolean values

true and false, respectively.

Let the names of sets be represented by capital letters possibly with subscripts and the

elements of sets be represented by the corresponding small letters possibly with extended sub-

scripts. For example, int and int.1 are elements of Int.

Let Sq be a set of sequences. Let st.(∗), st.{∗}, and st.∗ denote sets of sequences of the forms

(ob.1, . . . , ob.nt0), {ob.1, . . . , ob.nt0}, and ob.1, . . . , ob.nt0 from elements of st. For example, Int.(∗) is a

set of sequences of the form (int.1, . . . , int.nt0), and int.∗ is a sequence of the form int.1, . . . , int.nt0 .

Let ob.1, . . . , ob.nt0 , denote ob.1, . . . , ob.nt0 . Let st.(∗nt0), st.{∗nt0}, and st.∗nt0 denote sets of the

corresponding sequences of the length nt0.

Let ob.1 ≺JsqK ob.2 denote the fact that there exist ob.∗.1, ob.∗.2 and ob.∗.3 such that sq =

ob.∗.1, ob.1, ob.∗.2, ob.2, ob.∗.3, or sq = (ob.∗.1, ob.1, ob.∗.2, ob.2, ob.∗.3).

Let [ob ob.1 ←↩ ob.2] denote the result of replacement of all occurrences of ob.1 in ob by ob.2.

Let [sq ob ←↩∗ ob.1] denote the result of replacement of each element ob.2 in sq by [ob.1 ob ←↩ ob.2].

For example, [(a, b) x←↩∗ (f x)] denotes ((f a), (f b)).

56 Anureev I.S. Formalisms for conceptual design of information systems

Let [len sq] denote the length of sq. Let und denote the undefined value. Let [sq . nt] denote

the nt-th element of sq. If [len sq] < nt, then [sq . nt] = und. Let [sq + sq.1], [ob . + sq] and

[sq + . ob] denote ob.∗, ob.∗.1, ob, ob.∗ and ob.∗, ob, where sq = ob.∗ and sq.1 = ob.∗.1.

Let [and sq] denote (cnd.1 and . . . and cnd.nt), where sq = cnd.1, ..., cnd.nt , and [and] denote

true. In the case of nt = 1, the brackets can be omitted.

Let ob.1, ob.2 ∈ St ∪ Sq. Then ob.1 =st ob.2 denote that the sets of elements of ob.1 and ob.2

coincide, and ob.1 =ml ob.2 denote that the multisets of elements of ob.1 and ob.2 coincide.

2.2. Contexts

The terms used in the paper are context-dependent.

Let Lb be a set of objects called labels. Contexts have the form Job.∗K, where the elements

of ob.∗ called embedded contexts have the form: lb:ob, lb: or ob.

The context in which some embedded contexts are omitted is called a partial context. All

omitted embedded contexts are considered bound by the existential quantifier, unless otherwise

specified.

Let obJob.∗K denote the object ob in the context Job.∗K.

The object ’in Job, ob.∗K’ can be reduced to ’in JobK in Job.∗K’ if this does not lead to ambiguity.

2.3. Functions

Let Fn be a set of functions. Let Arg and Vl be sets of objects called arguments and values.

Let [fn arg.∗] denote the application of fn to arg.∗.

Let [support fn] denote the support in JfnK, i. e. [support fn] = {arg : [fn arg] 6= und}.

Let [image fn st] denote the image in Jfn, stK, i. e. [image fn st] = {[fn arg] : arg ∈ st}. Let

[image fn] denote the image in Jfn, [support fn]K. Let [narrow fn st] denote the function fn.1

such that [support fn.1] = [support fn.1]∩st, and [fn.1 arg] = [fn arg] for each arg ∈ [support fn.1].

The function fn.1 is called a narrowing of fn to st. Let [support fn.1] ∩ [support fn.2] = ∅. Let

fn.1 ∪ fn.2 denote the union fn of fn.1 and fn.2 such that [fn arg] = [fn.1 arg] for each arg ∈

[support fn.1], and [fn arg] = [fn.2 arg] for each arg ∈ [support fn.2]. Let fn.1 ⊆ fn.2 denote the

fact that [support fn.1] ⊆ [support fn.2], and [fn.1 arg] = [fn.2 arg] for each arg ∈ [support fn.1].

An object up of the form arg : vl is called an update. Let Up be a set of updates. The objects

arg and vl are called an argument and value in JupK.

Let [fn up] denote the function fn.1 such that [fn.1 arg] = [fn arg] if arg 6= argJupK, and

System Informatics (Системная информатика), No. 8 (2016) 57

[fn.1 argJupK] = vlJupK. Let [fn up, up.∗nt] be a shortcut for [[fn up] up.∗nt]. Let [fn arg.arg.1. . . .

.arg.nt : vl] be a shortcut for [fn arg : [[fn arg] arg.1.arg.nt : vl]]. Let [up.∗] be a shortcut for

[fn up.∗], where [support fn] = ∅.

Let Cnd be a set of objects called conditions. Let [if cnd then ob.1 else ob.2] denote the object

ob such that

• if cnd = true, then ob = ob.1;

• if cnd = false, then ob = ob.2.

2.4. Attributes and multi-attributes

An object ob.ma of the form (up.∗) is called a multi-attribute object. Let Ob.ma be a set

of multi-attribute objects. The elements of [ob.ma w ←↩∗ argJwK] are called multi-attributes

in Job.maK. Let Ob.ma be a set of multi-attributes. The elements of [ob.ma w ←↩∗ vlJwK] are

called values in Job.maK. The sequence up.∗ is called a sequence in Job.maK and denoted by

[sequence in ob.ma]. An object vl is a value in Jatt.m, ob.maK if ob.ma = (up.∗.1, att.m : vl, up.∗.2) for

some up.∗.1 and up.∗.2.

An object ob.ma is an attribute object if the elements of [ob.ma w ←↩∗ argJwK] are pairwise

distinct. Let Ob.a be a set of attribute objects. The multi-attributes in Job.aK are called attributes

in Job.aK. Let Att be a set of objects called attributes.

Let [function ob.a], [ob.a att], and [support ob.a] denote [[sequence in ob.a]], [[function ob.a] att],

and [support [function ob.a]].

Let [seq−to−att−obj sq] denote (1 : [sq . 1], ..., [len sq] : [sq . [len sq]]). Let ob.a =st (1 :

vl.1, ..., nt : vl.nt). Then [att−obj−to−seq ob.a] denote (vl.1, ..., vl.nt).

3. Basic definitions of the theory of conceptual transition systems

Conceptual transition systems (CTSs) are transition systems in which states are conceptual

configurations, and transition relations are binary relations on conceptual configurations. In

this section the basic definitions of the theory of conceptual transition systems are presented.

The defined structures of CTSs are constructed from atoms and, thus, defined implicitly in

JAtmK.

3.1. Information transition systems

58 Anureev I.S. Formalisms for conceptual design of information systems

Let Stt be a set of objects called states. An element trn of the form (stt.1, stt.2) is called a

transition. Let Trn be a set of transitions. The states stt.1 and stt.2 are called input and output

states in JtrnK.

Let Ss.q be a set of query systems. An object ss.t.i of the form (ss.q, trn.rlt.ex, trn.rlt.en) is an

information transition system if trn.rlt.ex ∈ Qr×Ans×Stt×Stt → Bl, trn.rlt.en ∈ Ans×Stt×Stt →

Bl, and for all qr ∈ Qr there exists stt ∈ Stt such that [value qr stt] 6= und, or there exist

stt.1 ∈ Stt, stt.2 ∈ Stt and ans ∈ Ans such that [trn.rlt.ex qr ans stt.1 stt.2] = true. Let Ss.t.i be a

set of information transition systems.

The system ss.q is called a query system in Jss.t.iK. The function trn.rlt.ex is called an exogenous

transition relation in Jss.t.iK. The function trn.rlt.en is called an endogenous transition relation in

Jss.t.iK. Let stt.1 →qr,ans stt.2 and stt.1 →ans stt.2 be shortcuts for [trn.rlt.ex qr ans stt.1 stt.2] = true

and [trn.rlt.en ans stt.1 stt.2] = true, respectively.

The elements of SttJss.qK, Ob.sJss.qK, QrJss.qK, Ob.qJss.qK, AnsJss.qK and Ob.aJss.qK are called

states, state objects, queries, query objects, answers and answer objects in Jss.t.iK, respectively.

The function valueJss.qK is called a query interpretation in Jss.t.iK.

A query qr is an information query in Jss.t.iK if [value qr stt] 6= und for some stt. A query qr

is a change query in Jss.t.iK if [trn.rlt.ex qr ans stt.1 stt.2] = true for some stt.1, stt.2 and ans.

A system ss.t.i executes trn if stt.1JtrnK→qr,ans stt.2JtrnK for some qr and ans, or stt.1JtrnK→ans

stt.2JtrnK for some ans. A system ss.t.i transits from stt.1 to stt.2 if ss.t.i executes (stt.1, stt.2).

3.2. Substitutions, patterns, pattern specifications, instances

A function sb ∈ El → El.∗ is called a substitution. Let Sb be a set of substitutions. A

function subst ∈ Sb × El.∗ → El.∗ is a substitution function if it is defined as follows (the first

proper rule is applied):

• if el ∈ [support sb], then [subst sb el] = [sb el];

• [subst sb atm] = atm;

• [subst sb lb : el] = [subst sb lb] : [subst sb el];

• [subst sb el :: nosubst] = el;

• [subst sb el :: (nosubstexcept el.∗)] = [subst [narrow sb {el.∗}] el];

• [subst sb el :: srt] = [subst sb el] :: [subst sb srt];

• [subst sb (el.∗)] = ([el.∗ w ←↩∗ [subst sb w]]);

• [subst sb el.∗] = [el.∗ w ←↩∗ [subst sb w]].

System Informatics (Системная информатика), No. 8 (2016) 59

The sort nosubst specifies the elements to which the substitution sb is not applied. The sort

(nosubstexcept el.∗) specifies the elements to which the narrowing of the substitution sb to the

set el.∗ is applied. An element pt is a pattern in Jel, sbK if [subst sb pt] = el. Let Pt be a set of

patterns. An element inst is an instance in Jpt, sbK if [subst sb pt] = inst. Let Inst be a set of

instances.

Let Vr and Vr.s be sets of objects called element variables and sequence variables, respectively.

An element pt.s of the form (pt, (vr.∗), (vr.s.∗)) is a pattern specification if {vr.s.∗}∩{vr.∗} = ∅, and

the elements of {vr.∗} ∪ {vr.s.∗} are pairwise distinct. Let Pt.s be a set of pattern specifications.

The objects pt, (vr.∗), and (vr.s.∗) are called a pattern, element variable specification, and

sequence variable specification in Jpt.sK. The elements of vr.∗ and vr.s.∗ are called element pattern

variables and sequence pattern variables in Jpt.sK, respectively.

An element inst is an instance in Jpt.s, sbK if [support sb] = {vr.∗}, [sb vr] ∈ El for vr ∈

{vr.∗} \ {vr.s.∗}, [sb vr] ∈ El.∗ for vr ∈ {vr.s.∗}, and inst is an instance in Jpt, sbK. An element inst

is an instance in Jpt.sK if there exists sb such that inst is an instance in Jpt.s, sbK.

A function mt ∈ El × Pt.s → Sb is a match if the following property holds:

• if [mt el pt.s] = sb, then el is an instance in Jpt.s, sbK.

An element inst is an instance in Jpt.s,mt, sbK if [mt inst pt.s] = sb. An element inst is an

instance in Jpt.s,mtK if there exists sb such that inst is an instance in Jpt.s,mt, sbK.

3.3. The transition relation

Let Ss.c.c be a set of conceptual configuration systems. Let Cnf be a set of conceptual

configurations. An element trn of the form (cnf.1, cnf.2) is called a transition. Let Trn be a set

of transitions. The configurations cnf.1 and cnf.2 are called input and output configurations in

JtrnK.

The transition relations of a IQS is modelled by the transition relation trn.rlt ∈ Trn → Bl

based on atomic exogenous transition relations, transition rules, atomic endogenous transition

relations, the exogenous transition order and the endogenous transition order. The exogenous

transition relation of the IQS is modelled by atomic exogenous transition relations and tran-

sition rules. The endogenous transition relation of the IQS is modelled by atomic endogenous

transition relations.

Transitions from a configuration cnf in Jtrn.rltK are executed by a program in JcnfK. An

element sequence prg is a program in JcnfK if [cnf (0 : ()) :: state :: program] = (prg). Let

60 Anureev I.S. Formalisms for conceptual design of information systems

Prg be a set of programs. Thus, programs in configurations are specified by the conceptual

(0 : ()) :: state :: program from the substate program of the configurations. A program in

JcnfK is empty if [cnf (0 : ()) :: state :: program] = (). Atomic exogenous transition relations

and transition rules define transitions executed by the first element of the program. Atomic

endogenous transition relations define transitions executed in the case of the empty program.

Let cnf.1 → cnf.2 be a shortcut for [trn.rlt cnf.1 cnf.2] = true. Transitions can return values.

An element vl is a value in JcnfK if vl = [cnf (0 : ()) :: state :: value]. An element vl is a value

in JtrnK if cnf.1JtrnK → cnf.2JtrnK, and vl is a value in Jcnf.2JtrnKK. Thus, the returned values

in transitions are specified by the conceptual (0 : ()) :: state :: value from the substate value

of output configurations of the transitions. A transition trn returns a value vl if vl is a value

in JtrnK. A transition trn returns (or generates) an exception exc if exc is a value in JtrnK. A

transition trn is normally executed if trn returns no exception.

The special variables conf :: in and val :: in reference to the current configuration and the

value in the current configuration, respectively, in the definitions below.

An object trn.rlt.ex of the form (pt, (vr.∗), (vr.s.∗), fn) is an atomic exogenous transition relation

if (pt, (vr.∗), (vr.s.∗)) is a pattern specification, conf :: in /∈ {vr.∗} ∪ {vr.s.∗}, val :: in /∈ {vr.∗} ∪

{vr.s.∗}, fn ∈ Sb → (Trn → Bl), [support fn] = {sb : [support sb] = {vr.∗} ∪ {vr.s.∗} ∪ {conf ::

in, val : in}, [sb vr] ∈ El for vr ∈ {vr.∗} and [sb vr] ∈ El.∗ for vr ∈ {vr.s.∗}}. Let Trn.rlt.ex

be a set of atomic exogenous transition relations. Let cnf.1 →fn,sb cnf.2 be a shortcut for

[[fn sb] cnf.1 cnf.2] = true.

The objects pt, (vr.∗), (vr.s.∗), and fn are called a pattern, element variable specification,

sequence variable specification, and value in Jtrn.rlt.exK. The elements of vr.∗ and vr.s.∗ are called

element pattern variables and sequence pattern variables in Jtrn.rlt.exK, respectively.

A function trn.rlt.ex.s ∈ El → Trn.rlt.ex is called an atomic exogenous transition specification

if [support trn.rlt.ex.s] is finite. A relation trn.rlt.ex is an atomic exogenous transition relation

in Jtrn.rlt.ex.sK if [trn.rlt.ex.s nm] = trn.rlt.ex for some nm ∈ El. An element nm is a name in

Jtrn.rlt.ex, trn.rlt.ex.sK if [trn.rlt.ex.s nm] = trn.rlt.ex. An element nm a name in Jtrn.rlt.ex.sK if nm

is a name in Jtrn.rlt.ex, trn.rlt.ex.sK for some trn.rlt.ex. Let cnf.1 →nm,sb cnf.2 be a shortcut for

cnf.1 →fnJ[trn.rlt.ex.s nm]K,sb cnf.2.

An element rl of the form (pt, (vr.∗), (vr.s.∗), (bd)) is a transition rule if bd ∈ El.∗, (pt, (vr.∗),

(vr.s.∗)) is a pattern specification, conf :: in /∈ {vr.∗} ∪ {vr.s.∗}, and val :: in /∈ {vr.∗} ∪ {vr.s.∗}.

Let Rl be a set of transition rules.

System Informatics (Системная информатика), No. 8 (2016) 61

The objects pt, (vr.∗), (vr.s.∗) and bd are called a pattern, element variable specification,

sequence variable specification and body in JrlK. The elements of vr.∗ and vr.s.∗ are called

element pattern variables and sequence pattern variables in JrlK, respectively.

An attribute element rl.s is called a transition rule specification if [support rl.s] ⊆ El, and

[image rl.s] ⊆ El. A rule rl is a rule in Jrl.sK if [rl.s nm] = rl for some nm ∈ El. An element nm

is a name in Jrl, rl.sK if [rl.s nm] = rl. An element nm a name in Jrl.sK if nm is a name in Jrl, rl.sK

for some rl.

A function trn.rlt.en ∈ {cnf : [cnf (0 : ()) :: state :: program] = ()} × Cnf → Bl is called an

atomic endogenous transition relation. Let Trn.rlt.en be a set of atomic endogenous transition

relations.

A function trn.rlt.en.s ∈ El → Trn.rlt.en is called an atomic endogenous transition specifi-

cation if [support trn.rlt.en.s] is finite. A relation trn.rlt.en is an atomic endogenous transition

relation in Jtrn.rlt.en.sK if [trn.rlt.en.s nm] = trn.rlt.en for some nm ∈ El. An element nm is a

name in Jtrn.rlt.en, trn.rlt.en.sK if [trn.rlt.en.s nm] = trn.rlt.en. An element nm a name in Jtrn.rlt.en.sK

if nm is a name in Jtrn.rlt.en, trn.rlt.en.sK for some trn.rlt.en. Let cnf →nm cnf be a shortcut for

[[trn.rlt.en.s nm] cnf cnf.1] = true.

Let [support trn.rlt.ex.s], [support trn.rlt.en.s] and [support rl.s] be pairwise disjoint.

An element ord.trn.ex of the form (nm.∗) is called an exogenous transition order in Jtrn.rlt.ex.s,

rl.sK if {nm.∗} ⊆ [support trn.rlt.ex.s]∪[support rl.s], and the elements of nm.∗ are pairwise distinct.

It specifies the order of application of atomic exogenous transition relations and transition rules.

An element ord.trn.en of the form (nm.∗) is called an endogenous transition order in Jtrn.rlt.en.sK

if {nm.∗} ⊆ [support trn.rlt.en.s], and the elements of nm.∗ are pairwise distinct. It specifies the

order of application of atomic endogenous transition relations.

The information about the transition rule specification and the transition orders is stored in

the substate transition of the configurations. The conceptuals (0 : rules) :: state :: transition,

(−1 : exogenous, 0 : order) :: state :: transition and (−1 : endogenous, 0 : order) :: state ::

transition define the transition rule specification, exogenous transition order and endogenous

transition order. The conceptual (0 : history) :: state :: transition defines the substates that

store the information about transitions preceding the transition to the current configuration.

An element cnf is consistent with (trn.rlt.ex.s, rl.s, trn.rlt.en.s, ord.trn.ex, ord.trn.en) if the following

properties hold:

• if [support trn.rlt.ex.s] ∩ [support [cnf (0 : rules) :: state :: transition]] = ∅;

62 Anureev I.S. Formalisms for conceptual design of information systems

• if [support ord.trn.en] ∩ [support [cnf (0 : rules) :: state :: transition]] = ∅;

• if rl.s ⊆ [cnf (0 : rules) :: state :: transition];

• if nm.1 ≺Jord.trn.exK nm.2, and nm.1, nm.2 ∈ [cnf (−1 : exogenous, 0 : order) :: state ::

transition], then nm.1 ≺J[cnf (−1:exogenous,0:order)::state::transition]K nm.2;

• if nm.1 ≺Jord.trn.enK nm.2, and nm.1, nm.2 ∈ [cnf (−1 : endogenous, 0 : order) :: state ::

transition], then nm.1 ≺J[cnf (−1:endogenous,0:order)::state::transition]K nm.2.

Let el.∗ # cnf be a shortcut for [cnf program.(0 : ()) : (el.∗)]. Let el.∗ # vl # cnf be a

shortcut for [cnf program.(0 : ()) : (el.∗), value.(0 : ()) : vl].

Let [add−history cnf.1 to cnf.2] denote [narrow cnf.1 [support cnf.1] \ {[cnf.1 (0 : history) ::

state :: transition]}] ∪ [narrow cnf.1 {[cnf.1 (0 : history) :: state :: transition]}]. A function

trn.rlt ∈ Cnf.c × Cnf → Bl is a transition relation in Jtrn.rlt.ex.s, rl.s, trn.rlt.en.s, ord.trn.ex, ord.trn.enK

if it is defined by the following definition rules (the first proper rule is applied):

• if cnf is not consistent with (trn.rlt.ex.s, rl.s, trn.rlt.en.s, ord.trn.ex, ord.trn.en), then [trn.rlt cnf

cnf.1] = false;

• if trn.rlt.ex = [trn.rlt.ex.s nm], el is an instance in Jpt.sJtrn.rlt.exK,mt, sbK, el.∗ # cnf

→nm,sb∪(conf ::in:cnf ,val::in:vlJcnf K) el.∗.1 # vl # cnf.1, and vl 6= und, then (execute−

exogenous−transition, el, (nm nm.∗)), el.∗ # cnf → el.∗.1 # vl # cnf.1;

• if trn.rlt.ex = [trn.rlt.ex.s nm], el is an instance in Jpt.sJtrn.rlt.exK,mt, sbK, el.∗ # cnf

→nm,sb∪(conf ::in:cnf ,val::in:vlJcnf K) el.∗.1 # und # cnf.1, then (execute−exogenous−transition,

el, (nm nm.∗)), el.∗ # cnf → (execute−exogenous−transition, el, (nm.∗)), el.∗ # [add−

history cnf.1 to cnf];

• if trn.rlt.ex = [trn.rlt.ex.s nm], and el is not an instance in Jpt.sJtrn.rlt.exK,mtK, then (execute−

exogenous−transition, el, (nm, nm.∗)), el.∗ # cnf → (execute−exogenous−transition,

el, (nm.∗)), el.∗ # cnf ;

• if rl = [[cnf (0 : rules) :: state :: transition] nm], and el is an instance in Jpt.sJrlK,mt, sbK,

then (execute−exogenous−transition, el, (nm nm.∗)), el.∗ # cnf → ([subst sb ∪ (conf ::

in : cnf , val :: in : vlJcnfK) bdJrlK], (execute−exogenous−transition, el, (nm nm.∗), (el.∗),

cnf), el.∗ # cnf ;

• if vl 6= und, then (execute−exogenous−transition, el, (nm nm.∗), (el.∗.1), cnf.1), el.∗ # vl

cnf → el.∗ # vl # cnf ;

• (execute−exogenous−transition, (nm nm.∗), el, (el.∗.1), cnf.1), el.∗ # und # cnf →

(execute−exogenous−transition, el, (nm.∗)), el.∗.1 # [add−history cnf to cnf.1];

System Informatics (Системная информатика), No. 8 (2016) 63

• if rl = [[cnf (0 : rules) :: state :: transition] nm], and el is not an instance in Jpt.sJrlK,mtK,

then (execute−exogenous−transition, el, (nm nm.∗)), el.∗ # cnf → (execute−

exogenous−transition, el, (nm.∗)), el.∗ # cnf ;

• (execute−exogenous−transition, el, ()), el.∗ # cnf → el.∗ # und # cnf ;

• if trn.rlt.en = [trn.rlt.en.s nm], cnf →nm el.∗ # vl # cnf.1, and vl 6= und, then (execute−

endogenous−transition, (nm nm.∗)) # cnf → el.∗ # vl # cnf.1;

• if trn.rlt.en = [trn.rlt.en.s nm], and cnf →nm el el.∗ # und # cnf.1, then (execute−

endogenous−transition, (nm nm.∗)) # cnf → el el.∗ # und # cnf.1;

• if trn.rlt.en = [trn.rlt.en.s nm], and cnf →nm # und # cnf.1, then (execute−endogenous−

transition, (nm nm.∗)) # cnf → (execute−endogenous−transition, (nm.∗)) # [add−

history cnf.1 to cnf];

• el, el.∗ # cnf → (execute−exogenous−transition, el, [cnf (−1 : exogenous, 0 : order) ::

state :: transition]), el.∗ # cnf ;

• # cnf → (execute−endogenous−transition, [cnf (−1 : endogenous, 0 : order) :: state ::

transition]), # cnf .

3.4. Conceptual transition systems

An object ss.t.c of the form (ss.c.c, trn.rlt.ex.s, rl.s, trn.rlt.en.s, ord.trn.ex, ord.trn.en) is a conceptual

transition system if ss.c.c is a conceptual configuration system, trn.rlt.ex.s, rl.s, trn.rlt.en.s, ord.trn.ex

and ord.trn.en are an atomic exogenous transition specification, transition rule specification,

atomic endogenous transition specification, exogenous transition order and endogenous transi-

tion order in JAtmJss.c.cKK, and the sets [support trn.rlt.ex.s], [support trn.rlt.en.s] and [support rl.s]

are pairwise disjoint. It specifies the transition system (CnfJss.c.cK, trn.rltJtrn.rlt.ex.s, rl.s, trn.rlt.en.s,

ord.trn.ex, ord.trn.en,mtJss.c.cKK). Let Ss.t.c be a set of conceptual transition systems.

The elements of AtmJss.c.cK, ElJss.c.cK, CncplJss.c.cK, SttJss.c.cK, CnfJss.c.cK and TrnJAtmJss.c.cKK

are called atoms, elements, conceptuals, states, configurations and transitions in Jss.t.cK.

The objects trn.rlt.ex.s, rl.s, trn.rlt.en.s, ord.trn.ex, ord.trn.en, intr.a.sJss.c.cK, df.sJss.c.cK, ord.intrJss.c.cK

and mtJss.c.cK are called an atomic exogenous transition specification, transition rule speci-

fication, atomic endogenous transition specification, exogenous transition order, endogenous

transition order, atomic element interpretation specification, element definition specification,

element intepretation order and match in Jss.t.cK.

The function trn.rltJtrn.rlt.ex.s, rl.s, trn.rlt.en.s, ord.trn.ex, ord.trn.en,mtK is called a transition rela-

64 Anureev I.S. Formalisms for conceptual design of information systems

tion in Jss.t.cK. A system ss.t.c executes trn if stt.1JtrnK→ stt.2JtrnK. A system ss.t.c transits from

stt.1 to stt.2 if ss.t.c executes (stt.1, stt.2).

An element el is interpretable in Jss.t.cK if el is interpretable in Jss.c.cJss.t.cKK.

An element el is executable in Jss.t.cK if there exist nm such that el is an instance in

Jpt.sJ[trn.rlt.ex.s nm]K,mtK, or el is an instance in Jpt.sJ[rl.s nm]K,mtK.

3.5. Conceptual information transition models

An object mdl.t.q.c of the form (ss.t.c, rpr.s, rpr.q, rpr.a) is a conceptual information transi-

tion model in Jss.t.iK if (ss.c.cJss.t.cK, rpr.s, rpr.q, rpr.a) is a conceptual query model in Jss.qJss.t.iKK,

[trn.rlt.exJss.t.iK qr ans stt.1 stt.2] = [trn.rltJss.t.cK [[rpr.s stt.1] (0 : ()) :: state :: program : ([rpr.q qr])]

[[rpr.s stt.2] (0 : ()) :: state :: value : [rpr.a ans]]], and [trn.rlt.enJss.t.iK ans stt.1 stt.2] = [trn.rltJss.t.cK

[[rpr.s stt.1] (0 : ()) :: state :: program : ()] [[rpr.s stt.2] (0 : ()) :: state :: value : [rpr.a ans]]]. Let

Mdl.t.q.c be a set of conceptual query transition models.

The objects ss.c.cJss.t.cK and ss.t.c are called a conceptual configuration system and conceptual

transition system in Jmdl.t.q.cK, respectively. The functions rpr.s, rpr.q and rpr.a are called a state

representation, query representation and answer representation in Jmdl.t.q.cK.

A system ss.t.i is conceptually modelled in Jss.t.cK if there exists mdl.t.q.c such that ss.t.c =

ss.t.cJmdl.t.q.cK, and mdl.t.q.c is a conceptual query model in Jss.t.iK. The set [image rpr.s] is called

an ontology in Jss.t.i,mdl.t.q.cK.

3.6. Extensions

A system ss.t.i.1 is an extension of ss.t.i.2 if ss.qJss.t.i.1K is an extension of ss.qJss.t.i.2K, and

stJss.t.i.1K ⊆ stJss.t.i.2K for each st ∈ {trn.rlt.ex, trn.rlt.en}.

A system ss.t.c.1 is an extension of ss.t.c.2 if ss.c.cJss.t.c.1K is an extension of ss.c.cJss.t.c.2K,

stJss.t.c.1K ⊆ stJss.t.c.2K for each st ∈ {trn.rlt.ex.s, rl.s, trn.rlt.en.s}, and the following property hold:

• if nm.1 ≺Jord.trn.exJss.t.c.1KK nm.2, and nm.1, nm.2 ∈ ord.trn.exJss.t.c.2K, then

nm.1 ≺Jord.trn.exJss.t.c.2KK nm.2;

• if nm.1 ≺Jord.trn.enJss.t.c.1KK nm.2, and nm.1, nm.2 ∈ ord.trn.enJss.t.c.2K, then

nm.1 ≺Jord.trn.enJss.t.c.2KK nm.2.

A CCS ln is a language of CTSs if the conceptual structures (atoms, elements, conceptuals

and so on) of ln is syntactically defined.

3.7. Programs

System Informatics (Системная информатика), No. 8 (2016) 65

A program prg is executed in JtrnK if prg is a program in Jcnf.1JtrnKK, and cnf.1JtrnK →

cnf.2JtrnK. A program prg executes (initiates) trn if prg is executed in JtrnK.

An element vl is a value in Jprg, trnK if prg executes JtrnK, and vl is a value in JtrnK. A program

prg returns vl in JtrnK if vl is a value in Jprg, trnK. A program prg returns vl in JcnfK if there

exists trn such that prg returns vl in JtrnK, and cnf = cnf.1JtrnK.

A program prg returns (or generates) an exception exc in JtrnK if exc is a value in Jprg, trnK.

A program prg is normally executed in JtrnK if prg is executed in JtrnK, and trn is normally

executed.

An element el is executed in JtrnK if there exist prg such that prg is executed in JtrnK, and

el = [prg . 1]. An element el executes (initiates) trn if el is executed in JtrnK.

An element vl is a value in Jel, trnK if el is executed in JtrnK, and vl is a value in JtrnK. An

element vl returns vl in JtrnK if vl is a value in Jvl, trnK. An element vl returns vl in JcnfK if there

exists trn such that vl returns vl in JtrnK, and cnf = cnf.1JtrnK.

An element el returns (or generates) an exception exc in JtrnK if exc is a value in Jel, trnK. An

element el is normally executed in JtrnK if el is executed in JtrnK, and trn is normally executed.

3.8. Safe configurations, transitions, programs and elements

A configuration cnf is locally safe if vlJcnfK 6= und.

A transition trn is safe if cnf.1JtrnK and cnf.2JtrnK are locally safe.

A configuration cnf is safe if there is no cnf.1 such that cnf →∗ cnf.1 and cnf.1 is not locally

safe.

A program prg is safe in JcnfK if prg is a program in JcnfK, and cnf is safe. A program prg is

safe if prg is safe in JcnfK for each cnf .

An element el is safe in JcnfK if el = [prgJcnfK . 1], and prg is safe in JcnfK. An element el is

safe if el is safe in JcnfK for each cnf .

4. The CTSL language

The CTSL language (Conceptual Transition System Language) is a basic language of CTSs.

The CCSL language is a sublanguage of CTSL. Interpretable and executable elements of CTSL

are called basic elements of CTSs.

Let sb ⊆ (x : x0, y : y0, z : z0, u : u0, v : v0, w : w0, x1 : x1.0, ..., xnt : xnt.0, conf :: in :

cnf , val :: in : vlJcnfK).

66 Anureev I.S. Formalisms for conceptual design of information systems

4.1. Syntax of CCSL

CTSL is an extension of CCSL. Therefore, atoms, elements, conceptual states, conceptual

configurations, pattern specifications and element definitions are represented in CTSL as in

CCSL.

The element (rule pt var (vr.∗) seq (vr.s.∗) then bd) :: name :: nm in CCSL represents the

transition rule (pt, (vr.∗), (vr.s.∗), bd) with the name nm.

For simplicity, we omit the names of atomic transition relations and transition rules.

4.2. The special forms for atomic exogenous transition relations,

transition rules and atomic endogenous transition relations

In this section we define the special forms for atomic exogenous transition relations, transi-

tion rules and atomic endogenous transition relations used below.

The form (transition pt var (vr.∗) seq (vr.s.∗) then fn) :: name :: nm denotes the atomic

exogenous transition relation (pt, (vr.∗), (vr.s.∗), fn) with the name nm.

The objects var (vr.∗) and seq (vr.s.∗) in the form (transition ...) can be omitted. The

omitted objects correspond to var () and seq (), respectively.

The form (endogenous−transition fn) :: name :: nm denotes the atomic endogenous tran-

sition relation fn with the name nm.

Let {vr.∗}, {vr.s.∗}, {vr.∗.1} and {vr.∗.2} are pairwise disjoint, {vr.∗.3} ⊆ {vr.∗}∪{vr.∗.1}∪{vr.∗.2},

and (el.∗) ∈ {(), und, abn}. The form (rule pt var (vr.∗) seq (vr.s.∗) abn (vr.∗.1) und (vr.∗.2) val

(vr.∗.3) el.∗ where cnd then bd) called a rule form is defined as follows:

• (rule pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) val (vr.∗.3) el.∗ where cnd then bd) is a

shortcut for (rule pt var (vr.∗) seq (vr.s.∗) abn (vr.∗.1) und (vr.∗.2) val (vr.∗.3) el.∗ then (if cnd

then bd else und));

• (rule pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) val (vr.∗.3, vr) el.∗ then bd) is a shortcut

for (rule pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) val (vr.∗.3) el.∗ then (let w be vr in

[subst (vr :: ∗ : w) bd])), where w is a new element that does not occur in this definition;

• (rule pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) val () el.∗ then bd) is a shortcut for

(rule pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) el.∗ then bd);

• (rule pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1, vr) abn (vr.∗.2) el.∗ then bd) is a shortcut for

(rule pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) el.∗ then (if (vr is undefined) then

und else bd));

System Informatics (Системная информатика), No. 8 (2016) 67

• (rule pt var (vr.∗) seq (vr.s.∗) und () abn (vr.∗.2) el.∗ then bd) is a shortcut for (rule pt var

(vr.∗) seq (vr.s.∗) abn (vr.∗.2) el.∗ then bd);

• (rule pt var (vr.∗) seq (vr.s.∗) abn (vr.∗.2, vr) el.∗ then bd) is a shortcut for (rule pt var (vr.∗)

seq (vr.s.∗) abn (vr.∗.2) el.∗ then (if (vr is abnormal) then vr else bd));

• (rule pt var (vr.∗) seq (vr.s.∗) abn () el.∗ then bd) is a shortcut for (rule pt var (vr.∗) seq

(vr.s.∗) el.∗ then bd);

• (rule pt var (vr.∗) seq (vr.s.∗) und then bd) is a shortcut for (rule pt var (vr.∗) seq (vr.s.∗)

then (if (val :: in is undefined) then skip else bd);

• (rule pt var (vr.∗) seq (vr.s.∗) abn then bd) is a shortcut for (rule pt var (vr.∗) seq (vr.s.∗)

then (if (val :: in is abnormal) then skip else bd).

The element cnd specifies the restriction on the values of the pattern variables. The undefined

value is propagated through the variables of vr.∗.1. Abnormal values are propagated through

the variables of vr.∗.2. The sequence el.∗ specifies propagation of abnormal values depending on

the value of val :: in. The undefined value is propagated when el.∗ = und. Abnormal values

are propagated when el.∗ = abn. The special element vr :: ∗ references to the value of element

associated with the pattern variable vr. A pattern variable is evaluated if the element associated

with it is evaluated. Thus, the sequence vr.∗.3 contains evaluated pattern variables. A pattern

variable is quoted if the element associated with it is not evaluated. Let Frm.r be a set of rule

forms.

The objects var (vr.∗), seq (vr.s.∗), und (vr.∗.1), abn (vr.∗.2), val (vr.∗.3) and where cnd in the

form (rule ...) can be omitted. The omitted objects correspond to var (), seq (), und (), abn (),

val () and where true, respectively.

5. Semantics of executable elements in CTSL

5.1. Element interpretation

The element x :: value returning the interpretation of x is defined by the rule

(rule x :: value var (x) abn then x :: value :: atm);

(transition x :: value :: atm var (x) then fn),

where x0 :: value :: atm el.∗ # cnf →fn,sb el.∗ # [value x0 cnf] # cnf .

5.2. Abnormal elements operations

The element und is defined by the rule

68 Anureev I.S. Formalisms for conceptual design of information systems

(rule und abn then und :: q).

The element exc is defined by the rule

(rule x var (x) abn where (x is exception) then x :: q) :: name :: (”@”, exception).

The rule satisfies the property: nm ≺Jord.trn.exK (”@”, exception) for each nm such that nm is

a name of an atomic exogenous transition relation or transition rule with the pattern distinct

from vr, where vr is a variable of this pattern.

The element el :: q is defined by the rule

(rule x :: q var (x) abn then x :: q :: value).

The element el of the form (catch :: u x y) called an undefined value handler is defined as

follows:

(transition (catch :: u x y) var (x) seq (y) then fn),

where (catch :: u x0 y0), el.∗ # vl # cnf →fn,sb [subst (x0 : vl) y0], el.∗ # true # cnf . The

elements x and y are called a variable and body in JelK. The element el replaces all occurences

of x in y by the current value, resets the current value to true and executes the modified body.

The element el of the form (catch x y) called an exception handler is defined as follows:

(rule (catch x y) var (x) seq (y) und then (catch :: u x y)).

The elements x and y are called a variable and body in JelK.

The element el of the form (throw x) is defined by the rule

(rule (throw x) var (x) val (x) abn then (throw x :: ∗) :: atm);

(transition (throw x) :: atm var (x) then fn),

where (throw x0) :: atm, el.∗ # cnf →fn,sb el.∗ # x0 # cnf . The element x is called a body in

JelK.

The deletion (delete−exception x) of the exception of the type x is defined by the rule

(rule (delete−exception x) var (x) und then (catch w

(if ((w is exception) and (((element in w) .. type) = x :: q))

then (throw true) else (throw w :: q)))).

5.3. Statements

The element skip is defined as follows:

(rule skip abn then skip :: atm);

(transition skip :: atm then fn),

where skip :: atm, el.∗ # cnf →fn,sb el.∗ # cnf .

System Informatics (Системная информатика), No. 8 (2016) 69

The sequential composition el of the form (seq el.∗) is defined by the rule

(rule (seq x) var (x) seq (x) then x)

The elements of el.∗ are called elements in JelK and el.∗ is called a body in JelK. The element el

executes its elements sequentially from left to right.

The conditional element (if x then y else z) is defined as follows:

(rule (if x then y else z) var (x) seq (y, z) val (x) abn

then (if x :: ∗ then y else z) :: atm);

(transition (if x then y else z) :: atm var (x) seq (y, z) then fn),

where (if x0 then y0 else z0) :: atm, el.∗ # cnf →fn,sb [if [x0 6= und] then y0 else z0], el.∗ # cnf .

The element (if x then y) is a shortcut for (if x then y else skip).

The conditional element (if x then y elseif z then u ... else v) is defined as follows:

(definition (if x then y elseif z) var (x) seq (y, z) abn

then (if x then y else (if z))).

The element el of the form (let x be y in z) is defined as follows:

(rule (let x be y in z) var (x) seq (y, z) abn then (let x be y in z) :: atm);

(transition (let x be y in z) :: atm var (x) seq (y, z) then fn),

where (let x0 be y0 in z0) :: atm, el.∗ # cnf →fn,sb y0, (let x0 be−val−in z0), el.∗ # cnf . The

elements x, y and z are called a substitution variable, substitution value and substitution body

in JelK.

The auxiliary element (let x be−val−in y) is defined as follows:

(transition (let x be−val−in y) var (x) seq (y) abn then fn),

where (let x0 be−val−in y0), el.∗ # vl # cnf →fn,sb [subst (x0 : vl) y0], el.∗ # cnf .

The element el of the form (let :: seq x be y in z), where x ∈ El.(∗), y ∈ El.(∗), and

[len x] = [len y], is defined by the rule

(rule (let :: seq x, y be (z), u in v) var (x) seq (y, z, u, v) abn

then (let x be z in (let :: seq y be u in v)));

(rule (let :: seq be in v) seq (v) abn then v).

The elements x, y and z are called a substitution variables specification, substitution values

specification and substitution body in JelK. The elements of x and y are called substitution

variables and substitution values in JelK.

The iterator el of the form (while x do y) is defined by the rule

(if (while x do y) var (x) seq (y) abn then (if x then y (while x do y))).

70 Anureev I.S. Formalisms for conceptual design of information systems

The elements x and y are called a condition and body in JelK.

The iterator el of the form (foreach x in y do z) is defined as follows:

(rule (foreach x in y do z) var (x, y) seq (z) val (y) abn where (y :: ∗ is sequence)

then (foreach1 x in y :: ∗ do z)).

The objects x, y and z are called an iteration variable, iteration structure specifier and body

in JelK. The element el executes sequentially z for values of x from el.1, where el.1 is the value

of y.

The element (foreach1 x in y do z) is defined by the rules

(rule (foreach1 x in () do y) var (x) seq (y) abn then);

(rule (foreach1 x in (y z) do v) var (x, y) seq (z, v) abn

then (let x be y in v), (foreach1 x in (z) do v)).

5.4. Characteristic functions for defined concepts

An object df.c is a concept definition if df.c is an atomic transition relation of the form

(transition nm if (el.1 is el.2) var (vr.∗) seq (vr.s.∗) then fn), or df.c is a transition rule of the

form (rule nm if (el.1 is el.2) var (vr.∗) seq (vr.s.∗) then bd). Concept definitions specify concepts

and their instances. Concepts specified by them are called defined concepts. The elements el.1

and el.2 are called an instance pattern and concept pattern in Jdf.cK. The element (el.1 is el.2)

is called a characteristic function in Jdf.cK. Let Df.c be a set of concept definitions.

An element cncp.d is a defined concept in Jdf.c, sbK if cncp is an instance in J(el.2, var (vr.∗) seq

(vr.s.∗)),mt, sbK. An element cncp.d is a defined concept in Jdf.cK if there exists sb such that cncp.d

is a concept in Jdf.c, sbK. An element cncp.d is a defined concept in JcnfK if there exists df.cJcnfK

such that cncp.d is a concept in Jdf.cK. Let Cncp.d be a set of defined concepts.

An element instn is an instance in Jdf.c, sbK if instn is an instance in J(el.1, var (vr.∗) seq (vr.s.∗)),

mt, sbK. An element instn is an instance in Jdf.cK if there exists sb such that cncp.d is an instance

in Jdf.c, sbK.

An element instn is an instance in Jcncp.d, cnf , df.cK if instn is an instance in Jdf.cK, cncp.d is a

defined concept in Jdf.cK, and there exist cnf.1 and vl such that (execute−exogenous−transition,

(instn is cncp.d), (nm)) # cnf →∗ # vl # cnf.1, and vl 6= und. An element instn is an instance

in Jcncp.d, cnfK if there exists df.c such that instn is an instance in Jcncp.d, cnf , df.cK. An element

cncp.d is an instance in JcnfK if there exists cncp.d such that instn is an instance in Jcncp.d, cnfK.

Let Instn be a set of instances.

System Informatics (Системная информатика), No. 8 (2016) 71

A set st is called a content in Jcncp.d, cnfK if st is a set of all instn such that instn is an instance

in Jcncp.d, cnfK. Let [content cncp.d cnf] denote the content in Jcncp.d, cnfK.

The notion of defined concepts is extended to the rules of the form (rule (el.1 is el.2) var (vr.∗)

seq (vr.s.∗) und (vr.∗.1) val (vr.∗.3) where cnd then bd). Let rl have this form. An element cncp.d

is a defined concept in Jrl, sbK if cncp.d is a defined concept in Jrl.1, sbK, where rl.1 is a rule of the

form (rule (el.1 is el.2) var (vr.∗) seq (vr.s.∗) then bd.1) such that rl is reduced to rl.1.

The element (x is atom) specifying that x is an atom is defined by the rule

(rule (x is atom) var (x) abn then (x is atom) :: value).

The element (x is update) specifying that x is an element update is defined by the rule

(rule (x is update) var (x) abn then (x is update) :: value).

The element (x is multi−attribute) specifying that x is a multi-attribute element is defined

by the rule

(rule (x is multi−attribute) var (x) abn then (x is multi−attribute) :: value).

The element (x is attribute) specifying that x is an attribute element is defined by the rule

(rule (x is attribute) var (x) abn then (x is attribute) :: value).

The element (x is sorted) specifying that x is a sorted element is defined by the rule

(rule (x is sorted) var (x) abn then (x is sorted) :: value).

The element (x is undefined) specifying that x equals und is defined by the rule

(rule (x is undefined) var (x) abn then (x is undefined) :: value).

The element (x is defined) specifying that x does not equal und is defined by the rule

(rule (x is defined) var (x) abn then (x is defined) :: value).

The element (x is exception) specifying that x is an exception is defined by the rule

(rule (x is exception) var (x) abn then (x is exception) :: value).

The element (x is normal) specifying that x is a normal element is defined by the rule

(rule (x is normal) var (x) abn then (x is normal) :: value.

The element (x is normal) specifying that x is an abnormal element is defined by the rule

(rule (x is abnormal) var (x) abn then (x is abnormal) :: value.

The element (x is sequence) specifying that x is a sequence element is defined by the rule

(rule (x is sequence) var (x) abn then (x is sequence) :: value).

The element (x is set) specifying that the elements of the sequence element x are pairwise

distinct is defined as follows:

(rule (x is set) var (x) abn then (x is set) :: value).

72 Anureev I.S. Formalisms for conceptual design of information systems

The element (x is empty) specifying that x is an empty element is defined by the rule

(rule (x is empty) var (x) abn then (x is empty) :: value).

The element (x is nonempty) specifying that x is not an empty element is defined by the

rule

(rule (x is nonempty) var (x) abn then (x is nonempty) :: value).

The element (x is conceptual) specifying that x is a conceptual is defined by the rule

(rule (x is conceptual) var (x) abn then (x is conceptual) :: value).

The element (x is (conceptual in y)) specifying that x is a conceptual in the context of the

state y is defined by the rule

(rule (x is (conceptual in y)) var (x, y) abn then (x is (conceptual in y)) :: value.

The element (x is state) specifying that x is a conceptual state is defined by the rule

(rule (x is state) var (x) abn then (x is state) :: value).

The element (x is configuration) specifying that x is a conceptual configuration is defined

by the rule

(rule (x is configuration) var (x) abn then (x is configuration) :: value).

The element (x is nat) specifying that x is a natural number is defined by the rule

(rule (x is nat) var (x) abn then (x is nat) :: value).

The element (x is nat0) specifying that x is either a natural number, or a zero is defined by

the rule

(rule (x is nat0) var (x) abn then (x is nat0) :: value).

The element (x is int) specifying that x is an integer is defined by the rule

(rule (x is int) var (x) abn then (x is int) :: value).

The element (x is (satisfiable in y)) specifying that x is satisfiable in the context of variables

y is defined by the rule

(rule (x is (satisfiable in y)) var (x) seq (y) abn

then (x is (satisfiable in (y))) :: value).

The element (x is (valid in y)) specifying that x is valid in the context of variables y is

defined by the rule

(rule (x is (valid in y)) var (x) seq (y) abn then (x is (valid in (y))) :: value).

The element (x is (sequence y)) specifying that x is a sequence element such that the value

in J(el is y)K does not equal und for each element el of x is defined by the rule

(rule ((x y) is (sequence z)) var (x, z) seq (y) abn

System Informatics (Системная информатика), No. 8 (2016) 73

then ((x is z) and ((y) is (sequence z)));

(rule (() is (sequence x)) var (x) abn then true).

The element (x is rule) specifying that x is a rule is defined as follows:

(rule (x is rule) var (x) abn then (x is rule) :: value);

(interpretation (x is rule) var (x) then fn),

where [fn sb] = [if [x0 ∈ Rl] then true else und].

The element (x is (rule in y)) specifying that x is a rule in the context of the state y is

defined as follows:

(rule (x is (rule in y)) var (x, y) abn then (x is (rule in y)) :: value);

(definition (x is (rule in y)) var (x, y) where ((x is rule) and (y is state))

then (x is conceptual in y) :: atm);

(interpretation (x is (conceptual in y)) :: atm var (x, y) then fn),

where [fn sb] = [if [x0 ∈ RlJy0K] then true else und].

The element (x is transition) specifying that x is a transition is defined as follows:

(rule (x is transition) var (x) abn then (x is transition) :: value);

(interpretation (x is transition) var (x) then fn),

where [fn sb] = [if [x0 ∈ Trn] then true else und].

5.5. Elements operations

The element () is defined by the rule

(rule () abn then () :: q).

The element (len x) specifying the length of the element x is defined by the rule

(rule (len x) var (x) val (x) abn then (len x :: ∗ :: q) :: value).

The element (x = y) specifying the equality of the elements x and y is defined by the rule

(rule (x = y) var (x, y) val (x, y) abn then (x :: ∗ :: q = y :: ∗ :: q) :: value).

The element (x ! = y) specifying the inequality of the elements x and y is defined in the

similar way.

The element (x . y) specifying the y-th element of the sequence element x is defined by the

rule

(rule (x . y) var (x, y) val (x, y) abn then (x :: ∗ :: q . y :: ∗ :: q) :: value).

The element (x .. y) specifying the value of the attribute element x for the attribute y is

defined by the rule

74 Anureev I.S. Formalisms for conceptual design of information systems

(rule (x .. y) var (x, y) val (x) abn then (x :: ∗ :: q .. y) :: value).

The element (x + y) specifying the concatenation of the sequence elements x and y is

defined by the rule

(rule (x + y) var (x, y) val (x, y) abn then (x :: ∗ :: q + y :: ∗ :: q) :: value).

The element (x .+ y) specifying the addition of the element x to the head of the sequence

element y is defined by the rule

(rule (x .+ y) var (x, y) val (x, y) abn then (x :: ∗ :: q .+ y :: ∗ :: q) :: value).

The element (x .+ :: set y) specifying the addition of the element x to the head of the

sequence element y representing a set is defined as follows:

(rule (x .+ :: set y) var (x, y) val (x, y) abn where (y :: ∗ is set)

then (x :: ∗ :: q .+ :: set y :: ∗ :: q) :: value).

The element (x + . y) specifying the addition of the element y to the tail of the sequence

element x is defined by the rule

(rule (x + . y) var (x, y) val (x, y) abn then (x :: ∗ :: q + . y :: ∗ :: q) :: value).

The element (x + . :: set y) specifying the addition of the element y to the tail of the

sequence element x representing a set is defined by the rule

(rule (x + . :: set y) var (x, y) val (x, y) abn where (x :: ∗ is set)

then (x :: ∗ :: q + . :: set y :: ∗ :: q) :: abn).

The element (x − . :: set y) specifying the deletion of the element y from the sequence

element x representing a set is defined by the rule

(rule (x − . :: set y) var (x, y) val (x, y) abn where (x :: ∗ is set)

then (x :: ∗ :: q − . :: set y :: ∗ :: q) :: value).

The element (upd x y1 : z1, ..., ynt : znt) specifying the sequential updates of the attribute

element x at the points y1, ..., ynt by z1, ..., znt is defined by the rules

(rule (upd x y) var (x) seq (y) val (x) abn

where ((x :: ∗ is attribute) and ((y) is (sequence update))) then (upd :: att x :: ∗ y));

(rule (upd :: att x y z) var (y) seq (z) und (x) abn

then (upd :: att (upd1 :: att x y) z));

(rule (upd :: att x) var (x) then x);

(rule (upd1 :: att x y : z) var (x, y, z) val (z) abn

then (upd1 :: att x y : z :: ∗ :: q) :: value).

System Informatics (Системная информатика), No. 8 (2016) 75

The element (upd x y : z) specifying the update of the sequence element x at the index y

by z is defined by the rule

(rule (upd x y z) var (x, y, z) val (x, y, z) abn

then (upd :: seq x :: ∗ :: q y :: ∗ :: q z :: ∗ :: q) :: value).

The element (x in :: set y) specifying that x is an element of the sequence element y is

defined as follows:

(rule (x in :: set y) var (x, y) val (x, y) abn then (x in :: set y) :: value).

The element (x includes :: set y) specifying that the sequence element x includes the ele-

ments of the sequence element y is defined as follows:

(rule (x includes :: set y) var (x, y) val (x, y) abn then (x includes :: set y) :: value).

The element (attributes in x) specifying the sequence of attributes of the attribute element

x is defined by the rule

(rule (attributes in x) var (x) abn then (attributes in x) :: value).

The element (values in x) specifying the sequence of attribute values of the attribute element

x is defined by the rule

(rule (values in x) var (x) abn then (values in x) :: value).

The element (element in x) specifying the element of the sorted element x is defined by the

rule

(rule (element in x) var (x) abn then (element in x) :: value).

The element (sort in x) specifying the sort of the sorted element x is defined by the rule

(rule (sort in x) var (x) abn then (sort in x) :: value).

The element (attribute in x) specifying the attribute of the element update x is defined by

the rule

(rule (attribute in x) var (x) abn then (attribute in x) :: value).

The element (value in x) specifying the value of the element update x is defined by the rule

(rule (value in x) var (x) abn then (value in x) :: value).

The element (unbracket (x)) is defined by the rule

(rule (unbracket (x)) seq (x) abn then x).

5.6. Boolean operations

The element true is defined by the rule:

(rule true abn then true :: value).

76 Anureev I.S. Formalisms for conceptual design of information systems

The element (x and y) specifying the conjunction of x and y is defined by the rule:

(rule (x and y) var (x, y) abn then (if x then y else und)).

The elements (x op y), where op ∈ {or,=>,<=>} specifying the disjunction, implication

and equivalence of x and y are defined in the similar way.

The element (x1 and x2 and ... and xnt) specifying the conjunction of x1, x2, ..., xnt is defined

by the rule

(rule (x and y and z) var (x, y) seq (z) abn then ((x and y) and z).

The element (x1 or x2 or ... or xnt) specifying the disjunction of x1, x2, ..., xnt is defined in

the similar way.

The element (not x) specifying the negation of x is defined by the rule

(rule (not x) var (x) abn then (if x then und else true)).

5.7. Integers

The element int is defined by the rule

(rule x var (x) abn where (x is int) then x :: q) :: name :: (”@”, int).

The rule satisfies the property: (”@”, exception) ≺Jord.trn.exK (”@”, int).

The element (x + y) specifying the sum of x and y is defined by the rule

(rule (x + y) var (x, y) val (x, y) abn then (x :: ∗ :: q + y :: ∗ :: q) :: value).

The elements (x op y), where op ∈ {−, ∗, div,mod}, specifying the integer operations −, ∗,

div and mod, are defined in the similar way.

The element (x < y) specifying that x is less than y is defined by the rule

(rule (x < y) var (x, y) val (x, y) abn then (x :: ∗ :: q < y :: ∗ :: q) :: value).

The elements (x op y), where op ∈ {<=, >,>=}, specifying the integer relations ≤, > and

≥, are defined in the similar way.

5.8. Conceptuals operations

The element (x in y) specifying the value of the conceptual x in the state y is defined by

the rule

(rule (x in y) var (x, y) abn then (x in y) :: value).

The element x :: state :: y specifying the value of the conceptual x in the substate with the

name y of the current configuration is defined by the rule

(rule x :: state :: y var (x, y) abn then (x :: state :: y) :: value).

System Informatics (Системная информатика), No. 8 (2016) 77

The element cncpl is a shortcut for cncpl :: ().

The assignment (cncpl :: state :: nm ::= el) of el to cncpl :: state :: nm is defined as follows:

(rule (x :: state :: z ::= y) var (x, y, z) val (y) abn where (x is conceptual)

then (x :: state :: z ::= y :: ∗) :: atm);

(transition (x :: state :: z ::= y) :: atm var (x, y, z) then fn),

where (x0 :: state :: z0 ::= y0) :: atm, el.∗ # cnf →fn,sb el.∗ # [[cnf z0] x0 : y0].

The element (cncpl ::= el) is a shortcut for (cncpl :: () ::= el). The elements (cncpl :: state ::

nm ::=) and (cncpl ::=) are shortcuts for (cncpl :: state :: nm ::= und) and (cncpl ::= und).

5.9. Countable concepts operations

A normal element cncp.c is a countable concept in JcnfK if [[cnf countable−concept] (0 :

cncp.c)] ∈ Nt. Thus, the substate countable−concept specifies countable concepts. Let Cncp.c be

a set of countable concepts. The element [[cnf countable−concept] (0 : cncp.c)] is called an order

in Jcncp.c, cnfK. Let Ord.cncp.c be a set of orders of countable concepts. An element nt :: cc :: cncp.c

is called an instance in Jcncp.cK. An element nt :: cc :: cncp.c is an instance in Jcncp.c, cnfK if

nt ≤ ord.cncp.cJcncp.c, cnfK.

The element (x is countable−concept) specifying that x is a countable concept is defined as

follows:

(rule (x is countable−concept) var (x) abn then (x is countable−concept) :: value).

The element nt :: cc :: cncp.c is defined by the rule:

(rule x :: cc :: y var (x, y) abn then x :: cc :: y :: value).

Let cncpl denote (0 : x) :: countable−concept. The element (new x) called an instance

generator generates a new instance of the countable concept x and adds this concept if it was

not. It is defined as follows:

(rule (new x) var (x) abn then (new x) :: atm);

(transition (new x) :: atm var (x) then fn),

where (new x0) :: atm, el.∗ # cnf →fn,sb (let w be cncpl in (if (w is int) then (seq (cncpl ::=

(w + 1)), (let w1 be (w + 1) in w1 :: x :: cc)) else (seq (cncpl ::= 1), 1 :: x :: cc))), el.∗ # cnf .

5.10. Matching operations

The conditional pattern matching element el of the form (if x matches y var z seq u then v

else w), where (y, z, u) is a pattern specification, is defined as follows:

78 Anureev I.S. Formalisms for conceptual design of information systems

(rule (if x matches y var z seq u then v else w) var (x, y, z, u) seq (v, w) abn

where ((z is sequence) and (u is sequence) and (z includes :: set u))

then (if x matches y var z seq u then v else w) :: atm);

(transition (if x matches y var z seq u then v else w) :: atm

var (x, y, z, u, v, w) then fn),

where (if x0 matches y0 var z0 seq u0 then v0 else w0) :: atm, el.∗ # cnf →fn,sb [if [x0 is an

instance in J(y0, z0, u0),mt, sb.1K for some sb.1] then [subst sb.1 ∪ (conf :: in : cnf , val :: in :

vlJcnfK) v0] else [subst (conf :: in : cnf , val :: in : vlJcnfK) w0], el.∗ # cnf . The objects x, y,

z, u, v and w are called a matched element, pattern, variable specification, sequence variable

specification, then-branch and else-branch in JelK. The elements of z are called pattern variables

in JelK. The element el executes the instance of the then-branch v in Jsb.1K if x is an instance

in Jy, sb.1K. Otherwise, the element el executes the else-branch w.

Let {vr.∗}, {vr.s.∗}, {vr.∗.1} and {vr.∗.2} are pairwise disjoint, and {vr.∗.3} ⊆ {vr.∗} ∪ {vr.∗.1} ∪

{vr.∗.2}. The form (if el matches pt var (vr.∗) seq (vr.s.∗) abn (vr.∗.1) und (vr.∗.2) val (vr.∗.3) where

cnd then el.1 else el.2) is defined as follows:

• (if el matches pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) val (vr.∗.3) where cnd then el.1

else el.2) is a shortcut for (if el matches pt var (vr.∗) seq (vr.s.∗) abn (vr.∗.1) und (vr.∗.2) val

(vr.∗.3) then (if cnd then el.1 else el.2 :: (nosubstexcept conf :: in, val :: in)) else el.2);

• (if el matches pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) val (vr.∗.3, vr) then el.1 else

el.2) is a shortcut for (if el matches pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) val

(vr.∗.3) then (let w be vr in [subst (vr :: ∗ : w) el.1]) else el.2), where w is a new element

that does not occur in this definition;

• (if el matches pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) val () then el.1 else el.2) is

a shortcut for (if el matches pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) then el.1 else

el.2);

• (if el matches pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1, vr) abn (vr.∗.2) then bd) is a shortcut for

(if el matches pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) then (if (vr is undefined)

then und else el.1) else el.2);

• (if el matches pt var (vr.∗) seq (vr.s.∗) und () abn (vr.∗.2) then el.1 else el.2) is a shortcut

for (if el matches pt var (vr.∗) seq (vr.s.∗) abn (vr.∗.2) then el.1 else el.2);

• (if el matches pt var (vr.∗) seq (vr.s.∗) abn (vr.∗.2, vr) then el.1 else el.2) is a shortcut for

(if el matches pt var (vr.∗) seq (vr.s.∗) abn (vr.∗.2) then (if (vr is abnormal) then vr else

System Informatics (Системная информатика), No. 8 (2016) 79

el.1) else el.2);

• (if el matches pt var (vr.∗) seq (vr.s.∗) abn () then el.1 else el.2) is a shortcut for

(if el matches pt var (vr.∗) seq (vr.s.∗) then el.1 else el.2).

The element cnd specifies the restriction on the values of the pattern variables. The undefined

value is propagated through the variables of vr.∗.1. Abnormal values are propagated through

the variables of vr.∗.2. The special element vr :: ∗ references to the value of element associated

with the pattern variable vr. A pattern variable is evaluated if the element associated with it

is evaluated. Thus, the sequence vr.∗.3 contains evaluated pattern variables. A pattern variable

is quoted if the element associated with it is not evaluated.

The objects var (vr.∗), seq (vr.s.∗), und (vr.∗.1), abn (vr.∗.2), val (vr.∗.3), where cnd and else el.2

in this form can be omitted. The omitted objects correspond to var (), seq (), und (), abn (),

val (), where true and else skip, respectively.

The form (el matches pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) val (vr.∗.3) where cnd) is

a shortcut for (if el matches pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) val (vr.∗.3) where cnd

then true else und). The objects var (vr.∗), seq (vr.s.∗), und (vr.∗.1), abn (vr.∗.2), val (vr.∗.3) and

where cnd in this form can be omitted. The omitted objects correspond to var (), seq (), und (),

abn (), val () and where true, respectively.

5.11. Interpretations operations

The element (x is definition−form) specifying that x is a definition form is defined as

follows:

(rule (x is definition−form) var (x) abn then (x is definition−form) :: value);

(transition (x is definition−form) var (x) then fn),

where [fn sb] = [if [x0 ∈ Frm.d] then true else und].

The element frm.d :: name :: nm specifying a definition with the name nm is defined as

follows:

(rule x :: name :: y var (x, y) abn where (x is definition−form)

then x :: name :: y :: atm :: definition);

(transition x :: name :: y :: atm :: definition var (x, y) then fn),

where

• if y0 ∈ [support [cnf (0 : definitions) :: state :: interpretation]] ∪ [support intr.a.s], then

x0 :: name :: y0 :: atm :: definition, el.∗ # cnf →fn,sb el.∗ # und # cnf ;

80 Anureev I.S. Formalisms for conceptual design of information systems

• if y0 /∈ [support [cnf (0 : definitions) :: state :: interpretation]] ∪ [support intr.a.s],

and x0 is reduced to df , then x0 :: name :: y0 :: atm :: definition, el.∗ # cnf →fn,sb

el.∗ # [cnf interpretation.(0 : definitions).y0 : df].

The element (add−interpretation x) adding the interpretation with the name x is defined

as follows:

(rule (add−interpretation x) var (x) abn then (add−interpretation x) :: atm);

(transition (add−interpretation x) :: atm var (x) then fn),

where

• if x0 ∈ [support [cnf (0 : definitions) :: state :: interpretation]] ∪ [support intr.a.s], then

(add−interpretation x0) :: atm, el.∗ # cnf →fn,sb el.∗ # [cnf interpretation.(0 : order) :

[value [[cnf (0 : order) :: state :: interpretation] :: q + . :: set x0 :: q] cnf]];

• if x0 /∈ [support [cnf (0 : definitions) :: state :: interpretation]] ∪ [support intr.a.s], then

(add−interpretation x0) :: atm, el.∗ # cnf →fn,sb el.∗ # und # cnf .

The element (add−interpretation x after y) adding the interpretation with the name x

after the interpretation with the name y is defined as follows:

(rule (add−interpretation x after y) var (x, y) abn

then (add−interpretation x after y) :: atm);

(transition (add−interpretation x after y) :: atm var (x, y) then fn),

where

• if x0 ∈ [support [cnf (0 : definitions) :: state :: interpretation]] ∪ [support intr.a.s], and

y0 /∈ [cnf (0 : order) :: state :: interpretation] :: q − . :: set x0], then (add−interpretation

x0) :: atm, el.∗ # cnf →fn,sb el.∗ # und # cnf ;

• if x0 ∈ [support [cnf (0 : definitions) :: state :: interpretation]] ∪ [support intr.a.s], and

[value [cnf (0 : order) :: state :: interpretation] :: q − . :: set x0] = nm.∗.1 y0 nm.∗.2, then

(add−interpretation x0) :: atm, el.∗ # cnf →fn,sb el.∗ # [cnf interpretation.(0 : order) :

nm.∗.1 y0 x0 nm.∗.2];

• if x0 /∈ [support [cnf (0 : definitions) :: state :: interpretation]] ∪ [support intr.a.s], then

(add−interpretation x0) :: atm, el.∗ # cnf →fn,sb el.∗ # und # cnf .

The element (delete−interpretation x) deleting the interpretation with the name x is defined

as follows:

(rule (delete−interpretation x) var (x) abn then (delete−interpretation x) :: atm);

(transition (delete−interpretation x) :: atm var (x) then fn),

System Informatics (Системная информатика), No. 8 (2016) 81

where

• if x0 ∈ [support [cnf (0 : definitions) :: state :: interpretation]] ∪ [support intr.a.s],

then (delete−interpretation x0) :: atm, el.∗ # cnf →fn,sb el.∗ # [cnf interpretation.(0 :

order) : [value [cnf (0 : order) :: state :: transition] :: q − . :: set x0 :: q cnf]];

• if x0 /∈ [support [cnf (0 : definitions) :: state :: interpretation]] ∪ [support intr.a.s], then

(delete−interpretation x0) :: atm, el.∗ # cnf →fn,sb el.∗ # und # cnf .

5.12. Configurations operations

The element conf :: cur specifying the current configuration is defined as follows:

(rule conf :: cur abn then conf :: cur :: value).

The element val :: cur specifying the value in the current configuration is defined as follows:

(rule val :: cur abn then val :: cur :: value);

(definition val :: cur then val :: cur :: value);

(interpretation val :: cur then fn),

where [fn sb] = vlJcnfK.

5.13. Transitions operations

The element (x is rule−form) specifying that x is a rule form is defined as follows:

(rule (x is rule−form) var (x) abn then (x is rule−form) :: value);

(transition (x is rule−form) var (x) then fn),

where [fn sb] = [if [x0 ∈ Frm.r] then true else und].

The element frm.r :: name :: nm specifying a rule with the name nm is defined as follows:

(rule x :: name :: y var (x, y) abn where (x is rule−form)

then x :: name :: y :: atm :: rule);

(transition x :: name :: y :: atm :: rule var (x, y) then fn),

where

• if y0 ∈ [support [cnf (0 : rules) :: state :: transition]] ∪ [support trn.rlt.ex.s] ∪ [support

trn.rlt.en.s], then x0 :: name :: y0 :: atm :: rule, el.∗ # cnf →fn,sb el.∗ # und # cnf ;

• if y0 /∈ [support [cnf (0 : rules) :: state :: transition]] ∪ [support trn.rlt.ex.s] ∪ [support

trn.rlt.en.s], and x0 is reduced to rl, then x0 :: name :: y0 :: atm :: rule, el.∗ # cnf →fn,sb

el.∗ # [cnf transition.(0 : rules).y0 : rl].

The element (add−transition x) adding the transition with the name x is defined as follows:

82 Anureev I.S. Formalisms for conceptual design of information systems

(rule (add−transition x) var (x) abn then (add−transition x) :: atm);

(transition (add−transition x) :: atm var (x) then fn),

where

• if x0 ∈ [support [cnf (0 : rules) :: state :: transition]] ∪ [support trn.rlt.ex.s], then

(add−transition x0) :: atm, el.∗ # cnf →fn,sb el.∗ # [cnf transition.(−1 : exogenous, 0 :

order) : [value [[cnf (−1 : exogenous, 0 : order) :: state :: transition] :: q + . :: set x0 ::

q] cnf]];

• if x0 ∈ [support trn.rlt.en.s], then (add−transition x0) :: atm, el.∗ # cnf →fn,sb el.∗ # [cnf

transition.(−1 : endogenous, 0 : order) : [value [[cnf (−1 : endogenous, 0 : order) ::

state :: transition] :: q + . :: set x0 :: q] cnf]];

• if x0 /∈ [support [cnf (0 : rules) :: state :: transition]] ∪ [support trn.rlt.ex.s] ∪ [support

trn.rlt.en.s], then (add−transition x0) :: atm, el.∗ # cnf →fn,sb el.∗ # und # cnf .

The element (add−transition x after y) adding the transition with the name x after the

transition with the name y is defined as follows:

(rule (add−transition x after y) var (x, y) abn

then (add−transition x after y) :: atm);

(transition (add−transition x after y) :: atm var (x, y) then fn),

where

• if x0 ∈ [support [cnf (0 : rules) :: state :: transition]] ∪ [support trn.rlt.ex.s], and y0 /∈

[cnf (−1 : exogenous, 0 : order) :: state :: transition] :: q − . :: set x0], then (add−

transition x0) :: atm, el.∗ # cnf →fn,sb el.∗ # und # cnf ;

• if x0 ∈ [support [cnf (0 : rules) :: state :: transition]]∪ [support trn.rlt.ex.s], and [value [cnf

(−1 : exogenous, 0 : order) :: state :: transition] :: q − . :: set x0] = nm.∗.1 y0 nm.∗.2, then

(add−transition x0) :: atm, el.∗ # cnf →fn,sb el.∗ # [cnf transition.(−1 : exogenous, 0 :

order) : nm.∗.1 y0 x0 nm.∗.2];

• if x0 ∈ [support trn.rlt.en.s], and y0 /∈ [cnf (−1 : endogenous, 0 : order) :: state ::

transition] :: q − . :: set x0], then (add−transition x0) :: atm, el.∗ # cnf →fn,sb

el.∗ # und # cnf ;

• if x0 ∈ [support trn.rlt.en.s], and [value [cnf (−1 : endogenous, 0 : order) :: state ::

transition] :: q −. :: set x0] = nm.∗.1 y0 nm.∗.2, then (add−transition x0) :: atm, el.∗ # cnf

→fn,sb el.∗ # [cnf transition.(−1 : endogenous, 0 : order) : nm.∗.1 y0 x0 nm.∗.2];

• if x0 /∈ [support [cnf (0 : rules) :: state :: transition]] ∪ [support trn.rlt.ex.s] ∪ [support

System Informatics (Системная информатика), No. 8 (2016) 83

trn.rlt.en.s], then (add−transition x0) :: atm, el.∗ # cnf →fn,sb el.∗ # und # cnf .

The element (delete−transition x) deleting the transition with the name x is defined as

follows:

(rule (delete−transition x) var (x) abn then (delete−transition x) :: atm);

(transition (delete−transition x) :: atm var (x) then fn),

where

• if x0 ∈ [support [cnf (0 : rules) :: state :: transition]] ∪ [support trn.rlt.ex.s], then

(delete−transition x0) :: atm, el.∗ # cnf →fn,sb el.∗ # [cnf transition.(−1 : exogenous, 0 :

order) : [value [cnf (−1 : exogenous, 0 : order) :: state :: transition] :: q − . :: set x0 ::

q cnf]];

• if x0 ∈ [support trn.rlt.en.s], then (delete−transition x0) :: atm, el.∗ # cnf →fn,sb el.∗ # [cnf

transition.(−1 : endogenous, 0 : order) : [value [cnf (−1 : endogenous, 0 : order) ::

state :: transition] :: q − . :: set x0 :: q cnf]];

• if x0 /∈ [support [cnf (0 : rules) :: state :: transition]] ∪ [support trn.rlt.ex.s] ∪ [support

trn.rlt.en.s], then (delete−transition x0) :: atm, el.∗ # cnf →fn,sb el.∗ # und # cnf .

The element el of the form (modify x) or (modify :: n x) is defined as follows:

(rule (modify x) var (x) then (modify x) :: atm);

(rule (modify :: n x) var (x) abn then (modify x) :: atm);

(transition (modify x) :: atm var (x) then fn),

where (modify x0) :: atm, el.∗ # vl # cnf →fn,sb el.∗ # [if [there exists cnf.1 such that [value

[subst (conf :: in : cnf , val :: in : vlJcnfK, conf :: out : cnf.1, val :: out : vlJcnf.1K) x0] cnf] 6=

und] then vl # cnf.1 else und # cnf]. The element x is called a transition condition in JelK. It

specifies the set of configurations reachable from cnf for one transition. The elements conf :: in

and conf :: out reference to the input state and the output state, and the elements val :: in

and val :: out reference to values in these states.

⊕
The execution of the element (modify (((−1 : value, 0 : x, 1 : variable) inconf :: out) =

0)) initiates the transition to a state in which the value of the variable x equals to 0.⊕
The execution of the element (modify (((−1 : value, 0 : x, 1 : variable) = ”green”) and

(((−1 : value, 0 : x, 1 : variable) in conf :: out) = ”red”))) initiates the transition

from a state in which the value of the variable x equals to "green" to a state in which the

variable x equals to "red".

84 Anureev I.S. Formalisms for conceptual design of information systems

The element el of the form (modify−exist (x) y) or (modify−exist :: n (x) y) is defined as

follows:

(rule (modify−exist (x) y) var (y) seq (x) then (modify−exist (x) y) :: atm);

(rule (modify−exist :: n (x) y) var (y) seq (x) abn then (modify−exist (x) y) :: atm);

(transition (modify−exist (x) y) :: atm var (y) seq (x) then fn),

where (modify−exist (x0) y0) :: atm, el.∗ # vl # cnf →fn,sb el.∗ # [if [there exists cnf.1 such

that [[subst (conf :: in : cnf , val :: in : vlJcnfK, conf :: out : cnf.1, val :: out : vlJcnf.1K) y0] is

satisfiable in ((x0), cnf)] then vl # cnf.1 else und # cnf]. The element y is called a transition

condition in JelK. The elements of x are called existential variables in JelK.

5.14. Safety operations

The element el of the form (assert x) or (assert :: n x) is defined as follows:

(rule (assert x) var (x) then (assert x) :: atm);

(rule (assert x :: n) var (x) abn then (assert x) :: atm);

(transition (assert x) :: atm var (x) then fn),

where (assert x0) :: atm, el.∗ # vl # cnf →fn,sb el.∗ # [if [[value [subst (conf :: incnf , val :: in :

vl) x0] cnf] 6= und] then vl else und] # cnf . The element x is called a safety condition in JelK.

5.15. Branching operations

The element el of the form (branching x) is defined as follows:

(rule (branching x) seq (x) abn then (branching x) :: atm);

(transition (branching x) :: atm var (x) then fn),

where (branching x0) :: atm, el.∗ # vl # cnf →fn,sb # (type : assume) :: exc # [cnf branching.

(0 : ()) : [((x0), cnf , (el.∗)) . + [[cnf branching] (0 : ())]]]. The elements of x are called

branches in JelK. The element el generates the branchpoint with the branches x. The exception

(type : assume) :: exc specifies the failure of the execution of the current branch. The substate

branching contains information about branching. The conceptual (0 : ()) :: state :: branching

specifies the current sequence of branchpoints.

The endogenous transition relation specifying branching is defined as follows:

(endogenous−transition fn) :: name :: branching

where

• if [[cnf branching] (0 : ())] = (((el.∗.1, el, el.∗.2), cnf.1, (el.∗.3)), el.∗), then # (type :

System Informatics (Системная информатика), No. 8 (2016) 85

assume) :: exc # cnf →branching el.∗.3 # [cnf.1 branching.(0 : ()) : (((el.∗.1, el.∗.2), cnf.1,

(el.∗.3)), el.∗)];

• if [[cnf branching] (0 : ())] = (((), cnf.1, (el.∗.3)), el.∗), then # (type : assume) ::

exc # cnf →branching # (type : assume) :: exc # [cnf.1 branching.(0 : ()) : (el.∗)].

The element el of the form (assume x) or (assume :: n x) is defined as follows:

(rule (assume x) var (x) then (assume x) :: atm);

(rule (assume :: n x) var (x) abn then (assume x) :: atm);

(transition (assume x) :: atm var (x) then fn),

where (assume x0) :: atm, el.∗ # vl # cnf →fn,sb [if [[value [subst (conf :: in : cnf , val :: in :

vlJcnfK) x0] cnf] 6= und] then el.∗ # vl else # (type : assume) :: exc] # cnf . The element x

is called a continuation condition in JelK. The violation of this condition initiates the failure of

the execution of the current branch.

The element el of the form (assume−exist (x) y) or (assume−exist :: n (x) y) is defined as

follows:

(rule (assume−exist (x) y) var (y) seq (x) then (assume−exist x) :: atm);

(rule (assume−exist :: n (x) y) var (y) seq (x) abn then (assume−exist x) :: atm);

(transition (assume−exist (x) y) :: atm var (y) seq (x) then fn),

where (assume (x0) y0) :: atm, el.∗ # vl # cnf →fn,sb [if [[subst (conf :: in : cnf , val :: in :

vlJcnfK) y0] is satisfiable in J(x0), cnfK] then el.∗ # vl else # (type : assume) :: exc] # cnf . The

element y is called a continuation condition in JelK. The elements of x are called existential

variables in JelK.

6. Justification of requirements for conceptual transition systems

In this section, we establish that CTSs meet the additional requirements stated in section 1:

8. The formalism must have language support. The language associated with the formalism

must define syntactic representations of models of states, state objects, queries, query

objects, answers and answer objects and includes the set of predefined basic query models.

The CTSL language associated with CTSs defines syntactic representations of models of

states, state objects, queries, query objects, answers and answer objects and includes the

set of predefined basic query models.

9. It must model the change of the conceptual structure of states and state objects of the ITS.

The change of the conceptual structure of the ITS is described by the transition relation

86 Anureev I.S. Formalisms for conceptual design of information systems

on conceptual configurations specifying conceptual structures of the ITS with different

sets of ontological elements.

10. It must model the change of the content of the conceptual structure. The change of the

content of the conceptual structure of the ITS is described by the transition relation

on conceptual states specifying the same conceptual structure of the ITS. In fact, the

distinction between requirements 9 and 10 is relative, for conceptuals allow to define

classifications of ontological elements with different granularity.

11. It must model the transition relations of the ITS. The transition relations of the ITS are

modelled by the transition relation trn.rlt of the CTS.

12. The model of the exogenous transition relation must be extensible. The model of the

exogenous transition relation of the IQS is extended by addition of trnasition rules.

Thus, the additional requirements are met for CTSs.

7. Conclusion

In the paper two formalisms (ITSs and CTSs) for abstract unified modelling of the artifacts

of the conceptual design of information systems have been proposed by ontological elements

with arbitrary conceptual granularity. The basic definitions of the theory of CTSs have been

given. The language of CTSs has been defined.

We plan to use CTSs to design and prototype software systems as well as to specify opera-

tional and axiomatic semantics of programming languages. In the case of operational semantics

of a programming language, CTSs model an abstract machine of the language. In the case of ax-

iomatic semantics of a programming language, CTSs model a verification conditions generator

for programs in the language.

References

1. Sokolowski J., Banks C. Modeling and Simulation Fundamentals: Theoretical Underpinnings and

Practical Domains. Wiley, 2010.

2. Chen P. Entity-relationship modeling: historical events, future trends, and lessons learned //

Software pioneers. Springer-Verlag New York, 2002. P. 296-310.

3. Anureev I.S. Formalisms for conceptual design of closed information systems // System Informatics.

2016. N 7. P. 69-148.

4. Gurevich Y. Abstract state machines: An Overview of the Project // Foundations of Information

and Knowledge Systems. Lect. Notes Comput. Sci. 2004. Vol. 2942. P. 6-13.

System Informatics (Системная информатика), No. 8 (2016) 87

5. Gurevich Y. Evolving Algebras. Lipari Guide // Specification and Validation Methods. Oxford

University Press, 1995. P. 9-36.

88 Anureev I.S. Formalisms for conceptual design of information systems

